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1. General information

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without
further purification. All of the reactions were carried out in pressure tubes. Except for the specially
mentioned dry solvent, all the solvents were treated according to general methods. All the
reactions were monitored by thin-layer chromatography (TLC) and were visualized using UV light.
Product purification was done using silica gel column chromatography. Thin-layer
chromatography (TLC) characterization was performed with precoated silica gel GF254 (0.2 mm),
while column chromatography characterization was performed with silica gel (100-200 mesh). 'H
NMR and '*C NMR spectra were recorded with tetramethylsilane (TMS, & = 0.00 ppm) as the
internal standard. '"H NMR spectra were recorded at 400 or 600 MHz (Varian) and '*C NMR
spectra were recorded at 100 or 150 MHz (Varian). Shifts are reported in ppm downfield from
CDCls (8 =7.26 ppm) or DMSO-ds (8 = 2.50 ppm; H>O signal was found at § = 3.34 ppm) for 'H
NMR and chemical shifts for '*C NMR spectra are reported in ppm relative to the central CDCls
(6 = 77.0ppm) or DMSO-d¢ (6 = 39.6 ppm). Coupling constants were given in Hz. The following
notations were used: br-broad, s-singlet, d-doublet, t-triplet, q-quartet, m-multiplet, dd-doublet of
doublet, dt-doublet of triplet, td-triplet of doublet. HRMS spectra were recorded a
MicrOTOF-QIII(Bruker.Daltonics). Melting points were measured with YRT-3 melting point
apparatus  (Shantou Keyi Instrument &Equipment Co., Ltd., Shantou, China).
Quinoxalin-2(1H)-ones and glycosyl NHP esters were synthesized according to the literature.

2. Condition Optimization

Table 1. Optimization of reaction conditions for 3aa.?

w Visible Ilght @
@[ :/[/ b Solvent Ar, rt.

1a 2a 3aa
Entry Light source Solvent Time(h) Yield(%)®
1 390-395nm DMSO 24 65
2 420-425nm DMSO 24 77
3 425-430nm DMSO 24 79
4 450-455nm DMSO 24 91
5 520-525nm DMSO 24 82
6 427nm Kessil lamps DMSO 24 75
7 456nm Kessil lamps DMSO 24 84
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8 Dark conditions DMSO 24 N.R.

9 450-455nm DCE 24 47
10 450-455nm DMA 24 64
11 450-455nm DMF 24 71
12 450-455nm MeCN 24 41
13 450-455nm Dioxane 24 75
14 450-455nm THF 24 25
15 450-455nm Tol 24 36
16° 450-455nm DMSO 24 77
17 450-455nm DMSO 36 91
18 450-455nm DMSO 12 71
194 450-455nm DMSO 24 91

4 Reaction condition: 1a (0.1 mmol), 2a (0.12 mmol), solvent (1.0ml), at rt for 24 h under Ar.
b Isolated yield. ¢ Open to air. ¢ 2a (0.15 mmol). N.R.= No Reaction

3. Experimental Information
3.1 Synthesis of Quinoxalin-2(1H)-ones (1a as an example)

H Rz
N N.__O K,CO3 N N._O
R I J 7 ReX R
N DMF, rt N
Following a literature procedures !, to a 100 mL round bottom flask with a stir bar was added

N-free quinoxalin-2(1H)-one derivatives (6.8 mmol), DMF (15 mL) and K>CO;3 (8.2 mmol),
followed by dropwise addition of alkyl halide (10.9 mmol). The reaction mixture was stirred for

1-12 h at room temperature. Then reaction mixture was partitioned in water and EtOAc, and
extracted with EtOAc thrice. The combined EtOAc extracts were dried over Na,SOs, filtered and
concentrated. The residue was purified by column chromatography (PET ether/ EtOAc) to afford
the desired N-alkylated quinoxalin-2(1H)-ones.

3.2 Examples of general procedures for the synthesis of carboxylic acid

/II"' O 7, s,
HO OH  HCI ACE HO™ . ~O, PhI(OAc),, TEMPO HO/l ", O,
> "OMe > "11OMe
HO MeOH, 75°C MeCN/H,0 d

OH o)

Scheme S1. Procedure for the synthesis of ribose-derived carboxylic acid.
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Step 12: To a 250 mL round bottom flask was added D-ribose (10 g, 66 mmol, 1.0 equiv.),
methanol (40 mL), and acetone (40 mL). Next, concentrated HCI (1.0 mL) was added at room
temperature, the flask was heated to 75 °C for 4 h. The solution was cooled to room temperature
and filtered to remove the solid then sat. Na,CO3 was added to adjust pH above 7. The solution
was extracted by ethyl acetate (50 mL X 2), washed by brine (50 mL X 2) , dried by Na>SOa,
combined the organic phase and concentrated with reduced pressure. The desired crude product
was obtained as a faint yellow oil (10 g, 80% yield).

Step 23): The acid was prepared according to the reported paper. TEMPO (0.63 g, 4.0 mmol, 0.20
equiv.) and PhI(OAc); (19 g, 60 mmol, 3.0 equiv.) were added to a solution of alcohol obtained
from above step (4.1 g, 20 mmol, 1.0 equiv.) in MeCN/H20 (50 mL/50 mL, 0.20 M) at room
temperature. The reaction mixture was stirred for 9 h at room temperature, and then saturated
aqueous NaxS;03 (5.0 mL) was added. After being stirred for 20 min at room temperature, the
resultant mixture was extracted with CH2Cl> (30 mL X 2). The combined organic layers were dried
over NaSOy, filtered and concentrated. The residue was purified by flash column chromatography
on silica gel using hexane/EtOAc as eluant to afford carboxylic acid (3.8 g, 89% yield).

0., _0O OTr

OH OTl
/O"'/'EOZ,,.../ TrCl, Py O O ) " NaH,BnCIMel /Eg/
o HO DMF, 0°Ctort  Me/BnO

OH OH OBn/Me

Y

o, OH , OH
TsOH N/ 70, ~O

’, O
/Eg PhI(OAc),, TEMPO - ™ \<
MeOH/E,O/H,0  pe/Bno MeCN/H,0  Megno ©

OBn/Me OBn/Me

Scheme S2. Procedure for the synthesis of Bn/Me-protected ribose-derived carboxylic acid.
Step 1M: To a solution of methyl beta D-ribofuranoside (5.0 g, 30 mmol, 1.0 equiv) in pyridine
(60 mL, 0.50 M) was added trityl chloride (9.2 g, 33 mmol, 1.1 equiv) and the reaction mixture
was stirred at room temperature overnight. The solvent was removed in vacuo and the residue was
coevaporated with toluene, dissolve in EtOAc (90 mL) and washed with 1.0 M aqueous CuSOg4
solution (50 mL X 3), brine (50 mL X 2), dried over Na>SOs, filtered, and concentrated to afford
desired product. Purification by flash column chromatography (cyclohexane/EtOAc) yielded
product as a white foam (12g, 86% yield).

Step 2P): The obtained compound (5.0 g, 12 mmol, 1.0 equiv) from above step was dissolved in
DMF (60 mL, 0.20 M) and cooled to 0 °C. Sodium hydride (60% in mineral oil, 1.9 g, 48 mmol,
4.0 equiv) was added portion-wise. Then, BnCl/Mel (4.3 mL/2.3 mL, 36mmol, 3.0 equiv) was
added dropwise. The mixture was stirred overnight and allowed to warm to room temperature. The
reaction was quenched with MeOH and thiourea, and stirred for another 2 h at room temperature.
The solvents were evaporated in vacuo and the residue was dissolved in EtOAc (50 mL) and then
washed with water (50 mL X 2). The aqueous phase was extracted with EtOAc (30 mL), the
combined organic phases were washed with brine (50 mL), dried over Na>SOs, filtered, and
concentrated in vacuo to obtain crude product Purification by flash column chromatography
(cyclohexane/CH>Cl»/EtOAc) yielded product as a white foam (5.6 g, 80% yield).

Step 31*): The obtained compound (take the Bn-protected as an example, 5.0 g, 8.5 mmol, 1.0
equiv) from above step was dissolved in MeOH/Et;O/H>O (42 mL/4.2 mL/0.42 mL, 0.20 M)
followed by addition of TsOH (0.73 g, 4.3 mmol, 0.50 equiv). After being stirred for 20 min at
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room temperature, the resultant mixture was extracted with EtOAc (30 mL X 3). The combined
organic layers were dried over NaxSOs, filtered and concentrated. The residue was purified by
flash column chromatography on silica gel using hexane/EtOAc as eluent to get the alcohol (2.3 g,
80% yield).

Step 4): The acid was prepared according to the reported paper. TEMPO (0.18 g, 1.2 mmol,
0.20 equiv.) and PhI(OAc); (5.6 g, 17 mmol, 3.0 equiv.) were added to a solution of alcohol
obtained from above step (take the Bn-protected as an example, 2.0 g, 5.8 mmol, 1.0 equiv.) in
MeCN/H20 (15 mL/15 mL, 0.20 M) at room temperature. The reaction mixture was stirred for 9 h
at room temperature, and then saturated aqueous Na»S>03 (5.0 mL) was added. After being stirred
for 20 min at room temperature, the resultant mixture was extracted with CH>Cl, (30 mL X 3). The
combined organic layers were dried over Na;SOy, filtered and concentrated. The residue was
purified by flash column chromatography on silica gel using hexane/EtOAc as eluant to afford
carboxylic acid (1.6 g, 78% yield).

HO,,

O,
. Ho,,
| N\ TBDPSCI, imidazole = 2,2-Dimethoxypropane, TsSOH On,, -0,
o o (2N > .
o OTBDPS

OH DMEF, 0°C to rt HO' OTBDPS Acetone
OH

NaH, BnBr >< ™ TBAF, THF >< Phl(OAc)z TEMPO
DMEF, 0°C to 1t OTBDPS H MeCN/HZO >< Ee

Scheme S3. Procedure for the synthesis of arabinose-derived carboxylic acid.
Step 1°): To a solution of beta D-arabinose (8.0 g, 53 mmol, 1.0 equiv) in DMF(0.27 L, 0.20 M)
was added imidazole (5.4 g, 80 mmol, 1.5 equiv) at 50 °C. Then TBDPSCI (21 mL,80 mmol, 1.5
equiv) was added dropwise. The mixture was stirred at 50 °C overnight . The solvents were
evaporated in vacuo and the residue was dissolved in EtOAc (90 mL), and then washed with water
(50 mL X 2). The aqueous phase was extracted with EtOAc (30 mL), the combined organic phases
were washed with brine (50 mL), dried over Na,SOs, filtered, and concentrated in vacuo to obtain
crude product Purification by flash column chromatography (cyclohexane/ EtOAc) yielded
product as a colorless oil (17 g, 83% yield).
Step 2[71: The obtained compound (11 g, 28 mmol, 1.0 equiv) from above step was dissolved in
acetone (30 mL) and 2, 2-dimethoxypropane (10 mL) and p-toluenesulfonic acid (0.20 g) was
added. The reaction was neutralized by triethylamine and concentrated after stired 30 min at room
temperature. The solvents were evaporated in vacuo, purification by flash column chromatography
(cyclohexane / EtOAc). yielded product as a colorless oil (10 g, 84% yield).
Step 305): The obtained compound (10 g, 23 mmol, 1.0 equiv) from above step was dissolved in
DMF (0.12 L, 0.20 M) and cooled to 0 °C. Sodium hydride (60% in mineral oil, 1.8 g, 46 mmol,
2.0 equiv) was added portion wise. Then, BnCl (4.1 mL, 35 mmol, 1.5 equiv) was added dropwise.
The mixture was stirred overnight and allowed to warm to room temperature. The reaction was
quenched with MeOH and thiourea, and stirred for another 2 h at room temperature. The solvents
were evaporated in vacuo and the residue was dissolved in EtOAc (90 mL), and then washed with
water (50 mL X 2). The aqueous phase was extracted with EtOAc (30 mL), the combined organic
phases were washed with water, dried over Na>SQOy, filtered, and concentrated in vacuo to obtain
crude product as an oil. Purification by flash column chromatography (cyclohexane / EtOAc).
yielded product as a white solid (10 g, 87% yield).
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Step 4[%: The obtained compound (10 g, 19 mmol, 1.0 equiv) from above step was dissolved in
anhydrous THF (40 mL, 0.50 M), was reacted with TBAF (1.0 M in THF, 23 mL,1.2 equiv). The
solution was stirred at room temperature for 2 h. The solvents were evaporated in vacuo,
purification by flash column chromatography (cyclohexane / EtOAc). yielded product as a white
solid (4.2 g, 79% yield).

Step 5B1: The acid was prepared according to the reported paper. TEMPO (0.17 g, 0.20 equiv.)
and PhI(OAc): (5.2 g, 3.0 equiv.) were added to a solution of alcohol (1.5 g, 5.4 mmol, 1.0 equiv.)
obtained from above step (1.0 equiv.) in MeCN/H0 (15 mL/15 mL, 0.20 M) at room temperature.
The reaction mixture was stirred for 9 h at room temperature, and then saturated aqueous Na;S>03
(5.0 mL) was added. After being stirred for 20 min at room temperature, the resultant mixture was
extracted with CH>Cl» (30 mL X 3). The combined organic layers were dried over Na;SOs, filtered
and concentrated. The residue was purified by flash column chromatography on silica gel using
hexane/EtOAc as eluant to afford carboxylic acid 78% yield (white solid, 1.2 g).

O o]
>< I)\ TrCl, Py ><OIO>””\ NaH, BnBr ><0]:O>
o) b ., OH 0 / OTi - 0 A \OT
:OBn

r DMF, 0°C to rt r

o

H

PhI(OAc),, TEMPO

X004

:OBn

TsOH ><OIC>
MeOH/Et,O/H,0 0 . \OH

S MeCN/H,0
Scheme S4. Procedure for the synthesis of xylose-derived carboxylic acid.

Step 1: To a solution of 1,2-O-Isopropylidene-alpha-D-xylofuranose (5.0 g, 26 mmol, 1.0 equiv)
in pyridine (52 mL,0.50 M) was added trityl chloride (8.0 g, 29 mmol, 1.1 equiv) and the reaction
mixture was stirred at room temperature overnight. The solvent was removed in vacuo and the
residue was coevaporated with toluene, dissolve in EtOAc (90 mL) and washed with 1 M aqueous
CuSOs4 solution (50 mL X 3), brine (50 mL X 2), dried over Na>SOg, filtered, and concentrated to
afford desired product. Purification by flash column chromatography (cyclohexane/EtOAc)
yielded product as a white foam (8.7 g, 83% yield).

