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General Considerations. All manipulations were carried out in the absence of water and oxygen using
standard Schlenk techniques or in a UniLab MBraun inert atmosphere drybox under a dinitrogen
atmosphere. All glassware was oven dried for a minimum of 4 h and cooled in an evacuated antechamber
prior to use in the drybox. Solvents were dried and deoxygenated on a glass contour system (Pure Process
Technology, LLC) and stored over 4 A molecular sieves purchased from Fisher Scientific and activated
prior to use. 1-[VsO7(OCHs)12]%, and 5,10-dihydrophenazine (H:Phen), 5,10-dihydrophenazine-d,
(D2Phen) were synthesized according to literature precedent.?* TEMPO was purchased from Sigma-
Aldrich and used as received.

'H NMR spectra were recorded at 500 MHz on a Bruker DPX-500 MHz spectrometer locked on the signal
of deuterated solvents. All chemical shifts were reported relative to the peak of residual H signal in
deuterated solvents. THF-ds and MeCN-d; were purchased from Cambridge Isotope Laboratories and
stored in the drybox over activated 4 A molecular sieves. Infrared (FT-IR, ATR) spectra of complexes were
recorded on a Perkin Elmer Spectrum 3 Fourier Transform Infrared Spectrophotometer and are reported in
wavenumbers (cm™). Electronic absorption measurements were recorded at room temperature in anhydrous
THF inasealed 1 cm quartz cuvette with an Agilent Cary 60 UV-Vis spectrophotometer or an Agilent Cary
3500 spectrophotometer. Kinetic experiments were carried out on an Agilient Cary 3500 UVVis
spectrophotometer with an integrated Peltier temperature control system.

Synthesis Of[(CH3(CH2)7)2N][V606(0H2)(0CH3)12] 2-V606(0H2)I'. In a glovebox, a 20 mL scintillation
vial was charged with 1-V50," (0.217 g, 0.173 mmol) and 10 mL of THF. H,Phen (0.035 g, 0.190 mM)
was added as a solid with stirring overnight (16 hr) to ensure completion. After ~2 hr, the solution turned
from green to maroon. Volatiles were removed in vacuo, and the resulting crude solid was washed with
3:1:0.5 pentane / diethyl ether / THF mixture (3 x 10 mL) and filtered over celite (1 cm). Minimal THF in
the washing mixture aids in removing any unreacted H,Phen. The solid was extracted in THF to yield 2-
Vs0s(OH>)"(0.128 g, 0.101 mmol, 59%). '"H NMR (500 MHz, THF-ds) 6 = 26.04, 3.52, 1.31, 0.90, and
—14.90 ppm. UV-Vis/NIR (THF, 21 °C) A =418 nm (¢ =875 M ' ecm™), 519 nm (¢ = 1137 M ' cm™'), 636
nm (¢ =586 M ecm™), 1010 nm (¢ = 138 M lem™). IR (ATR) O-H = 3429 ¢cm™!, C-H = 3000-2800, V-OMe
=1042cm”, V=0=953 cm™. Elemental analysis was not determined for 2-VsQs(OH2)", as the molecular
weight of the parent cluster (1-Vs07", 1257 g mol™') and the daughter cluster (2-VsOQs(OH2)", 1259 g mol-
1) vary only by two atomic units. Variation between these two molecular weights is well within the error of
the instrument (£ 0.4 %), I-V50;" calculated; C: 42.0%, H: 8.4%, N: 1.1%, 2-Vs0s(OH3)" calculated
41.9%, H: 8.5%, N: 1.1%.* Evidence of successful removal of organic reagents was observed by 'H NMR.

Synthesis of [(CH3(CH>);):N][VsO:(OCHjs)1] 1-VsO7~ by TEMPO reduction. In a glovebox, a 20 mL
scintillation vial was charged with 2-Vs0s(OH3)" (0.003 g, 0.002 mmol), 0.2 mL of a 110 mM stock
solution of TEMPO in THF, and 5 mL of THF. The mixture was stirred for 3 hours to ensure completion.
After ~2, the solution turned from maroon to green. Volatiles were removed in vacuo, the product TEMPO-
H sublimes and can be removed by vacuum. The remaining solid was identified as 1-V50," (0.003 g, 0.002
mmol, >99 %) and matched the previously reported "H NMR spectrum.

Synthesis of [(CH3(CH);):N][VsO:(OCH;s)12] 1-VsO7~ by O reduction. In a glovebox, a 50 mL round
bottom was charged with 2-Vs0s(OH2)" (0.023 g, 0.018 mmol) and 10 mL of THF. The round bottom was
sealed with a septum and removed from the glovebox. Anhydrous O, was bubbled through the mixture with
an outlet needle and was stirred for 2 hours to ensure completion. After ~2 hr, the solution turned from
maroon to green. Volatiles were removed in vacuo. The solid was identified as I-V50, (0.011 g, 0.009
mmol, 50%) and matched the previously reported 'H NMR spectrum.