Step 2P): The obtained compound (6.0 g, 14 mmol, 1.0 equiv) from above step was dissolved in
DMF (70 mL, 0.2 M) and cooled to 0 °C. Sodium hydride (60% in mineral oil, 1.1 g, 28 mmol,
2.0 equiv) was added portion-wise. Then, BnCl (2.5 mL, 21 mmol, 1.5 equiv) was added dropwise.
The mixture was stirred overnight and allowed to warm to room temperature. The reaction was
quenched with MeOH and thiourea, and stirred for another 2 h at room temperature. The solvents
were evaporated in vacuo and the residue was dissolved in EtOAc (90 mL), and then washed with
water (50 mL X 2). The aqueous phase was extracted with EtOAc (30 mL), the combined organic
phases were washed with brine (50 mL), dried over Na>SOs, filtered, and concentrated in vacuo to
obtain crude product Purification by flash column chromatography (cyclohexane/CH>Cl»/EtOAc)
yielded product as a white foam (5.9 g, 81% yield).

Step 38): The obtained compound (5.4 g, 10 mmol, 1.0 equiv) from above step was dissolved in
MeOH/Et;O/H20 (50 mL/5.0 mL/0.50 mL, 0.20 M) followed by addition of TsOH (0.86 g, 5.0
mmol, 0.50 equiv). After being stirred for 20 min at room temperature, the resultant mixture was
extracted with EtOAc (30 mL X 3). The combined organic layers were dried over Na;SOs, filtered
and concentrated. The residue was purified by flash column chromatography on silica gel using
hexane/EtOAc as eluent to get the alcohol (2.3g. 85%).
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Step 4%1: The acid was prepared according to the reported paper. TEMPO (0.17 g, 1.1 mmol, 0.20
equiv.) and PhI(OAc): (5.2 g, 16 mmol, 3.0 equiv.) were added to a solution of alcohol (1.5 g, 5.4
mmol, 1.0 equiv.)obtained from above step in MeCN/H,O (15 mL/15 mL, 0.20 M) at room
temperature. The reaction mixture was stirred for 9 h at room temperature, and then saturated
aqueous NaxS;03 (5.0 mL) was added. After being stirred for 20 min at room temperature, the
resultant mixture was extracted with CH>Cl> (30 mL X 3). The combined organic layers were dried
over NaSOy, filtered and concentrated. The residue was purified by flash column chromatography
on silica gel using hexane/EtOAc as eluant to afford carboxylic acid 78% yield (1.2 g).

0 o
' OH  TrCl, Py 0 NaH, BnCl/Mel oT
HOT— voll otr . Mool '
DMF, 0°C to rt

0O

O
TsOH N ( OH PhI(OAc),, TEMPO (O OH
> Me/BnO— > Me/BnO1—
MCOH/Etzo/Hzo MCCN/Hzo

Scheme S5. Procedure for the synthesis of Bn/Me-protected hexose-derived carboxylic acid.

Step 1™:To a solution of methyl-a-D-glucopyranoside (10 g, 51 mmol, 1.0 equiv) in pyridine
(0.10 L, 0.50 M) was added trityl chloride (16 g, 56 mmol, 1.1 equiv) and the reaction mixture
was stirred at room temperature overnight. The solvent was removed in vacuo and the residue was
coevaporated with toluene, dissolve in EtOAc (90 mL) and washed with 1 M aqueous CuSOg4
solution (50 mL X 3), brine (50 mL X 2), dried over Na>SOs, filtered, and concentrated to afford
desired product. Purification by flash column chromatography (cyclohexane/EtOAc) yielded
product as a white foam (17 g, 80% yield).

Step.2[231: The obtained compound (8.0 g, 18 mmol, 1.0 equiv.) from above step was dissolved in
DMF (90 mL, 0.20 M) and cooled to 0 °C. Sodium hydride (60% in mineral oil, 4.3 g, 0.11 mol
6.0 equiv) was added portion-wise. Then, BnClI (9.6 mL, 81 mmol, 4.5 equiv) /Mel was added
dropwise. The mixture was stirred overnight and allowed to warm to room temperature. The
reaction was quenched with MeOH and thiourea, and stirred for another 2 h at room temperature.
The solvents were evaporated in vacuo and the residue was dissolved in EtOAc (90 mL), and then
washed with water (50 mL X 2). The aqueous phase was extracted with EtOAc (30mL), the
combined organic phases were washed with brine (50mL), dried over Na>SOs, filtered, and
concentrated in vacuo to obtain crude product Purification by flash column chromatography
(cyclohexane/CH2Cl2/EtOAc) yielded product as a white foam (9.9 g, 78% yield).

Step.3Bl: The obtained compound (8.0 g, 11 mmol, 1.0 equiv.) from above step was dissolved in
MeOH/Et;O/H20 (50 mL/5.0 mL/0.50 mL, 0.20 M) followed by addition of TsOH (0.95 g, 5.5
mmol, 0.50 equiv). After being stirred for 20 min at room temperature, the resultant mixture was
extracted with EtOAc (30 mL X 3). The combined organic layers were dried over Na;SOs, filtered
and concentrated. The residue was purified by flash column chromatography on silica gel using
hexane/EtOAc as eluent to get the alcohol (4.2 g, 82% yield).

Step.4B1: The acid was prepared according to the reported paper. TEMPO (0.20 g, 1.3 mmol, 0.20
equiv.) and PhI(OAc), (6.3 g, 20 mmol, 3.0 equiv.) were added to a solution of alcohol (3.0g 6.5
mmol, 1.0 equiv.) obtained from above step in MeCN/H>O (16 mL/16 mL, 0.20 M) at room
temperature. The reaction mixture was stirred for 9 h at room temperature, and then saturated
aqueous NaxS;03 (5.0 mL) was added. After being stirred for 20 min at room temperature, the
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resultant mixture was extracted with CH>Cl> (30 mL X 3). The combined organic layers were dried
over NaSOy, filtered and concentrated. The residue was purified by flash column chromatography
on silica gel using hexane/EtOAc as eluant to afford carboxylic acid (2.4 g, 80% yield).

CZ\ PhI(OAc),, TEMPO <:Z\
o™ - o™
)v MeCN/H,0 ‘# &

Scheme S6. Procedure for the synthesis of fructose-derived carboxyhc acid.
(3aR,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis(|1,3]dioxolo)[4,5-b:4',5'-d]pyran-
3a-carboxylic acid”: To a 50 mL flask, the diacetonefructose (3.0 g, 12 mmol, 1.0 equiv) was
treated with TEMPO (0.36 g, 2.3 mmol, 0.20 equiv.) and PhI(OAc), (11 g, 35 mmol, 3.0 equiv.) in

MeCN/H20 (30 mL/30 mL, 0.20 M) at room temperature for 9 h, and then saturated aqueous
NazS;03 (5.0 mL) was added. After being stirred for 20 min at room temperature, the resultant

mixture was extracted with CH2Cl» (30 mL X 3). The combined organic layers were dried over
NaSOs, filtered and concentrated. The residue was purified by flash column chromatography on
silica gel using hexane/EtOAc as eluant to afford carboxylic acid(2.6 g, 83%).

0
STOH \\\\OH

0]
IJ H,S0,, ACE %j\) PhI(OAc),, TEMPO o ji)
IIO > >< "
/, O o 4,
fo_( MeCN/H,0 o” % O(
(6]

Scheme S7. Procedure for the synthesis of galactose-derived carboxylic acid.
((3aR,5R,5a8,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-SH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyra
n-5-yl)methanol®:To a round bottom flask was added D-galactose (7.0 g, 39 mmol, 1.0 equiv.),
acetone (0.25 L). Next, concentrated H>SO4 (7.7 mL) was added at 0 °C. The reaction mixtures
were stirred at room temperature for 5 h and then neutralized by the addition of sat. Na,COj3 until

pH = 7. The precipitate was removed by filtration and the filtrates were combined and
concentrated under reduced pressure. The residue was purified by flash column chromatography
on silica gel using hexane/EtOAc as eluent to get the product as a colorless 0il.(8.5 g, 84%)).
(3aR,5S,5aR,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5SH-bis([1,3]dioxolo)[4,5-b:4',5'-d]|pyra
n-5-carboxylic acid®l: The acid was prepared according to the reported paper. TEMPO (0.84 g,
5.4 mmol, 0.20 equiv.) and PhI(OAc): (26 g, 81 mmol, 3.0 equiv.) were added to a solution of
alcohol (7.0 g, 27 mmol, 1.0 equiv.) obtained from above step in MeCN/H>O (67 mL/67 mL, 0.20
M) at room temperature. The reaction mixture was stirred for 9 h at room temperature, and then
saturated aqueous Na»S>0; (5.0 mL) was added. After being stirred for 20 min at room
temperature, the resultant mixture was extracted with CH2Cl, (30 mL X 3). The combined organic
layers were dried over NaxSOs, filtered and concentrated. The residue was purified by flash
column chromatography on silica gel using hexane/EtOAc as eluant to afford carboxylic acid (5.1
g, 87% yield).

3.3 Synthetic procedure of N-hydroxyphthalimide esters
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RO OH DCC DMAP RO O
+ HO—N
S oo
n=0,1

Scheme S8. Procedure for the synthesis of N-hydroxyphthalimide esters.

A round-bottom flask or culture tube was charged with carboxylic acid derived from sugar
(1.0 equiv), N-hydroxyphthalimide (1.1 equiv) and 4-dimethylaminopyridine (0.050 equiv).
Dichloromethane was added (0.10 — 0.20 M), and the mixture was stirred vigorously.
Dicyclohexylcarbodiimide (DCC, 1.1 equiv) was added, and then the mixture was allowed to stir
until the acid was consumed (determined by TLC). Typical reaction times were between 0.5 h to
12 h. The mixture was filtered through a thin pad of Celite and rinsed with additional CH>Cl,. The
solvent was removed under reduced pressure, and purification of the crude mixture by column
chromatography ~ (DCM/hexane/ethyl  acetate as  eluent) afforded the  desired
N-hydroxyphthalimide esters.

M eO/," O O O

-llll/<
0 O—N
(0]

(0]
1,3-dioxoisoindolin-2-yl(3aS,4S,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro(3,4-d][1,3]di
oxole-4-carboxylate (2a): 'H-NMR (400 MHz, Chloroform-d) 5 7.89 (dd, J= 5.5, 3.1 Hz, 2H),
7.80 (dd,J=5.5,3.1 Hz, 2H), 5.36 (d, /= 5.8 Hz, 1H), 5.14 (s, 1H), 5.00 (s, 1H), 4.66 (d, /= 5.8
Hz, 1H), 3.50 (s, 3H), 1.52 (s, 3H), 1.35 (s, 3H). The compound was identified by spectral

comparison with literature data.l’!
MeO,,

D

1,3-dioxoisoindolin-Z-yl(ZS,3S,4R,5R)-3,4,5-tr1methoxytetrahydrofuran-Z-carboxylate (2b):
TH-NMR (600 MHz, Chloroform-d) § 7.93 — 7.85 (m, 2H), 7.85 — 7.76 (m, 2H), 5.05 (s, 1H),
4.85 (d, J=4.5 Hz, 1H), 4.47 (s, 1H), 3.83 (s, 1H), 3.57 (s, 3H), 3.53 (s, 3H), 3.46 (s, 3H). The
compound was identified by spectral comparison with literature data. ]

MeO,,

e

1,3-dioxoisoindolin-2-yl(ZS,3S,4R,5R)-3,4-bls(benzyloxy)-5-meth0xytetrahydr0furan-Z-carbo
xylate (2¢): 'H-NMR (400 MHz, Chloroform-d) 3 7.90 (dd, J = 5.5, 3.1 Hz, 2H), 7.80 (dd, J =
5.5, 3.1 Hz, 2H), 7.42 — 7.28 (m, 10H), 5.00 (d, J = 6.6 Hz, 2H), 4.79 (d, /= 11.7 Hz, 1H), 4.71 —
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4.60 (m, 4H), 3.87 (d, J = 4.5 Hz, 1H), 3.42 (s, 3H). The compound was identified by spectral

comparison with literature data. %)

OIII

<.

O“‘

1,3-dioxoisoindolin-Z-yl(3aS,SS,6S,6aS)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[2,3-d] [1,3]
dioxole-5-carboxylate (2d): '"H-NMR (400 MHz, Chloroform-d) & 7.90 (dd, J = 5.5, 3.1 Hz,
2H), 7.80 (dd, J = 5.5, 3.1 Hz, 2H), 7.39 — 7.28 (m, 5H), 6.07 (d, /= 3.4 Hz, 1H), 5.07 (d, /= 0.8
Hz, 1H), 4.78 — 4.72 (m, 2H), 4.71 — 4.65 (m, 2H), 1.50 (s, 3H), 1.33 (s, 3H). *C-NMR (100
MHz, Chloroform-d) & 166.3, 161.4, 136.5, 134.9, 128.8, 128.7, 128.3, 128.0, 124.1, 113.8,
107.0, 84.4, 82.9, 80.7, 72.5, 25.9, 25.7. HRMS (ESI) m/z [M + Na]" calculated for 462.1159,

found 462.1161.
ptsades

1,3-dioxoisoindolin-2-yl(3aR,5S,6R,6aR)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,
3]dioxole-5-carboxylate (2¢): 'H-NMR (400 MHz, Chloroform-d) § 7.91 (dd, J = 5.4, 3.1 Hz,
2H), 7.80 (dd, J = 5.4, 3.1 Hz, 2H), 7.46 — 7.27 (m, 5H), 6.11 (d, J = 3.4 Hz, 1H), 5.20 (d, J=3.5
Hz, 1H), 4.92 (d, J=11.9 Hz, 1H), 4.69 (d,J=11.9 Hz, 1H), 4.56 (d, /= 3.4 Hz, 1H), 4.46 (d,J =
3.5 Hz, 1H), 1.51 (s, 3H), 1.32 (s, 3H). The compound was identified by spectral comparison with

literature data. %!

1,3-dioxoisoindolin-2-yl(3aR,5S,5aR,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-SH-bis([1,3]dio
xo0lo)[4,5-b:4',5'-d]pyran-5-carboxylate (2f): "H-NMR (400 MHz, Chloroform-d) & 7.90 (dd, J
=5.5,3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 5.70 (d, J = 5.0 Hz, 1H), 4.84 (d, J = 2.2 Hz,
1H), 4.74 (qd, J = 7.5, 2.4 Hz, 2H), 4.46 (dd, J = 5.0, 2.6 Hz, 1H), 1.61 (s, 3H), 1.54 (s, 3H), 1.42
(s, 3H), 1.37 (s, 3H). The compound was identified by spectral comparison with literature data. )

O“'
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1,3-dioxoisoindolin-2-yl(3aR,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxo
l0)[4,5-b:4",5'-d]pyran-3a-carboxylate (2g): 'TH-NMR (400 MHz, Chloroform-d) 5 7.89 (dd, J
=5.5,3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 4.88 (d, J = 2.5 Hz, 1H), 4.69 (dd, /= 7.9, 2.5
Hz, 1H), 4.31 (d, J = 7.9 Hz, 1H), 3.96 (s, 2H), 1.62 (s, 3H), 1.57 (s, 3H), 1.51 (s, 3H), 1.37 (s,
3H). The compound was identified by spectral comparison with literature data. %]

1,3-dioxoisoindolin-2-yl(2S,3S,4S,5R,65)-3,4,5,6-tetramethoxytetrahydro-2H-pyran-2-carbox
ylate (2h): '"H-NMR (400 MHz, Chloroform-d) & 7.90 (dd, J = 5.5, 3.1 Hz, 2H), 7.81 (dd, J =
5.5,3.1 Hz, 2H), 4.95 (d, /= 3.5 Hz, 1H), 4.42 (d, /= 9.9 Hz, 1H), 3.65 (d, /= 1.7 Hz, 6H), 3.57
(d, J=9.6 Hz, 1H), 3.54 (s, 3H), 3.52 (s, 3H), 3.50 (d, J = 2.9 Hz, 1H), 3.30 (dd, /= 9.5, 3.5 Hz,
1H). The compound was identified by spectral comparison with literature data. [*]

1,3-dioxoisoindolin-2-yl(2S,3S,4S,5R,6S5)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-pyr
an-2-carboxylate (2i): 'H-NMR (400 MHz, Chloroform-d) § 7.90 (dd, J = 5.5, 3.1 Hz, 2H), 7.80
(dd, J=5.5, 3.1 Hz, 2H), 7.43 — 7.26 (m, 15H), 4.99 (d, J = 10.9 Hz, 1H), 4.93 (d, J = 10.1 Hz,
1H), 4.86 (d, /= 11.0 Hz, 2H), 4.82 (d, /= 2.4 Hz, 1H), 4.71 (d, /= 3.4 Hz, 1H), 4.66 (d, J=12.1
Hz, 1H), 4.58 (d, /= 10.0 Hz, 1H), 4.07 (t, /= 9.2 Hz, 1H), 3.96 — 3.90 (m, 1H), 3.63 (dd, /= 9.6,
3.5 Hz, 1H), 3.49 (s, 3H). The compound was identified by spectral comparison with literature
data. ¥
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1,3-dioxoisoindolin-2-yl(2S,3S,4S,5R,6S)-6-methoxy-3,4,5-tris((4-methylbenzyl)oxy)tetrahyd
ro-2H-pyran-2-carboxylate(2j): "H NMR (400 MHz, Chloroform-d) § 7.88 (dd, J = 5.5, 3.1 Hz,
2H), 7.78 (dd, J = 5.5, 3.1 Hz, 2H), 7.26 — 7.07 (m, 12H), 4.91 (d, J = 10.6 Hz, 1H), 4.85 — 4.76 (m,
4H), 4.62 — 4.58 (m, 2H), 4.52 (d, /= 10.0 Hz, 1H), 4.01 (t, J = 9.2 Hz, 1H), 3.86 (t, /= 9.4 Hz, 1H),
3.56 (dd, J=9.6, 3.5 Hz, 1H), 3.45 (s, 3H), 2.35 (s, 3H), 2.34 (s, 3H), 2.30 (s, 3H).

Br
Br

1,3-dioxoisoindolin-2-yl(2S,3S,4S,5R,6S5)-3,4,5-tris((4-bromobenzyl)oxy)-6-methoxytetrahydr
0-2H-pyran-2-carboxylate(2k):'H NMR (400 MHz, Chloroform-d) 5 7.90 (dd, J = 5.5, 3.1 Hz,
2H), 7.81 (dd, J = 5.5, 3.1 Hz, 2H), 7.47 — 7.40 (m, 6H), 7.19 (d, J = 8.4 Hz, 2H), 7.14 — 7.12 (m, 4H),
4.85(d,J=11.1 Hz, 2H), 4.78 (d, J= 3.4 Hz, 1H), 4.72 (d, J= 11.5 Hz, 1H), 4.69 — 4.65 (m, 2H), 4.60
(d, J=12.2 Hz, 1H), 4.54 (d, J= 9.9 Hz, 1H), 3.98 (t, /= 9.2 Hz, 1H), 3.86 (dd, /= 10.0, 8.8 Hz, 1H),
3.57 (dd, J=9.6, 3.5 Hz, 1H), 3.50 (s, 3H).

3.4 General procedure for the synthesis of desired products 3 and 4 (3aa as an example)

Hj, 450 nm ©:
Ej: f [e DMSO Ar, r.t.
1a 2a 3aa

To an oven-dried 10 mL glass tube equipped with a stir bar, was added glycosyl NHP ester
(0.12 mmol), N-methylquinoxalin-2(1H)-one (0.1 mmol). The tube was evacuated and back-filled
with Ar (three times), then sealed with rubber stopper and parafilm. Then, anhydrous DMSO (1.0
mL) was added using a syringe. The solution was then stirred at room temperature under the
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irradiation of 12 W Blue LEDs for 24 h . After completion of the reaction, 5.0 mL water was
added and extracted by ethyl acetate (3 x 5.0 mL). The combined organic layer was washed with
brine (5.0 mL) and then dried over anhydrous Na,SO4 and evaporated in vacuum. The desired
products were obtained in the corresponding yields after purification by flash chromatography on

silica gel eluting with hexane/ethyl acetate or hexane/dichloromethane.

4. Scale-Up Synthesis of 3aa

w 450 nm ©:
@ f [e DMSO Ar, rt.

1a 2a 3aa

To an oven-dried 50ml schlenk tube equipped with a stir bar, was added glycosyl NHP ester
(1.36 g, 3.75 mmol), N-methylquinoxalin-2(1H)-one (500 mg, 3.12 mmol). The tube was
evacuated and back-filled with Ar (three times), then sealed with rubber stopper and parafilm. Then,
anhydrous DMSO (20 mL) was added using a syringe. The solution was then stirred at room
temperature under the irradiation of 12 W Blue LEDs for 24 h. After completion of the reaction, 50
mL water was added and extracted by ethyl acetate (3 x 10 mL). The combined organic layer was
washed with brine (20 mL) and then dried over anhydrous Na>SO4 and evaporated in vacuum. The
residue was directly purified by a silica gel column chromatography using ethyl acetate/petroleum
as the eluent to afford product 3aa (0.83 g, 86%).

5. Control experiments

| 0 0 0O~
N._O Hj/ standard conditions
f + N_O - '/’
N/ o O TEMPO
5 ~

1a 2a 3aa

To an oven-dried 10 mL glass tube equipped with a stir bar, was added glycosyl NHP ester
(0.12 mmol), N-methylquinoxalin-2(1H)-one (0.10 mmol),TEMPO (0.45 mmol). The tube was
evacuated and back-filled with Ar (three times), then sealed with rubber stopper and parafilm.
Then, anhydrous DMSO (1.0 mL) was added using a syringe. The solution was then stirred at
room temperature under the irradiation of 12 W 450nm Blue LEDs for 24 h using electronic fan to
cool the tube. After 24 h, no corresponding product 3aa was formed by TLC analysis, suggesting
that the in-situ formed glycosyl radical might act as a key intermediate during this transformation.

\
N (0]

| 0 0 0.9~ O

N._O w standard conditions N o) N

_ ) /T, o
CLT - T o - O T D)
N (o] N
0 K 0)(0

1a 2a 3aa, 51%

To an oven-dried 10 mL glass tube equipped with a stir bar, was added glycosyl NHP ester
(0.15 mmol), N-methylquinoxalin-2(1H)-one (0.10 mmol), 1,1-diphenylethylene (0.30 mmol).
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The tube was evacuated and back-filled with Ar (three times), then sealed with rubber stopper and
parafilm. Then, anhydrous DMSO (1.0 mL) was added using a syringe. The solution was then
stirred at room temperature under the irradiation of 12 W Blue LEDs for 24 h using electronic fan
to cool the tube. After completion of the reaction, corresponding product 3aa was isolated in 51%
yield and the heck-type product 5 was isolated in 26% yield, indicating that this photo-induced
thioglycosidation protocol may proceed through a radical-based mechanism. 'H NMR (400 MHz,
Chloroform-d) & 7.40 — 7.21 (m, 10H), 6.08 (d, J = 10.5 Hz, 1H), 5.00 (s, 1H), 4.75 — 4.70 (m, 3H),
3.38 (s, 3H), 1.41 (s, 3H), 1.30 (s, 3H).

6. Stern-Volmer fluorescence quenching experiments

DMSO was degassed with a stream of argon for 30 min. Substrate 1a or product 3aa (5.0
umol) was dissolved in 1.0 mL DMSO to prepare a 5x10 M solution. 100 uL of this solution was
added to each of a set of 6 volumetric flasks (10 mL). Subsequently, the solution of quencher 2a in
DMSO (1.5 mL, 0.125 M) was added in increasing amounts (0, 100 uL, 200 pL, 300 pL, 400 pL,
500 pL) to the volumetric flasks and the volume of volumetric flasks were adjusted to 10 mL by
adding DMSO. All solutions were excited at 350 nm and the emission intensity at 418 nm was
observed. All fluorescence measurements were recorded by a F-98 FL Spectrophotometer. Control
experiments showed that the excited state substrate la and product 3aa were both mainly
quenched by 2a.
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Figure S1 Emission spectra of 1a with varying concentrations 2a
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Figure S3 Stern-Volmer plot of fluorescence quenching of 1a by 2a
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Figure S4 Stern-Volmer plot of fluorescence quenching of 3aa Y by 2a

7. Investigation of potential EDA complex formation

The UV/VIS spectra of all the reaction components were measured in DMSO in a quartz
cuvette using a GENESYS 180 UV-visible spectrophotometer in a 10.0 mm quartz cuvette with
the aim of investigating the possible formation of an excited donor-acceptor (EDA) complex
(exciplex). Spectra were measured for la, 2a, lat2a in different combinations at various
concentrations mimicking the reaction concentration in DMSO. The following measurements
were conducted: 1a (0.1 M); 2a (0.12 M); 1a(0.1 M) + 2a (0.12 M). In each case, no EDA
complex (Electron-Donor Acceptor) was detected. These spectra are shown in (Figure S5) below
along with the spectra for each component in isolation at these concentrations for comparison.

25

2a

la+2a

Abs

0.5

-0.5
300 350 400 450 500

Wavelength(nm)

Figure S5 Absorption spectra of 1a, 2a, 1a+2a
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8. EDA complex exclusion

The NMR signal of the mixture of 1a and 2a shows no shifting change. Combining with the
results of investigation of potential EDA complex formation, we conclude that the pathway to
generate C-centered radicals through formation of EDA complex is unlikely in this reaction.

sedl

In! L

o O7< 2
T T

Mixture of 1a and 2a
(1a:2a=1:1)

8.V

. ‘h o IJ.U

16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4
ul 1 (ppm)_

Figure S6 '"H NMR spectra of 1a, 2a and 1a+2a

9. Cyclic voltammetry measurements

Cyclic Voltammetry was performed using a CHI760E Electrochemical workstation with a
glassycarbon as the working electrode, the Ag/AgCl electrode (3 M KCl) as the reference
electrode, and a platinum electrode as the counter electrode. The testing solution of 1a, 2a were
prepared by dissolving the sample (0.05 mmol) into DMSO (5 mL) with 0.1 M
tetrabutylammonium hexafluorophosphate (TBAPF).
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Figure S7 Cyclic voltammograms for 1a and 2a (a)oxidation (b)reduction
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10. Quantum yield measurement

Determination of the light intensity at 450 nm:

According to the literature, !° the photon flux of the blue LED (Amax = 450 nm) was determined
by standard ferrioxalate actinometry. Potassium ferrioxalate hydrate (2.21 g) was dissolved in
H>SO4 (0.05 M, 30 mL) to prepare a solution of ferrioxalate (0.15 M). Phenanthroline (50 mg) and
sodium acetate (11.25 g) were dissolved in 0.5 M H2SO4 (50 mL) to give a buffered solution of
phenanthroline. The freshly prepared solutions were stored in dark. Then, the ferrioxalate solution
(2.0 mL) was placed in a 3 mL cuvette and irradiated for 90.0 seconds at Amax = 450 nm to
determine the photon flux of the blue LED. After irradiation, the phenanthroline solution (0.35 mL)
was added to the cuvette, and the resulting solution was then allowed to stand for 1 h to ensure the
complete coordination of the ferrous ions to the phenanthroline. The absorbance of the solution
was measured at 510 nm. Similarly, a non-irradiated sample was prepared, whose absorbance at

510 nm was also measured. The results were shown as below:

4.5
norirradiation sample
3.5 —— 90s irradiation sample
2.5
2
<
1.5
0.5
-0.5
300 400 500 600 700 800
Wavelength(nm)

Figure S8 UV-vis spectrum of irradiation and non-irradiation sample

Conversion was calculated using equation 1.

2+ _ _ A(GI0 ) _ 000235158 _ 5
: 2 =33x10 (1

Where V is the total volume (0.00235 L) of the solution after addition of phenanthroline, AA is the
difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, is the
path length (1.0 ¢cm), and ¢ is the molar absorptivity at 510 nm (1.11x10* L mol! cm™).

The photon flux can be calculated using equation 2.

hoton flux = ——— = —22407__ _ 4 395109 (2)
photon flux — 0.845x90%0.988 '

Where @ is the quantum yield for the ferrioxalate actinometer (0.845 for a 0.15 M solution at A =
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450 nm), 't is the time (90 s), and s the fraction of light absorbed at A = 450 nm. This value is
calculated using equation 3 where A is the absorbance of the ferrioxalte solution at 450 nm.

=1-10" =1 — 107191 =0.988 (3
4
3
2
<
2
1
0
300 400 500 600 700 800
Wavelength(nm)

Figure S9 UV-vis spectrum of ferrioxalate actinometer solution
Determination of the reaction quantum yield (®):
Three parallel standard reactions were proceeded on a 0.10 mmol scale according to the general
procedure. The standard reaction was stirred and irradiated (24 W blue LEDs, A =450 nm) at
room temperature for 10 h. The yield of three parallel standard reactions was determined by 'H
NMR. All of the following NMR yields were afford 64%, 65%, and 66% respectively, therefore,
the average yield was obtained 65%. The quantum yield for the reaction was calculated using
equation 4. The reaction quantum yield (®) was thus determined to be 0.41.

6.5%107°
O = = =0.
- 4.39x10™9%10x60x60%0.999 0.41 (4)

where photon flux was determined as above described, t is the reaction time,  is the fraction of
incident light absorbed by the reaction mixture. This value is calculated using equation 3 where A
is the absorbance of the reaction mixture at 450 nm. The absorbance of the reaction mixture at 450

nm was measured to be 2.893, so the value of  is 0.999.
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11. Configuration determination

11.1 X-ray diffraction parameters and data of 3aj

Method for crystallization:

The purified compound 3aj was dissolved in a mixed solvent of petroleum
ether/n-Hexane (1:3), and placed in a dark cabinet for slowly evaporation. Colorless
crystals were collected after few days for X-ray analysis.
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Bond precision: C-C = 0.0051 A Wavelength=1.54178

Cell: a=9.9830(8) b=9.6498(8) c=10.6876(9)
alpha=90 beta=98.928 (4) gamma=90
Temperature: 150 K
Calculated Reported
Volume 1017 .11 (1.5) 1017.10(15)
Space group P 21 P 1211
Hall group P 2yb P 2yb

Moiety formula
Sum formula

C20 H24 N2 07
C20 H24 N2 07

C20 H24 N2 07
C20 H24 N2 07

Mr 404.41 404 .41
Dx,g cm-3 1.321 1.320

Z 2 2

Mu (mm-1) 0.843 0.843

F000 428.0 428.0

F00O0’ 429.47

h, k, 1max T2, L1153 12,11,13
Nref 4015[ 2135] 3936

Tmin, Tmax 0.737,0.817 0.616,0.754
Tmin’ 0.668

Correction method= # Reported T Limits: Tmin=0.616 Tmax=0.754
AbsCorr = MULTI-SCAN

Data completeness= 1.84/0.98 Theta (max)= 72.204

wR2 (reflections)=

R(reflections)= 0.0578( 3785) 0.1510( 3936)

S =1.054

Npar= 267

We can conclude that H? and H* are on the different side of the sugar ring
based on the X-ray crystallographic analysis of the molecular structure of
product 3aj. So it is easy to conclude that 3aj was B isomer. The
stereochemical outcome of other furanoses(3ab-3pa, 4aa-4ab) was same
to the compound 3aj.
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11.2 NOE experiments

3-((3a8,5S,6R,6aS)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-1-m
ethylquinoxalin-2(1H)-one(4ac'): '"H NMR (400 MHz, Chloroform-d, minor diastereomer) &
8.08 (d, J=8.0 Hz, 1H), 7.56 (t, J= 7.6 Hz, 1H), 7.36 (t, /= 7.7 Hz, 1H), 7.29 (d, J = 8.4 Hz,
1H), 7.14 — 7.11 (m, 1H), 7.07 (t, J = 7.3 Hz, 2H), 6.95 (d, J = 7.3 Hz, 2H), 6.27 (d, J = 3.8
Hz, H"), 5.65 (d, J = 3.5 Hz, H*), 4.77 (d, J = 3.5 Hz, H?), 4.70 (d, J = 3.8 Hz, H?), 4.56 (d,
J=12.2Hz, 1H), 4.32 (d, J=12.2 Hz, 1H), 3.58 (s, 3H), 1.55 (s, 3H), 1.37 (s, 3H).

We identified H' and H? through NOE experiment because they are on
the same side. By comparing the data of another NOE experiment, it is
clearly found H* and H* of the isomer 4ac' are coupled to each other that
they are on the same side. So we concluded that 4ac' was o isomer and

4ac was 3 isomer .

—6.27
4.71
4.70

— :

T T T T T T T T T T T T T T
4 13 12 11 10 9 8 7 1 3 2 1 0 1

6
£1 (ppm)

1D-NOE spectrum of compound 4ac'
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5.65
5.65
4.78
4.77
. —1.55

<
_< .
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4 13 12 11 10 9 8 7 6
£1 (ppm)

1D-NOE spectrum of compound 4ac'

4ad’

3-((3aR,5R,65,6aR)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro|2,3-d][1,3] dioxol-5-yI)-1-
methylquinoxalin-2(1H)-one(4ad'): '"H NMR (600 MHz, Chloroform-d, minor diastereomer)
6 8.08 (dd, J= 8.0, 1.5 Hz, 1H), 7.57 (td, J= 7.9, 1.5 Hz, 1H), 7.37 (td, J= 7.7, 1.2 Hz, 1H),
7.30 (dd, J= 8.3, 1.2 Hz, 1H), 7.15—-7.12 (m, 1H), 7.08 — 7.06 (m, 2H), 6.96 — 6.94 (m, 2H),
6.27 (d, J = 3.8 Hz, H"), 5.66 (d, J = 3.5 Hz, H%), 4.77 (d, J = 3.6 Hz, H%), 4.70 (d, J = 3.8
Hz, H?), 4.56 (d, J= 12.3 Hz, 1H), 4.33 (d, /= 12.3 Hz, 1H), 3.58 (s, 3H), 1.55 (s, 3H), 1.37
(s, 3H).

We identified H' and H? through NOE experiment because they are on

the same side. Then it was clearly found H?> and H* are coupled to each
S24



other that they are on the same side through another NOE experiment. So

we concluded that 4ad' was o isomer and 4ad was [ isomer .

—6.27
4.71
4.70

<a.

4ad’

T T T
6 4 3
£1 (ppm)

1D-NOE spectrum of compound 4ad'

T T T
9 8 7

S25



5.66
5.65
4.78
4.77
= 1.56

<
4

4ad’

4ae’

1-methyl-3-((3aR,5R,5aS5,8aS5,8bR)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,
5-b:4',5'-d|pyran-5-yl)quinoxalin-2(1H)-one(4ae'): 'H NMR (400 MHz, Chloroform-d) &
8.08 (dd, /= 8.0, 1.5 Hz, 1H), 7.56 — 7.51 (m, 1H), 7.34 (td, J = 7.7, 1.2 Hz, 1H), 7.30 (dd, J
= 8.4, 1.2 Hz, 1H), 5.90 (d, J = 5.1 Hz, H"), 5.46 (d, J = 2.3 Hz, H5), 5.02 (dd, J = 7.7, 2.3
Hz, H*), 4.75 (dd, J = 7.7, 2.5 Hz, H?), 4.47 (dd, J = 5.2, 2.6 Hz, H?), 3.68 (s, 3H), 1.59 (s,
3H), 1.44 (s, 3H), 1.37 (s, 3H), 1.26 (s, 3H).

We identified H' and H? through NOE experiment because they are on
the same side. Then it was clearly found H* and H’ are coupled to each
other that they are on the same side through another NOE experiment. So

we concluded that 4ae' was o isomer and 4ae was 3 isomer .
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1-methyl-3-((2R,3R,4S5,5R,65)-3,4,5,6-tetramethoxytetrahydro-2 H-pyran-2-yl)quinoxalin-2(1
H)-one(4ag): 'H NMR (400 MHz, Chloroform-d) & 7.94 (dd, J = 8.0, 1.6 Hz, 1H), 7.60 (td, J =
7.9, 1.5 Hz, 1H), 7.37 (td, J= 8.3, 1.2 Hz, 1H), 7.33 (dd, /= 8.5, 1.2 Hz, 1H), 5.29 (d, J=10.1
Hz, H"), 4.91 (d, J = 3.5 Hz, H%), 4.01 (dd, J=10.1, 9.0 Hz, 1H), 3.76 (t, J = 9.3 Hz, H?), 3.72 (s,
3H), 3.68 (s, 3H), 3.62 (s, 3H), 3.56 (s, 3H), 3.46 (s, 3H), 3.39 (dd, J = 9.7, 3.6 Hz, H?).

We identified H' and H? through NOE experiment because they are on
the same side. Then it was clearly found H*> and H’ are coupled to each
other that they are on the same side through another NOE experiment. So
we concluded that 4ag was [ isomer. The stereochemical outcome of
benzyl-protected glucose products ( 4ah-4aj) was same to the compound

4ag.

5.29
5.28
3.76
3.74

b

3.73
3.61

i

T T T T T T T T T T T T T T
4 13 12 11 10 9 8 7 6 1 3 2 1 0 1
£1 (ppm)

1D-NOE spectrum of compound 4ag
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13. Characterization of the Products
3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-1-methylq
uinoxalin-2(1H)-one(3aa)

| Colorless wax; 30.2 mg, 91% yield. "H NMR (400 MHz, Chloroform-d)

N_ _O 6 7.87 (dd, J = 8.0, 1.5 Hz, 1H), 7.56 (td, J = 8.6, 1.5 Hz, 1H), 7.37 —
@[ ILO)‘ 7.31 (m, 2H), 5.58 (d, J = 1.7 Hz, 1H), 5.41 (dd, J = 6.0, 1.7 Hz, 1H),
N o 5.14 (s, 1H), 4.66 (d, J = 5.9 Hz, 1H), 3.72 (s, 3H), 3.37 (s, 3H), 1.59

S \ (s, 3H), 1.39 (s, 3H). 3C NMR (100 MHz, Chloroform-d) & 156.3,

O>((-) 153.9, 133.4, 132.3, 130.64, 130.59, 123.7, 113.6, 112.7, 109.9, 86.0,

85.2,82.2, 55.3, 28.8, 26.8, 25.4. HRMS (ESI) m/z: [M+H]* Calcd for
C17H21N205 333.1450; Found 333.1453.

1-ethyl-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)qui
noxalin-2(1H)-one(3ab)

( White solid, mp: 100-102 °C; 31.2 mg, 90% yield. '"H NMR (400

N_ _O MHz, Chloroform-d) § 7.87 (dd, J = 8.0, 1.5 Hz, 1H), 7.55 (td, J =

@[ ILO)A 8.6, 1.6 Hz, 1H), 7.34 — 7.30 (m, 2H), 5.58 (d, J = 1.6 Hz, 1H), 5.41

N o (dd,J=6.0,1.7 Hz, 1H), 5.14 (s, 1H), 4.65 (d, /= 5.9 Hz, 1H), 4.33

R A (q, J=17.2 Hz, 2H), 3.38 (s, 3H), 1.58 (s, 3H), 1.39 (s, 3H), 1.36 (t, J

O o] = 7.2 Hz, 3H). 3C NMR (100 MHz, Chloroform-d) & 155.3, 152.3,

X 131.6, 131.3, 129.9, 129.5, 122.5, 112.4, 111.7, 108.7, 85.0, 84.1,

81.3, 54.2, 36.0, 25.8, 24.4, 11.4. HRMS (ESI) m/z: [M+H]* Caled for CisH23N205 347.1607;
Found 347.1605.

1-isobutyl-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)
quinoxalin-2(1H)-one(3ac)

White solid, mp: 128-130 °C; 31.1 mg, 83% yield. 'H NMR (400

H\ MHz, Chloroform-d) 6 7.87 (dd, J= 8.3, 1.5 Hz, 1H), 7.55 - 7.51 (m,

N. _O 1H), 7.34 — 7.30 (m, 2H), 5.58 (d, /= 1.6 Hz, 1H), 5.39 (dd, /= 5.9,

©: 1.7 Hz, 1H), 5.15 (s, 1H), 4.66 (d, J= 5.9 Hz, 1H), 4.24 (dd, J=13.7,

N/ = o 79Hz 1H), 4.05(dd, J=13.7, 7.1 Hz, 1H), 3.40 (s, 3H), 2.26 (dq, J

K A 13.8, 6.9 Hz, 1H), 1.59 (s, 3H), 1.40 (s, 3H), 1.00 (d, J = 6.8 Hz,

O () 3H), 0.98 (d, J = 6.7 Hz, 3H). 3C NMR (100 MHz, Chloroform-d) &

X 156.4, 154.1, 133.0, 132.5, 130.9, 130.3, 123.4, 114.1, 112.7, 109.9,

86.2, 85.2, 82.3, 55.3, 48.8, 27.2, 26.8, 25.4, 20.3, 20.1. HRMS (ESI) m/z: [M+H]" Calcd for
C20H27N205 375.1920; Found 375.1916.
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1-butyl-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)qui

noxalin-2(1H)-one(3ad)

(s
sody
O\Xé

White solid, mp: 107-109 °C; 34.4 mg, 92% yield. '"H NMR (400
MHz, Chloroform-d) & 7.86 (dd, J=8.2, 1.6 Hz, 1H), 7.54 (td, J="7.7,
1.6 Hz, 1H), 7.33 - 7.29 (m, 2H), 5.57 (d, J= 1.7 Hz, 1H), 5.39 (dd, J
=5.9, 1.7 Hz, 1H), 5.14 (s, 1H), 4.64 (d, J= 5.9 Hz, 1H), 4.33 —4.18
(m, 2H), 3.39 (s, 3H), 1.76 — 1.69 (m, 2H), 1.58 (s, 3H), 1.51 — 1.42
(m, 2H), 1.39 (s, 3H), 0.98 (t, J = 7.4 Hz,3H). *C NMR (100 MHz,
Chloroform-d) & 156.4, 153.6, 132.61, 132.58, 130.8, 130.4, 123.5,

113.6, 112.7, 109.8, 86.2, 85.2, 82.3, 55.2, 41.9, 29.3, 26.8, 25.4, 20.3, 13.8. HRMS (ESI) m/z:
[M+H]" Calcd for C20H27N205 375.1920; Found 375.1925.

1-(cyclopropylmethyl)-3-((3aR,4R,6 R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]
dioxol-4-yl)quinoxalin-2(1H)-one(3ae)

.
CENIE)‘O\
OXO

373.1763; Found 373.1758.

White solid, mp: 108-110 °C; 31.3 mg, 84% yield. '"H NMR (400
MHz, Chloroform-d) 6 7.88 (dd, J = 8.0, 1.6 Hz, 1H), 7.56 (td, J =
7.8, 1.6 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.35 — 7.31 (m, 1H), 5.57
(d, J=1.7 Hz, 1H), 5.41 (dd, J= 5.9, 1.7 Hz, 1H), 5.15 (s, 1H), 4.65
(d, J=5.9 Hz, 1H), 4.27 — 4.16 (m, 2H), 3.40 (s, 3H), 1.59 (s, 3H),
1.40 (s, 3H), 1.33 — 1.26 (m, 1H), 0.61 — 0.47 (m, 4H). 3C NMR
(100 MHz, Chloroform-d) 8 155.5, 152.9, 131.8, 131.5, 129.8, 129.4,
122.4, 1129, 111.7, 108.8, 85.2, 84.1, 81.3, 54.2, 44.9, 25.8, 24.4,
8.6, 3.1, 3.0. HRMS (ESI) m/z: [M+H]" Calcd for CzH2sN2Os

1-(cyclohexylmethyl)-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro(3,4-d][1,3]
dioxol-4-yl)quinoxalin-2(1H)-one(3af)

CrC

~ (@)

N 0

ID‘\
5

White solid, mp: 83-85 °C; 35.6 mg, 86% yield. '"H NMR (400 MHz,
Chloroform-d) & 7.86 (dd, J = 8.2, 1.6 Hz, 1H), 7.53 (td, J = 8.6, 1.6
Hz, 1H), 7.34 — 7.29 (m, 2H), 5.57 (d, J = 1.7 Hz, 1H), 5.38 (dd, J =
6.0, 1.7 Hz, 1H), 5.15 (s, 1H), 4.65 (d, J=5.9 Hz, 1H), 4.23 (dd, J =
13.7,7.6 Hz, 1H), 4.06 (dd, J = 13.8, 7.1 Hz, 1H), 3.40 (s, 3H), 1.96 —
1.86 (m, 1H), 1.73 — 1.63 (m, 5H), 1.59 (s, 3H), 1.40 (s, 3H), 1.21 —
1.11 (m, 5H). C NMR (100 MHz, Chloroform-d) & 156.4, 154.1,
133.1, 132.5, 130.8, 130.3, 123.4, 114.1, 112.7, 109.9, 86.3, 85.2,
82.4, 55.3, 47.8, 36.5, 30.9, 30.8, 26.8, 26.2, 25.79, 25.75, 25.5.

HRMS (ESI) m/z: [M+H]* Caled for Co3H31N2Os 415.2233; Found 415.2239.
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1-benzyl-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d]|[1,3]dioxol-4-yl)q

uinoxalin-2(1H)-one(3ag)

CrC
A0
N o)
IL)‘\
5

Colorless oil; 38.4 mg, 94% yield. 'H NMR (400 MHz,
Chloroform-d) & 7.87 (dd, J = 7.9, 1.6 Hz, 1H), 7.45 — 7.41 (m, 1H),
7.31 —7.22 (m, 7H), 5.65 (d, J = 1.7 Hz, 1H), 5.58 (d, J = 15.6 Hz,
1H), 5.49 (dd, J = 5.9, 1.6 Hz, 1H), 5.44 (d, J = 15.6 Hz, 1H), 5.16
(s, 1H), 4.70 (d, J = 5.9 Hz, 1H), 3.38 (s, 3H), 1.60 (s, 3H), 1.41 (s,
3H). 3C NMR (100 MHz, Chloroform-d) & 156.5, 154.0, 135.2,
132.8, 132.5, 130.7, 130.6, 128.9, 127.8, 127.0, 123.8, 114.4, 112.7,
109.9, 86.0, 85.3, 82.2, 55.3, 45.6, 26.8, 25.4. HRMS (ESI) m/z:
[M+H]* Calcd for C23H25N205 409.1763; Found 409.1766.

1-allyl-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)qui

noxalin-2(1H)-one(3ah)
CL L
N/ O 0
| \
x°

White solid, mp: 139-141 °C; 33.3 mg, 93% yield. '"H NMR (400
MHz, Chloroform-d) ¢ 7.87 (dd, J= 8.0, 1.5 Hz, 1H), 7.54 — 7.50 (m,
1H), 7.35 — 7.28 (m, 2H), 5.97 — 5.87 (m, 1H), 5.59 (d, J = 1.6 Hz,
1H), 5.44 (dd, J= 5.9, 1.7 Hz, 1H), 5.27 — 5.24 (m, 1H), 5.18 — 5.13
(m, 2H), 5.00 — 4.84 (m, 2H), 4.67 (d, J = 5.9 Hz, 1H), 3.37 (s, 3H),
1.58 (s, 3H), 1.39 (s, 3H). *C NMR (100 MHz, Chloroform-d) &
156.4, 153.4, 132.6, 132.4,130.7, 130.6, 130.5, 123.7, 118.3, 114.2,
112.7, 109.8, 85.9, 85.2, 82.2, 55.2, 44.2, 26.8, 25.4. HRMS (ESI)

m/z: [M+H]" Calcd for C19H23N205 359.1607; Found 359.1601.

3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-1-(prop-2-
yn-1-yl)quinoxalin-2(1H)-one(3ai)

/

CrC

o~ @)

N 0

ID‘\
o

White solid, mp: 161-163 °C; 31 mg, 87% yield. '"H NMR (400 MHz,
Chloroform-d) ¢ 7.88 (dd, J = 8.0, 1.5 Hz, 1H), 7.59 (td, J= 7.8, 1.5
Hz, 1H), 7.47 (dd, J= 8.5, 1.2 Hz, 1H), 7.37 (td, /= 7.6, 1.2 Hz, 1H),
5.57(d,J=1.7 Hz, 1H), 5.44 (dd, J= 5.9, 1.7 Hz, 1H), 5.13 (s, 1H),
5.12-5.01 (m, 2H), 4.66 (d, J = 5.9 Hz, 1H), 3.36 (s, 3H), 2.27 (t, J
= 2.5 Hz, 1H), 1.58 (s, 3H), 1.39 (s, 3H). *C NMR (100 MHz,
Chloroform-d) & 155.3, 151.8, 131.4, 130.8, 129.71, 129.66, 123.1,
113.2, 111.7, 108.8, 84.8, 84.1, 81.1, 75.7, 72.3, 54.2, 30.1, 25.8,

24.3. HRMS (ESI) m/z: [M+H]* Calcd for C19H2:1N205 357.1450; Found 357.1458.
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Ethyl2-(3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2-
oxoquinoxalin-1(2H)-yl)acetate(3aj)

0]

Hko/\
CrC
AN__O
N o)
IL)‘\
o

White solid, mp: 159-161 °C; 32.4 mg, 80% yield. '"H NMR (400
MHz, Chloroform-d)  7.88 (dd, J = 8.0, 1.5 Hz, 1H), 7.52 (td, J =
7.9, 1.5 Hz, 1H), 7.36 — 7.32 (m, 1H), 7.07 (d, J = 8.3 Hz, 1H), 5.57
(d, J=1.6 Hz, 1H), 5.47 (dd, J= 5.9, 1.6 Hz, 1H), 5.13 (s, 1H), 5.08
—4.99 (m, 2H), 4.67 (d, J = 5.9 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H),
3.34 (s, 3H), 1.58 (s, 3H), 1.39 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). 1°C
NMR (100 MHz, Chloroform-d) 6 165.9, 155.2, 152.4, 131.5, 131.3,
129.9, 129.7, 123.0, 112.1, 111.6, 108.8, 84.7, 84.2, 81.0, 61.1, 54.1,
42.2, 257, 243, 13.1. HRMS (ESI) m/z: [M+H]" Calcd for

C20H25N207 405.1662; Found 405.1657.

3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-1-(2-0x0-2
-phenylethyl)quinoxalin-2(1H)-one(3ak)

0
CrC
A0
N o)
IL/‘\
°

437.1721.

White solid, mp: 191-193 °C; 35.4 mg, 87% yield. '"H NMR (400
MHz, Chloroform-d) ¢ 8.07 — 8.04 (m, 2H), 7.90 (dd, J= 8.0, 1.5 Hz,
1H), 7.68 — 7.64 (m, 1H), 7.55 — 7.51 (m, 2H), 7.45 (td, J= 7.9, 1.6
Hz, 1H), 7.32 (td, /= 7.7, 1.2 Hz, 1H), 6.96 (dd, J = 8.5, 1.2 Hz, 1H),
5.80 — 5.70 (m, 2H), 5.58 (d, J = 1.5 Hz, 1H), 5.49 (dd, /= 5.9, 1.6
Hz, 1H), 5.14 (s, 1H), 4.69 (d, J = 5.9 Hz, 1H), 3.37 (s, 3H), 1.57 (s,
3H), 1.39 (s, 3H). '*C NMR (100 MHz, Chloroform-d) & 190.9, 156.1,
153.7, 134.5, 134.4, 132.9, 132.4, 130.9, 130.7, 129.1, 128.1, 123.9,
113.5, 112.6, 109.8, 85.7, 85.3, 82.1, 55.2, 48.2, 26.8, 25.3. HRMS
(ES) m/z: [M+H]" Caled for C24H2sN20s 437.1713; Found

2-(3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2-0x0q
uinoxalin-1(2H)-yl)acetonitrile(3al)

CN

(o
Al
N\
OXO

White solid, mp: 81-83 °C; 24 mg, 67% yield. 'H NMR (400 MHz,
Chloroform-d) 8 7.92 (dd, J = 8.0, 1.5 Hz, 1H), 7.65 (td, J = 8.3, 1.5
Hz, 1H), 7.44 (td, J="7.7, 1.2 Hz, 1H), 7.34 (dd, /= 8.4, 1.2 Hz, 1H),
5.54 (d, J= 1.5 Hz, 1H), 5.45 (dd, /= 5.9, 1.6 Hz, 1H), 5.27 - 5.18
(m, 2H), 5.12 (s, 1H), 4.66 (d, J = 5.9 Hz, 1H), 3.33 (s, 3H), 1.58 (s,
3H), 1.39 (s, 3H). 3C NMR (100 MHz, Chloroform-d) & 156.0,
152.5,132.3, 131.4, 131.3, 131.1, 125.0, 113.6, 113.1, 112.8, 110.0,
85.5, 85.2, 81.9, 55.3, 29.1, 26.8, 25.3. HRMS (ESI) m/z: [M+H]"

Calcd for C1sH20N305 358.1403; Found 358.1399.
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3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro|3,4-d][1,3]dioxol-4-yl)-1,7-dimet

hylquinoxalin-2(1H)-one(3ba)

|
\@iN (O]
Z (@)
N o)
iﬁ/‘ \
O)(é

Colorless oil; 27 mg, 78% yield. 'H NMR (400 MHz,
Chloroform-d) 5 7.74 (d,.J = 8.1 Hz, 1H), 7.15 (dd, J = 8.2, 1.7 Hz,
1H), 7.10 (s, 1H), 5.56 (d, J = 1.6 Hz, 1H), 5.41 (dd, J = 6.0, 1.6
Hz, 1H), 5.13 (s, 1H), 4.66 (d, J = 5.9 Hz, 1H), 3.69 (s, 3H), 3.36
(s, 3H), 2.51 (s, 3H), 1.58 (s, 3H), 1.39 (s, 3H). 3C NMR (100
MHz, Chloroform-d) 6 155.0, 154.1, 141.5, 133.3, 130.5, 130.3,
125.1, 113.8, 112.6, 109.8, 85.9, 85.2, 82.2, 55.2, 28.8, 26.8, 25.3,

22.2. HRMS (ESI) m/z: [M+H]* Calcd for C1sH23N20s5 347.1607; Found 347.1613.

3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro|3,4-d][1,3]dioxol-4-yl)-1,6-dimet

hylquinoxalin-2(1H)-one(3ca)

|
o
~ (@)
N 0
IL/‘\
o

Colorless oil; 27.7 mg, 80% vyield. 'H NMR (400 MHz,
Chloroform-d) 6 7.66 (d, J= 1.9 Hz, 1H), 7.38 (dd, J = 8.5, 2.1 Hz,
1H), 7.21 (d, J = 8.5 Hz, 1H), 5.58 (d, J = 1.6 Hz, 1H), 5.41 (dd, J
= 5.9, 1.6 Hz, 1H), 5.13 (s, 1H), 4.66 (d, J = 5.9 Hz, 1H), 3.69 (s,
3H), 3.36 (s, 3H), 2.44 (s, 3H), 1.59 (s, 3H), 1.39 (s, 3H). 1°C
NMR (100 MHz, Chloroform-d) 6 156.2, 153.9, 133.6, 132.2,
131.8, 131.2, 130.4, 113.4, 112.6, 109.9, 85.9, 85.2, 82.2, 55.3,

28.9, 26.8, 25.3, 20.7. HRMS (ESI) m/z: [M+H]" Caled for CigH23N20s 347.1607; Found

347.1603.

3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro(3,4-d][1,3]dioxol-4-yl)-1,6,7-trim
ethylquinoxalin-2(1H)-one(3da)

|
)@EN ’
~ (@)
N 0
IL/‘\
O)(é

(ESI) m/z: [M+H]" Caled for C;

Colorless oil; 32.1 mg, 89% vyield. 'H NMR (400 MHz,
Chloroform-d) & 7.60 (s, 1H), 7.07 (s, 1H), 5.56 (d, J = 1.9 Hz,
1H), 5.43 (dd, J= 5.9, 2.1 Hz, 1H), 5.11 (s, 1H), 4.66 (dd, J = 6.1,
1.9 Hz, 1H), 3.67 (s, 3H), 3.32 (s, 3H), 2.40 (s, 3H), 2.33 (s, 3H),
1.57 (s, 3H), 1.38 (s, 3H). 3C NMR (100 MHz, Chloroform-d) &
154.9, 154.0, 140.5, 132.6, 131.5, 130.7, 130.6, 114.2, 112.6,
109.9, 85.7, 85.3, 82.1, 55.1, 28.7, 26.8, 25.4, 20.6, 19.1. HRMS
9H25N205 361.1763; Found 361.1771.

S35



3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-1-methylb
enzo[g]quinoxalin-2(1H)-one(3ea)

|
N ’
o~ (@)
N o)
IL)‘\
OX(:)

Yellow solid, mp: 79-81 °C; 36 mg, 94% yield. '"H NMR (400
MHz, Chloroform-d) & 8.36 (s, 1H), 7.95 (d, J = 8.2 Hz, 1H),
7.90 (d, J = 8.4 Hz, 1H), 7.59 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H),
7.48 (t,J=17.5 Hz, 1H), 5.63 (d, J= 1.7 Hz, 1H), 5.49 (dd, J =
5.9, 1.6 Hz, 1H), 5.16 (s, 1H), 4.71 (d, /= 5.9 Hz, 1H), 3.76 (s,
3H), 3.38 (s, 3H), 1.61 (s, 3H), 1.42 (s, 3H). 3C NMR (100
MHz, Chloroform-d) 6 156.9, 153.8, 133.8, 131.8, 131.6, 130.0,

129.7, 128.5, 128.1, 127.2, 1254, 112.7, 110.0, 109.9, 85.8, 85.3, 82.2, 55.3, 28.8, 26.8, 25.4.
HRMS (ESI) m/z: [M+H]" Calcd for C21H23N205 383.1607; Found 383.1601.

3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-1-methyl-
6-phenylquinoxalin-2(1H)-one(3fa)

|
Cr
o

\

Yellow solid, mp: 99-101 °C; 38.1 mg, 93% yield. 'H NMR
(400 MHz, Chloroform-d) & 8.09 (d, J = 2.2 Hz, 1H), 7.81
(dd, J =22, 8.7 Hz, 1H), 7.65 — 7.62 (m, 2H), 7.49 — 7.45
(m, 2H), 7.40 — 7.36 (m, 2H), 5.61 (d, J = 1.6 Hz, 1H), 5.44
(dd, J=5.9, 1.6 Hz, 1H), 5.16 (s, 1H), 4.68 (d, J = 5.9 Hz,
1H), 3.74 (s, 3H), 3.39 (s, 3H), 1.60 (s, 3H), 1.40 (s, 3H).
13C NMR (100 MHz, Chloroform-d) § 156.8, 153.8, 139.3,

136.9, 132.6, 132.5, 129.5, 129.1, 128.6, 127.7, 127.0, 114.1, 112.7, 109.9, 86.0, 85.2, 82.2, 55.3,
29.0, 26.8, 25.3. HRMS (ESI) m/z: [M+H]* Calcd for C23H25N205 409.1763; Found 409.1767.

6-methoxy-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro|3,4-d][1,3]dioxol-4-yl)
-1-methylquinoxalin-2(1H)-one(3ga)

|
o
\O N/ O o)
| \
o

White solid, mp: 153-155 °C; 31.9 mg, 88% yield. 'H NMR
(400 MHz, Chloroform-d) 6 7.32 (d, J=2.8 Hz, 1H), 7.23 (d, J
=9.1 Hz, 1H), 7.18 (dd, J = 9.1, 2.8 Hz, 1H), 5.58 (d, J= 1.6
Hz, 1H), 5.43 (dd, J=5.9, 1.7 Hz, 1H), 5.13 (s, 1H), 4.67 (d, J
= 5.9 Hz, 1H), 3.87 (s, 3H), 3.70 (s, 3H), 3.34 (s, 3H), 1.58 (s,
3H), 1.39 (s, 3H). '*C NMR (100 MHz, Chloroform-d) & 156.8,
156.0, 153.6, 133.0, 127.7, 119.7, 114.5, 112.7, 112.1, 109.9,

85.9, 85.2, 82.1, 55.8, 55.2, 29.0, 26.79, 25.4. HRMS (ESI) m/z: [M+H]" Calcd for CisH23N206

363.1556; Found 363.1553.
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7-bromo-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-1
-methylquinoxalin-2(1H)-one(3ha)

| White solid, mp: 109-111 °C; 33.7 mg, 82% yield. 'H NMR

Br N. O (400 MHz, Chloroform-d) & 7.71 (d, J = 8.4 Hz, 1H), 7.47 —

\©i ILO)‘ 7.43 (m, 2H), 5.54 (d, J= 1.6 Hz, 1H), 5.39 (dd, /= 6.0, 1.7 Hz,

N 0\ 1H), 5.13 (s, 1H), 4.65 (d, J = 5.9 Hz, 1H), 3.68 (s, 3H), 3.35 (s,

O\: B 3H), 1.58 (s, 3H), 1.39 (s, 3H). 3C NMR (100 MHz,

XO Chloroform-d) & 156.8, 153.6, 134.4, 131.8, 131.1, 127.0, 124.8,

116.8, 112.8, 109.9, 85.9, 85.2, 82.1, 55.3, 29.0, 26.8, 25.3.
HRMS (ESI) m/z: [M+H]" Caled for C17H20BrN,0s 411.0556; Found 411.0562.

6-bromo-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-1
-methylquinoxalin-2(1H)-one(3ia)

| White solid, mp: 79-81 °C; 32.5 mg, 79% yield. 'H NMR (400

N. O MHz, Chloroform-d) & 8.00 (d, J = 2.3 Hz, 1H), 7.64 (dd, J =

/©i _ 0 8.9, 2.3 Hz, 1H), 7.19 (d, J = 8.9 Hz, 1H), 5.56 (d, J= 1.6 Hz,

Br N O 1H), 537 (dd, /= 6.0, 1.6 Hz, 1H), 5.12 (s, 1H), 4.64 (d, /= 5.9

s : Hz, 1H), 3.69 (s, 3H), 3.35 (s, 3H), 1.58 (s, 3H), 1.38 (s, 3H).

XO 13C NMR (100 MHz, Chloroform-d) & 156.8, 152.5, 132.3,

132.0, 131.9, 131.5, 115.3, 114.1, 111.7, 108.9, 84.8, 84.1, 81.1,

54.3, 28.0, 25.7, 24.3. HRMS (ESI) m/z: [M+H]" Calcd for Ci7H20BrN2Os 411.0556; Found
411.0551.

2-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-][1,3]dioxol-4-yl)-4-methyl-3-
0x0-3,4-dihydroquinoxaline-6-carbonitrile(3ja)

| White solid, mp: 152-154 °C; 23.2 mg, 65% yield. 'H NMR

NC N. O (400 MHz, Chloroform-d) & 7.95 (d, J = 8.1 Hz, 1H), 7.62 —

\©: ILO)‘ 7.58 (m, 2H), 5.57 (d, J= 1.6 Hz, 1H), 5.36 (dd, /= 5.9, 1.7 Hz,

N O\ 1H), 5.14 (s, 1H), 4.63 (d, J = 5.9 Hz, 1H), 3.72 (s, 3H), 3.37 (s,

O\\‘ B 3H), 1.58 (s, 3H), 1.38 (s, 3H). 3C NMR (100 MHz,

XO Chloroform-d) & 159.0, 152.3, 133.3, 132.8, 130.4, 125.6, 117.0,

116.9, 112.7, 111.9, 108.9, 85.0, 84.0, 81.0, 54.4, 28.1, 25.7,
24.3. HRMS (ESI) m/z: [M+H]* Caled for C1sH20N305358.1403; Found 358.1407.
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3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-1-methyl-
2-0x0-1,2-dihydroquinoxaline-6-carbonitrile(3ka)

| White solid, mp: 179-181 °C; 24.3 mg, 68% yield. 'H NMR
N. O (400 MHz, Chloroform-d) 6 8.15 (d, /= 1.9 Hz, 1H), 7.78 (dd, J

/©: _ 0 =8.7, 1.9 Hz, 1H), 7.41 (d, /= 8.7 Hz, 1H), 5.54 (d, /= 1.6 Hz,
NC N O 1H),5.34 (dd,J =59, 1.6Hz, 1H), 5.12 (s, 1H), 4.62 (d,J = 5.9
O\\\ C) Hz, 1H), 3.72 (s, 3H), 3.35 (s, 3H), 1.57 (s, 3H), 1.38 (s, 3H).

X 3C NMR (100 MHz, Chloroform-d) & 158.9, 153.5, 136.7,

134.8, 133.1, 131.8, 117.8, 114.9, 112.9, 110.0, 107.3, 85.8,

85.0, 82.0, 55.4, 29.2, 26.7, 25.3. HRMS (ESI) m/z: [M+H]* Calcd for CisH20N305 358.1403;
Found 358.1396.

6,7-difluoro-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro(3,4-d][1,3]dioxol-4-y
1)-1-methylquinoxalin-2(1H)-one(31a)

| White solid, mp: 77-79 °C; 31.3 mg, 85% yield. 'H NMR (400

F N._O MHz, Chloroform-d) & 7.66 (q, J = 10.1, 8.1 Hz, 1H), 7.12 (q, J =

i@i _ o 11.2, 7.0 Hz, 1H), 5.53 (d, /= 1.6 Hz, 1H), 5.35 (dd, J=5.9, 1.7

F N O\ Hz, 1H), 5.12 (s, 1H), 4.63 (d, J = 5.9 Hz, 1H), 3.66 (s, 3H), 3.34

06 B (s, 3H), 1.57 (s, 3H), 1.38 (s, 3H). YF NMR (376 MHz,

Xo Chloroform-d) & -129.92 — 129.81(m), -141.82 — 141.71(m). 3C

NMR (100 MHz, Chloroform-d) & 157.0 (d, J = 3.5 Hz), 153.4,

151.7(dd, J = 254.3 Hz, 14.4 Hz), 146.7 (dd, J = 247.5, 14.0 Hz), 130.7 (dd, J = 9.1, 1.9 Hz),

128.5 (dd, J=9.2,2.9 Hz), 118.1 (dd, J=17.9, 2.3 Hz), 112.8, 109.9, 102.4 (d, J = 23.3 Hz), 85.8,

85.1, 82.1, 55.3, 29.4, 26.7, 25.3. HRMS (ESI) m/z: [M+H]* Calcd for Ci7H19F2N20s5 369.1262;
Found 369.12609.

3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)quinoxalin
-2(1H)-one(3ma)

H White solid, mp: 230-232 °C; 27.4 mg, 86% yield. '"H NMR (400

N. O MHz, Chloroform-d) & 12.49 (s, 1H), 7.85 (dd, J = 8.1, 1.4 Hz, 1H),

©i pZ o 7.52 (td, J = 8.3, 1.4 Hz, 1H), 7.43 (dd, J = 8.3, 1.4 Hz, 1H), 7.35 (td,

N O\ J=11.6, 1.4 Hz, 1H), 5.68 (d, J = 6.2 Hz, 1H), 5.66 (d, J = 1.2 Hz,

(5 é 1H), 5.12 (s, 1H), 4.76 (d, J= 5.8 Hz, 1H), 3.22 (s, 3H), 1.61 (s, 3H),

X 1.43 (s, 3H). 3C NMR (100 MHz, Chloroform-d) & 156.5, 155.9,

132.2, 131.3, 130.8, 129.7, 1244, 116.0, 112.5, 110.1, 85.6, 84.5,

81.6, 55.0, 26.7, 25.3. HRMS (ESI) m/z: [M+H]* Calcd for CisHi19N2Os 319.1294; Found
319.1286.
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3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)benzo[g]qu
inoxalin-2(1H)-one(3na)

H Yellow solid, mp: 219-221 °C; 33.9 mg, 92% yield. 'H NMR

N. O (400 MHz, Chloroform-d) & 12.04 (s, 1H), 8.36 (s, 1H), 7.95 (d,

2 ') J=8.3 Hz, 1H), 7.91 (d, /= 8.4 Hz, 1H), 7.81 (s, 1H), 7.56 (t, J

N O\ =7.5Hz, 1H), 747 (t, J="7.5 Hz, 1H), 5.75 (d, /= 5.7 Hz, 2H),

d (_) 5.14 (s, 1H), 4.81 (d, J= 5.7 Hz, 1H), 3.22 (s, 3H), 1.65 (s, 3H),

)( 1.46 (s, 3H). 3C NMR (100 MHz, Chloroform-d) & 157.1,

155.6, 134.1, 131.4, 130.3, 129.3, 129.1, 128.8, 128.1, 127.0,

125.3,112.5,111.9, 110.2, 85.7, 84.3, 81.5, 55.0, 26.8, 25.3. HRMS (ESI) m/z: [M+H]" Calcd for
C20H21N205 369.1450; Found 369.1457.

3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro|3,4-d][1,3]dioxol-4-yl)-6,7-dimet
hylquinoxalin-2(1H)-one(30a)
H White solid, mp: 200-202 °C; 30.8 mg, 89% yield. '"H NMR (400
N. O MHz, Chloroform-d) 6 12.72 (s, 1H), 7.60 (s, 1H), 7.22 (s, 1H),
;@i ~ 0O 5.70 (d,J=6.0 Hz, 1H), 5.68 (s, 1H), 5.10 (s, 1H), 4.77 (d, J=5.8
N O\ Hz, 1H), 3.17 (s, 3H), 2.38 (s, 3H), 2.34 (s, 3H), 1.61 (s, 3H), 1.43
05 (_) (s, 3H). 3C NMR (100 MHz, Chloroform-d) § 156.2, 155.0, 141.1,
X 133.5, 130.8, 129.5, 129.4, 116.3, 112.4, 110.1, 85.8, 84.2, 81.6,

54.8, 26.8, 25.3, 20.1, 19.5. HRMS (ESI) m/z: [M+H]" Calcd for
C1sH23N205 347.1607; Found 347.1604.

6-methoxy-3-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro|3,4-d][1,3]dioxol-4-yl)
quinoxalin-2(1H)-one(3pa)

H Yellow solid, mp: 194-196 °C; 28.9 mg, 83% yield. 'H NMR

N. O (400 MHz, Chloroform-d) 6 12.76 (s, 1H), 7.37 (d, J = 8.9 Hz,

\OQN/ILO)‘O 1H), 7.29 (d, J = 2.8 Hz, 1H), 7.17 (dd, J = 8.9, 2.8 Hz, 1H),

\ 5.70 (dd, /= 6.0, 1.2 Hz, 1H), 5.66 (d, J= 1.2 Hz, 1H), 5.11 (s,

d (_) 1H), 4.77 (d, J= 5.9 Hz, 1H), 3.88 (s, 3H), 3.20 (s, 3H), 1.61 (s,

X 3H), 1.43 (s, 3H). 13C NMR (100 MHz, Chloroform-d) & 156.7,

156.6, 155.7, 133.0, 125.6, 120.8, 117.0, 112.5, 110.5, 110.1,

85.7,84.3, 81.5, 55.8, 54.9, 26.7, 25.3. HRMS (ESI) m/z: [M+H]" Calcd for C17H21N20¢ 349.1400;
Found 349.1405.

1-methyl-3-((2R,3R,4R,5R)-3,4,5-trimethoxytetrahydrofuran-2-yl)quinoxalin-2(1H)-one(4aa)
| Colorless oil; 29.5 mg, 92% yield. 'H NMR (400 MHz,

N O Chloroform-d) & 7.90 (dd, J = 8.0, 1.5 Hz, 1H), 7.56 (td, J=17.9, 1.6

_ 0 Hz, 1H), 7.36 — 7.29 (m, 2H), 5.57 (d, J = 5.1 Hz, 1H), 5.10 (d, J =

N O\ 2.8 Hz, 1H), 4.61 (t, J = 4.9 Hz, 1H), 3.92 (dd, J = 4.8, 2.8 Hz, 1H),

Meo\v 2 3.70 (s, 3H), 3.52 (s, 3H), 3.51 (s, 3H), 3.39 (s, 3H). '*C NMR (100
OMe

MHz, Chloroform-d) & 154.9, 153.5, 132.5, 131.4, 129.84, 129.81,
122.6, 112.6, 105.5, 81.6, 79.6, 77.9, 57.33, 57.28, 54.9, 28.0. HRMS (ESI) m/z: [M+H]* Calcd
for C16H21N20s5 321.1450; Found 321.1445.
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3-(2R,3R 4R ,5R)-3,4-bis(benzyloxy)-5-methoxytetrahydrofuran-2-yl)-1-methylquinoxalin-2(
1H)-one(4ab)
| Colorless oil; 36.4 mg, 77% yield. "H NMR (400 MHz, Chloroform-d)
N. O 6 7.85(dd, J= 8.0, 1.6 Hz, 1H), 7.59 — 7.54 (m, 1H), 7.42— 7.39 (m,
©: Ilo)‘ 2H), 7.37 - 7.19 (m, 10H), 5.69 (d, J = 5.5 Hz, 1H), 5.15 (d, /= 2.5
N O\ Hz, 1H), 4.85 (t, J = 5.1 Hz, 1H), 4.73 — 4.66(m, 4H), 4.08 (dd, J =
BnO\c 5 4.7, 2.4 Hz, 1H), 3.69 (s, 3H), 3.36 (s, 3H). 1*C NMR (100 MHz,
OBn Chloroform-d) & 155.8, 154.5, 138.2, 138.0, 133.6, 132.4, 130.81,

130.78, 128.4, 128.2, 128.0, 127.9, 127.7, 127.6, 123.6, 113.6, 107.2, 80.7, 79.4, 78.6, 72.42,
72.39, 55.8,29.0. HRMS (ESI) m/z: [M+H]" Calcd for C2sH20N205 473.2076; Found 473.2071.

3-((3aS,5R,6R,6a5)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro|[2,3-d][1,3]dioxol-5-yl)-1-meth
ylquinoxalin-2(1H)-one(4ac)

Colorless oil; 19.9 mg, 49% yield. 'H NMR (400 MHz,
Chloroform-d, major diastereomer) 6 7.97 (dd, J = 8.0, 1.5 Hz, 1H),
7.57 (td, J = 8.6, 1.5 Hz, 1H), 7.43 (d, J= 7.2 Hz, 2H), 7.39 — 7.28
(m, 5H), 6.17 (d, J = 3.6 Hz, 1H), 5.65 (d, J= 1.9 Hz, 1H), 4.98 (d,
J=11.7 Hz, 1H), 4.85 (d, J = 11.7 Hz, 1H), 4.70 — 4.68 (m, 2H),
3.72 (s, 3H), 1.46 (s, 3H), 1.30 (s, 3H). 3C NMR (100 MHz,
Chloroform-d, major diastereomer) & 154.4, 153.0, 136.9, 132.4, 131.3, 129.5, 129.4, 127.3, 126.9,
126.7, 122.9, 112.6, 112.1, 105.9, 83.9, 83.4, 82.6, 71.1, 27.8, 25.2, 25.0. HRMS (ESI) m/z:
[M+H]* Calcd for C23H25N205 409.1763; Found 409.1771.

3-((3aS,58,6R,6a5)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-1-methy
lquinoxalin-2(1H)-0ne(4ac')
Colorless oil; 13.2 mg, 32% yield. 'H NMR (400 MHz,

Chloroform-d, minor diastereomer) 6 8.08 (d, J = 8.0 Hz, 1H), 7.56

©: I (t,J=17.6 Hz, 1H), 7.36 (t, J=7.7 Hz, 1H), 7.29 (d, J= 8.4 Hz, 1H),
Q 7.14 — 7.11 (m, 1H), 7.07 (t, J = 7.3 Hz, 2H), 6.95 (d, J = 7.3 Hz,

BnO' /% 2H), 6.27 (d, J = 3.8 Hz, 1H), 5.65 (d, J= 3.5 Hz, 1H), 4.77 (d, J =

3.5 Hz, 1H), 4.70 (d, J = 3.8 Hz, 1H), 4.56 (d, J = 12.2 Hz, 1H),

432 (d, J = 12.2 Hz, 1H), 3.58 (s, 3H), 1.55 (s, 3H), 1.37 (s, 3H). 3C NMR (100 MHz,
Chloroform-d, minor diastereomer) & 153.4, 152.4, 136.5, 131.8, 131.7, 129.8, 129.2, 127.0, 126.5,

1264, 122.7, 1124, 111.1, 104.1, 82.7, 82.0, 79.1, 71.3, 27.7, 26.0, 25.5. HRMS (ESI) m/z:
[M+H]" Calcd for C23H25N205 409.1763; Found 409.1760.
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3-((3aR,55,68,6aR)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro|[2,3-d][1,3]dioxol-5-yl)-1-meth
ylquinoxalin-2(1H)-one(4ad)
Colorless oil; 20.3 mg, 50% vyield. 'H NMR (600 MHz,

lll (0] Chloroform-d, major diastereomer) 6 7.97 (dd, /= 8.0, 1.5 Hz, 1H),

©: I o 7.57 (td, J=17.8, 1.5 Hz, 1H), 7.43 (d, J= 7.5 Hz, 2H), 7.38 — 7.33
N p.,,o (m, 4H), 7.28 (d, J = 7.5 Hz, 1H), 6.17 (d, J = 3.6 Hz, 1H), 5.65 (d,

BnO l(’O/\v J =19 Hz, 1H), 497 (d, J = 11.7 Hz, 1H), 4.85 (d, J = 11.7 Hz,

1H), 4.70 — 4.68 (m, 2H), 3.72 (s, 3H), 1.46 (s, 3H), 1.29 (s, 3H).

3C NMR (150 MHz, Chloroform-d, major diastereomer) & 155.4, 154.0, 137.9, 133.4, 132.3,

130.51, 130.46, 128.4, 127.9, 127.7, 123.9, 113.7, 113.1, 106.9, 84.9, 84.4, 83.6, 72.2, 28.9, 26.2,
26.0. HRMS (ESI) m/z: [M+H]* Calcd for C23H25N205 409.1763; Found 409.1756.

3-((3aR,5R,68,6aR)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-1-meth
ylquinoxalin-2(1H)-one(4ad')
Colorless oil; 13.6 mg, 33% yield. 'H NMR (600 MHz,
Chloroform-d, minor diastereomer) 6 8.08 (dd, J = 8.0, 1.5 Hz, 1H),
7.57 (td, J=17.9, 1.5 Hz, 1H), 7.37 (td, J = 7.7, 1.2 Hz, 1H), 7.30
(dd, J=8.3, 1.2 Hz, 1H), 7.15 - 7.12 (m, 1H), 7.08 — 7.06 (m, 2H),
6.96 — 6.94 (m, 2H), 6.27 (d, J = 3.8 Hz, 1H), 5.66 (d, J = 3.5 Hz,
/% 1H), 4.77 (d, J = 3.6 Hz, 1H), 4.70 (d, J = 3.8 Hz, 1H), 4.56 (d, J =
12.3 Hz, 1H), 4.33 (d, J = 12.3 Hz, 1H), 3.58 (s, 3H), 1.55 (s, 3H), 1.37 (s, 3H). 3C NMR (150
MHz, Chloroform-d, minor diastereomer) 6 154.3, 153.4, 137.5, 132.8, 132.7, 130.8, 130.3, 128.0,
127.5,127.4,123.8,113.4, 112.1, 105.1, 83.7, 83.0, 80.1, 72.3, 28.7, 27.0, 26.5. HRMS (ESI) m/z:
[M+H]* Calcd for C23H25N205 409.1763; Found 409.1761.

BnO ’/O

1-methyl-3-((3aR,55,5a8,8a8,8bR)-2,2,7,7-tetramethyltetrahydro-5SH-bis([1,3]dioxolo)[4,5-b:
4',5'-d]pyran-5-yl)quinoxalin-2(1H)-one(4ae)
Colorless oil; 17.5 mg, 45% vyield. 'H NMR (400 MHz,

rL o) Chloroform-d) & 7.92 (dd, J = 8.0, 1.5 Hz, 1H), 7.58 — 7.53 (m,
©i j o o 1H), 7.35 — 7.30 (m, 1H), 7.28 (d, J = 8.8 Hz, 1H), 5.55 (d, J =
N J%j N 25 Hz, 1H), 5,09 (dd, /=99, 5.1 Hz, 1H), 5.01 (d, /= 10.0 Hz,

5 ;e 1H), 4.72 (d, J = 5.1 Hz, 1H), 437 (d, J = 2.2 Hz, 1H), 3.68 (s,

%,o 3H), 1.53 (s, 3H), 1.50 (s, 3H), 1.40 (s, 3H), 1.38 (s, 3H). 1°C

NMR (100 MHz, Chloroform-d) & 154.7, 154.0, 133.6, 132.5,

131.13, 131.08, 123.6, 113.5, 111.1, 109.1, 97.8, 77.3, 76.2, 74.7, 70.4, 69.2, 29.2, 28.0, 26.0, 25.9.
HRMS (ESI) m/z: [M+H]* Caled for CaoHasN2Og 389.1713; Found 389.1719.
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1-methyl-3-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:
4',5'-d|pyran-5-yl)quinoxalin-2(1H)-one(4ae")
| Colorless oil; 17.4 mg, 45% vyield. 'H NMR (400 MHz,

N._O Chloroform-d) & 8.08 (dd, J = 8.0, 1.5 Hz, 1H), 7.56 — 7.51 (m,
@[ A0 o 1H), 7.34 (td, J= 7.7, 1.2 Hz, 1H), 7.30 (dd, J = 8.4, 1.2 Hz, 1H),
N ; M 590 (d,J = 5.1 Hz, 1H), 546 (d. J = 2.3 Hz, 1H), 5.02 (dd, J =

o i) 7.7,2.3 Hz, 1H), 4.75 (dd, J = 7.7, 2.5 Hz, 1H), 4.47 (dd, J = 5.2,

%»o 2.6 Hz, 1H), 3.68 (s, 3H), 1.59 (s, 3H), 1.44 (s, 3H), 1.37 (s, 3H),

1.26 (s, 3H). 3C NMR (100 MHz, Chloroform-d) 8 154.5, 153.6,

133.0, 132.9, 130.8, 130.2, 123.7, 113.5, 109.8, 109.0, 97.1, 71.9, 71.2, 70.7, 68.2, 28.9, 26.1, 25.9,
25.0, 24.6. HRMS (ESI) m/z: [M+H]* Caled for C20HsN2O6 389.1713; Found 389.1712.

1-methyl-3-((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4",
5'-d]pyran-3a-yl)quinoxalin-2(1H)-one(4af)

| Colorless oil; 33.8 mg, 87% vyield. 'H NMR (400 MHz,
N._O o Chloroform-d) 8 7.92 (dd, J= 7.7, 1.7 Hz, 1H), 7.58 (t, J = 7.5 Hz,
@[ /EDJ M 1H), 7.35 730 (m, 2H), 5.73 (d, J = 2.4 Hz, 1H), 475 (dd, J =
N o O 8.0, 2.3 Hz, 1H), 4.32 (d, J = 8.0 Hz, 1H), 4.14 (dd, J = 12.9, 2.1

%»o: Hz, 1H), 3.96 (d, J = 13.0 Hz, 1H), 3.71 (s, 3H), 1.62 (s, 3H), 1.33

(s, 3H), 127 (s, 3H), 1.20 (s, 3H). BC NMR (100 MHz,

Chloroform-d) 6 153.2, 152.8, 134.0, 131.1, 130.9, 123.4, 113.5, 109.0, 108.7, 103.1, 70.9, 70.5,

70.2, 61.4,29.0, 26.3, 25.9, 25.1, 24.4. HRMS (ESI) m/z: [M+H]" Caled for C20H25N206 389.1713;
Found 389.1721.

1-methyl-3-((2R,3R,4S,5R,6S5)-3,4,5,6-tetramethoxytetrahydro-2 H-pyran-2-yl)quinoxalin-2(1
H)-one(4ag)
White solid, mp: 113-115 °C; 32.4 mg, 89% yield. '"H NMR (400
MHz, Chloroform-d) & 7.94 (dd, J = 8.0, 1.6 Hz, 1H), 7.60 (td, J =
7.9, 1.5 Hz, 1H), 7.37 (td, J = 8.3, 1.2 Hz, 1H), 7.33 (dd, J = 8.5,
1.2 Hz, 1H), 5.29 (d, J = 10.1 Hz, 1H), 4.91 (d, J = 3.5 Hz, 1H),
4.01 (dd, J = 10.1, 9.0 Hz, 1H), 3.76 (t, J = 9.3 Hz, 1H), 3.72 (s,
OMe 3H), 3.68 (s, 3H), 3.62 (s, 3H), 3.56 (s, 3H), 3.46 (s, 3H), 3.39 (dd,
J =97, 3.6 Hz, 1H). 3*C NMR (100 MHz, Chloroform-d) & 155.1, 154.9, 133.7, 132.4, 131.1,
130.7, 123.7, 113.7, 98.2, 83.9, 81.9, 80.5, 67.1, 61.0, 60.3, 59.1, 55.7, 29.2. HRMS (ESI) m/z:
[M+H]* Calcd for Ci1gH25N206 365.1713; Found 365.1718.
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1-methyl-3-((2R,3R,4S,5R,65)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2 H-pyran-2-yl)qui
noxalin-2(1H)-one(4ah)

White solid, mp: 85-87 °C; 50.4 mg, 85% yield. 'H NMR (400
MHz, Chloroform-d) 6 7.74 (dd, J = 8.0, 1.5 Hz, 1H), 7.49 — 7.45
(m, 1H), 7.33 — 7.29 (m, 4H), 7.27 — 7.13 (m, 8H), 6.86 (s, SH),
531 (d, J = 8.9 Hz, 1H), 4.96 (d, J = 10.9 Hz, 1H), 4.82 (d, J =
10.9 Hz, 1H), 4.76 (dd, J=11.9, 2.6 Hz, 2H),4.63 (d, J = 10.2 Hz,

OBn 1H), 4.61 (s, 1H), 4.50 (d, J = 11.6 Hz, 1H), 4.20 — 4.12 (m, 2H),
3.64 (dd, J = 9.3, 3.5 Hz, 1H), 3.52 (s, 3H), 3.47 (s, 3H). *C NMR (150 MHz, Chloroform-d) &
155.2, 154.6, 138.9, 138.4, 138.2, 133.6, 132.3, 131.0, 130.6, 128.5, 128.4, 128.2, 128.0, 127.9,
127.8, 127.59, 127.57, 127.0, 123.6, 113.6, 98.8, 82.5, 79.8, 79.6, 75.9, 74.7, 73.5, 55.6, 29.1.
HRMS (ESI) m/z: [M+H]" Caled for C36H37N206 593.2652; Found 593.2645.

3-(2R,3R,4S,5R,65)-6-methoxy-3,4,5-tris((4-methylbenzyl)oxy)tetrahydro-2 H-pyran-2-yl)-1-
methylquinoxalin-2(1H)-one(4ai)

White solid, mp: 93-95 °C; 55.8 mg, 88% yield. 'H NMR
(400 MHz, Chloroform-d) ¢ 7.83 (dd, J= 8.0, 1.5 Hz, 1H),
7.58 —7.54 (m, 1H), 7.35 — 7.30 (m, 5H), 7.24 (d, J=8.3
Hz, 1H), 7.16 (t, /= 7.3 Hz, 4H), 6.85 (d, /= 7.7 Hz, 2H),
6.75 (d, J= 7.7 Hz, 2H), 5.40 — 5.38 (m, 1H), 5.02 (d, J =
10.6 Hz, 1H), 4.90 — 4.81 (m, 3H), 4.71 — 4.67 (m, 2H),
4.56 (d,J=11.5 Hz, 1H), 4.26 — 4.20 (m, 2H), 3.73 - 3.70
(m, 1H), 3.61 (s, 3H), 3.55 (s, 3H), 2.37 (s, 3H), 2.36 (s,
3H), 2.11 (s, 3H). '*C NMR (100 MHz, Chloroform-d) &
155.4, 154.6, 137.6, 137.2, 136.7, 136.0, 135.5, 135.3,
133.6, 1324, 130.9, 130.6, 129.2, 129.1, 128.5, 128.4, 128.3, 127.8, 123.5, 113.5, 99.0, 82.5,
79.58, 79.55, 77.4, 75.8, 74.5, 73.4, 55.6, 29.0, 21.3, 21.2, 21.1. HRMS (ESI) m/z: [M+H]" Calcd
for C3oH43N20g 635.3121; Found 635.3114.
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1-methyl-3-((2R,3R,4S,5R,65)-3,4,5-tris((4-bromobenzyl)oxy)-6-methoxytetrahydro-2 H-pyra
n-2-yl)quinoxalin-2(1H)-one(4aj)
White solid, mp: 101-103 °C; 68.8 mg, 83% yield.
[L '"H NMR (400 MHz, Chloroform-d) & 7.80 (dd, J =
©i 8.0, 1.6 Hz, 1H), 7.61 — 7.56 (m, 1H), 7.43 (dd, J =
N 8.2, 1.5 Hz, 4H), 7.37 — 7.33 (m, 1H), 7.28 — 7.26
(m, 1H), 7.23 — 7.18 (m, 4H), 7.01 (d, J = 7.9 Hz,
2H), 6.76 (d, J = 8.0 Hz, 2H), 5.30 (d, J = 9.0 Hz,
1H), 491 (d,J=11.5Hz, 1H),4.79 (d,J=11.5 Hz,
Br 1H), 4.74 (d, J = 3.4 Hz, 1H), 4.71 — 4.63 (m, 3H),
447 (d, J = 12.3 Hz, 1H), 4.23 (t, /= 9.4 Hz, 1H),
4.14 (t, J = 9.2 Hz, 1H), 3.68 (dd, J = 9.5, 3.4 Hz,
1H), 3.60 (s, 3H), 3.54 (s, 3H). 3*C NMR (100 MHz,
Chloroform-d) 6 154.8, 154.4, 137.8, 137.4, 137.1, 133.5, 132.2, 131.6, 131.5, 131.3, 130.9, 130.4,
129.7,129.4,129.2, 123.8, 121.9, 121.5, 121.1, 113.7, 98.5, 82.3, 79.8, 77.3, 74.9, 73.9, 72.5, 55.7,
29.1. HRMS (ESI) m/z: [M+H]"* Calcd for C3sH34Br3sN2Os 826.9967; Found 826.9976.

Br
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14. NMR spectra of compounds
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S3. 'H NMR spectra (400 MHz, CDCls) of compound 2¢
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S5. 'TH NMR spectra (400 MHz, CDCls) of compound 2e
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S6. 'H NMR spectra (400 MHz, CDCls) of compound 2f
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S7. 'TH NMR spectra (400 MHz, CDCl3) of compound 2g
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S8. 'H NMR spectra (400 MHz, CDCls) of compound 2h

S48



ov T
L9'¢
z9'e
v9'e
s9'e
16°¢
€6'c
g6'e
S0y
10y
15
657
s9v
89’y
L2y
2Ly
z8'v
z8'v
S8y
88’y
z6'v
v6'v
1671
00 1
8z,
622
622
622
oL
og'2
gL

LeL
ceL
ceL
€eL
€L
e L
v L
S€L Y
GE' LY
GEL Y
9€"L
1€
L€ LN
8¢ L~

6.2
6L,
08°L
18°L
68°L
06°L
16°L
L6°L

/7

//// s

Feosy

= 10°q
002

]

10

£1 (ppm)

S9. 'H NMR spectra (400 MHz, CDCls) of compound 2i
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S10. 'H NMR spectra (400 MHz, CDCl3) of compound 2j
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S11. 'H NMR spectra (400 MHz, CDCls) of compound 2k
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S12. 'H NMR spectra (400 MHz, CDCl3) of compound 5
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S14. 3C NMR spectra (100 MHz, CDCls) of compound 3aa
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S15. 'TH NMR spectra (400 MHz, CDCl3) of compound 3ab
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S16. 3C NMR spectra (100 MHz, CDCl3) of compound 3ab
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S17. 'TH NMR spectra (400 MHz, CDCl3) of compound 3ac
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S18. 3C NMR spectra (100 MHz, CDCl5) of compound 3ac
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S19. 'H NMR spectra (400 MHz, CDCl3) of compound 3ad
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S20. 3C NMR spectra (100 MHz, CDCls) of compound 3ad
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S21. 'H NMR spectra (400 MHz, CDCl3) of compound 3ae
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S22. 3C NMR spectra (100 MHz, CDCl5) of compound 3ae
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S23. "H NMR spectra (400 MHz, CDCls) of compound 3af
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S24. 3C NMR spectra (100 MHz, CDCls) of compound 3af
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S25. "H NMR spectra (400 MHz, CDCls) of compound 3ag
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S26. 3C NMR spectra (100 MHz, CDCls) of compound 3ag
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S27. '"H NMR spectra (400 MHz, CDCls) of compound 3ah
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S28. 3C NMR spectra (100 MHz, CDCls) of compound 3ah
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S29. "H NMR spectra (400 MHz, CDCls) of compound 3ai

£evz ~
IR-Ad
z108 —

Levs —

9z'TL~
S9'6L~
80'18
pLY8\
6L 78~

18'80L ~.
89 LLL~
aLeLL

90°€CL \
99’621

:.mNr/
v8'0el —~
evLel /

181Gl —
G2'SSL —

£1 (ppm)

S30. 3C NMR spectra (100 MHz, CDCl;) of compound 3ai
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S31. '"H NMR spectra (400 MHz, CDCl3) of compound 3aj
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S32. 3C NMR spectra (100 MHz, CDCls) of compound 3aj
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S33. 'H NMR spectra (400 MHz, CDCl3) of compound 3ak
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S34. 3C NMR spectra (100 MHz, CDCl3) of compound 3ak
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S35. "H NMR spectra (400 MHz, CDCls) of compound 3al
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S36. 13C NMR spectra (100 MHz, CDCls) of compound 3al
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S37. '"H NMR spectra (400 MHz, CDCl3) of compound 3ba
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S38. 3C NMR spectra (100 MHz, CDCls) of compound 3ba
S63

T T T T T T
180 170 160 150 110 130 120 110

T
190

T
200



6eL —
69l —

vv'e—

9€°e —

69'¢c —

SOP~
19v7
€L'g

or's
Lv'S
ev's
v's
wm.m\

85°'S

0c'L
NN.N/
9€'L
YAA
wm,h\
6€°L
ww.h\

1971

N

e

.__O

=20'¢
-io0'¢

0oL
/10°L
=00}

00’1
001
200'}

10

£1 (ppm)

S39. 'H NMR spectra (400 MHz, CDCls) of compound 3ca
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S40. 3C NMR spectra (100 MHz, CDCl5) of compound 3ca
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S41. 'TH NMR spectra (400 MHz, CDCl3) of compound 3da
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S42. BC NMR spectra (100 MHz, CDCls) of compound 3da
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S43. '"H NMR spectra (400 MHz, CDCls) of compound 3ea
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S44. 3C NMR spectra (100 MHz, CDCl;) of compound 3ea
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S45. "H NMR spectra (400 MHz, CDCl3) of compound 3fa

£€°6Z\
0892 —
86'82 7

ve€'68 —

6128\
6168~
8668~

06'601
LTkl ~
i

00221
v:ﬁ/
19’8zl \
90'62L 7T
or'6zl )
Nm.mmr\
om.mmr\
om.@mr\
oc'6El

28'eGlL —
08961 —

T
200

T T T T T
180 170 160 150 110 130 120 110

T
190

£1 (ppm)

S46. 3C NMR spectra (100 MHz, CDCls) of compound 3fa
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S47. "H NMR spectra (400 MHz, CDCl3) of compound 3ga
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S48. 3C NMR spectra (100 MHz, CDCls) of compound 3ga
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S49. '"H NMR spectra (400 MHz, CDCl3) of compound 3ha
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S50. 3C NMR spectra (100 MHz, CDCls) of compound 3ha
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S51. "H NMR spectra (400 MHz, CDCls) of compound 3ia
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S52. 3C NMR spectra (100 MHz, CDCl;) of compound 3ia
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S53. "H NMR spectra (400 MHz, CDCl3) of compound 3ja
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S54. 13C NMR spectra (100 MHz, CDCls) of compound 3ja
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S55. 'H NMR spectra (400 MHz, CDCl3) of compound 3ka
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S56. 3C NMR spectra (100 MHz, CDCls) of compound 3ka
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S57. "H NMR spectra (400 MHz, CDCls) of compound 3la
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S58. F NMR spectra (376 MHz, CDCls) of compound 3la
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S59. 3C NMR spectra (100 MHz, CDCls) of compound 3la
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S60. '"H NMR spectra (400 MHz, CDCls) of compound 3ma
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S61. 3C NMR spectra (100 MHz, CDCl3) of compound 3ma
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S62. 'H NMR spectra (400 MHz, CDCl3) of compound 3na
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S63. 3C NMR spectra (100 MHz, CDCls) of compound 3na
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S64. "H NMR spectra (400 MHz, CDCl3) of compound 30a
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S65. 3C NMR spectra (100 MHz, CDCls) of compound 30a

eVl ~
19°L—

oce—

88'€ —

9.2 —

-00'€

~oo0’¢

N
d

=00°L
—00°L

J00°L
oL

£1 (ppm)

S66. 'H NMR spectra (400 MHz, CDCl3) of compound 3pa
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S67. 3C NMR spectra (100 MHz, CDCls) of compound 3pa
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S68. '"H NMR spectra (400 MHz, CDCl3) of compound 4aa
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S69. 3C NMR spectra (100 MHz, CDCls) of compound 4aa
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S70. '"H NMR spectra (400 MHz, CDCls) of compound 4ab
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S71. 3C NMR spectra (100 MHz, CDCls) of compound 4ab
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S72. "H NMR spectra (400 MHz, CDCls) of compound 4ac
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S73. 3C NMR spectra (100 MHz, CDCl5) of compound 4ac
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S74. "H NMR spectra (400 MHz, CDCls) of compound 4ac
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S75. 13C NMR spectra (100 MHz, CDCls) of compound 4ac'
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S76. '"H NMR spectra (600 MHz, CDCl3) of compound 4ad
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S77. 3C NMR spectra (150 MHz, CDCls) of compound 4ad
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S78. "H NMR spectra (600 MHz, CDCl3) of compound 4ad'
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S79. 3C NMR spectra (150 MHz, CDCls) of compound 4ad'
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S80. '"H NMR spectra (400 MHz, CDCls) of compound 4ae
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S81. 3C NMR spectra (100 MHz, CDCl5) of compound 4ae
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S82. 'H NMR spectra (400 MHz, CDCls) of compound 4ae'

S85



09've
L0'se
§8'Ge

or.wm\

88'8C

5189
m@.EM
6LLLT
osiz’

€L°,6 —

10'60L ~
€8'60L 7
LgeLL

YLETLA
0z'0€l
9L0€b
16°ZEL
sezEL 7

JIX TN
- Ind

T T T T T T
180 170 160 150 110 130 120 110

T
190

T
200

£1 (ppm)

S83. 3C NMR spectra (100 MHz, CDCls) of compound 4ae'
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S84. "H NMR spectra (400 MHz, CDCls) of compound 4af
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S85. 13C NMR spectra (100 MHz, CDCls) of compound 4af
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S86. "H NMR spectra (400 MHz, CDCls) of compound 4ag
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S87. 13C NMR spectra (100 MHz, CDCls) of compound 4ag
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S88. 'H NMR spectra (400 MHz, CDCls) of compound 4ah
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S89. 3C NMR spectra (150 MHz, CDCls) of compound 4ah
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S90. "H NMR spectra (400 MHz, CDCls) of compound 4ai

S89



cl'le
VNéNW
lg'le
€0°6C —

¥9°66 —

1066 —

sveLL —
£5€TL

mwswr/
mm.mmr/
ge'8zL
€582 7
oL'6zL

11621 ]
L9'0€L

68°0¢€ 1
gezel

65°EEL 1
og'gel
17°GEL
66'GEL
€L'9¢l
vz L€L
L9 261

639 VSl
Yy’ SSL

Lo

130

T
180

T
190

T
200

£1 (ppm)

S91. 3C NMR spectra (100 MHz, CDCl;) of compound 4ai

vs'e
09'€
99°'¢
19°€
89'¢
69'¢
ZLy
R4
IRY
\zy
€zv |
STV
St
8v¥ |
€97 |
997 |
897 |
Ra
vLv
SLY
107
081 \
06t
z6v
626\
o/
wmm ]
11291
00/
20,
81721
0Z'2 |
122
€T L
922 1
R
€€°L
GEL
9g.
1€°27
zvL]
ev'L
vyL
Sv'L
952
1672 ]
852
8521
6572
6LL
082
182
z8'L

~I

Br

u\ao.m
z00°¢
)—‘O._‘
u\ao._\
700'L

oL
M\ao.m
=00"}
200'1

0L

Foo

sz
10z
20y
7E0'L
210

0L

Yoo’

Lo

£1 (ppm)

S92. '"H NMR spectra (400 MHz, CDCls) of compound 4
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S93. 3C NMR spectra (100 MHz, CDCls) of compound 4aj
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