Synthesis of [(CH3(CH>)7):N][VsOs(OD;)(OCH;)15] 2-VsOs(OD3)". In a glovebox, a 20 mL scintillation
vial was charged with 1-Vs0," (0.158 g, 0.125 mmol) and 10 mL of THF. D,Phen (0.025 g, 0.138 mmol)
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was added as a solid with stirring overnight (16 hr) ensure completion. After ~4 hr, the solution turned from
green to maroon. Volatiles were removed in vacuo, and the resulting crude solid was washed with 3:1:0.5
pentane / diethyl ether / THF mixture (3 x 10 mL) and filtered over celite (1 cm). Minimal THF in the
washing mixture aids in removing any unreacted D,Phen. The solid was extracted in THF to yield 2-
Vs0s(0OD2)" (0.149 g, 0.119 mmol, 94%). 'H NMR (500 MHz, THF-ds) 6 = 25.80, 3.22, 1.31, 0.89, and
—14.43 ppm. IR (ATR) C-H = 3000-2800 (O-H stretch may be obstructed by these bands, V-OMe = 1050
cm’!, V=0 = 947 cm’!. UV-Vis/NIR (THF, 21 °C) A= 445 nm (¢= 1063 M ' cm™'), 510 nm (¢ = 1236
M 1tem™), 620 nm (e =725M ' em™'), 999 nm (¢ = 165 M ! cm!). Elemental analysis was not determined
for 2-Vs0s(0OD2)", as the molecular weight of the parent cluster (I-V50,", 1257 g mol™') and the daughter
cluster (2-Vs0s(0OD2)", 1259 g mol™") vary only by four atomic units. Variation between these two molecular
weights is well within the error of the instrument (£ 0.4 %), I-Vs0;" calculated; C: 42.0%, H: 8.4%, N:
1.1%, 2-Vs04(0OD2)" calculated 41.9%, H: 8.7%, N: 1.1%.* Evidence of successful removal of organic
reagents was observed by '"H NMR.

Determining Order with Respect to TEMPO for the oxidation of 2-V¢Os(OH)": Pseudo-first-order
reaction conditions were used to establish the rate expression for the reaction between 2-V¢0s(OH)'" and
TEMPO were tracked by monitoring the absorbance at 1025 nm over the reaction coordinate. Final TEMPO
concentrations were varied from 5 to 45 mM, with a constant concentration of 0.30 mM 2-VsOs(OH2)"".
Samples of cluster stock solutions in THF were loaded in a long-necked quartz cuvette and sealed with a
rubber septum and electrical tape before removing from the glovebox. In a 1 mL syringe, a sample of
oxidant stock solution (~160 mM in THF) was measured inside the glovebox. After equilibrating to 25 °C
in the spectrophotometer, data acquisition began, and the reductant solution was forcefully injected to
ensure efficient sample mixing. Upon the conclusion of the reaction, the initial rate was obtained by linear
fitting of the reaction from 0 — 15 % completion, where the initial rate is the slope of the linear fit.” Percent
completion is calculated by determining the expected change in absorbance between the reactant and
product clusters. Plotting the initial rates as a function of TEMPO results in a linear relationship, where the
experimentally derived rate constant (kexp) is equal to the slope. (Figure S7-S10).

General procedure for determining activation parameters for the oxidation of 2-V¢Os(OH»)"" by
TEMPO: Eyring analysis was performed by collecting absorbance vs. time data at temperatures between
0 and 25 °C. Reactions were assembled in an analogous fashion to previously run experiments, with
constant oxidant and cluster concentrations of 10.0 and 0.30 mM, run in triplicate (Fig. S11). Conversion
of kobs 10 kexp Was done by dividing kobs by the initial oxidant concentration (10 mM). Plotting In(kexp/7) as
a function of 1/T (temperature converted in K), the linear plot was used to solve for activation parameters
using the below equations where R is the gas constant in units of cal (mol ' K™), kgoi, is Boltzmann's
constant, and /pianck 1S Planck's constant, m is the slope, and 4 is the y-intercept.

k 1
P —m x=+b

lnT T

AH'=m x —R

k
ASt = R X [b — In—22"%

Planck
AG' = AH'—TAS!
Preparation of O; Stock Solution for Kinetic Experiments: In a drybox, a 100 mL round bottom flask
with molecular sieves was charged with 50 mL anhydrous degassed THF and sealed with a rubber septum

and electrical tape. The flask was removed from the drybox and was then placed in a water bath set to 25
°C. The THF was sparged with anhydrous O, for at least 30 min by first passing the gas through a drying
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column filled with activated Drierite. The resulting solution was saturated with O, to a concentration of
10.1 mM.°

Determining Order with Respect to 2-VO4(OH)"": Pseudo-first-order reaction conditions were used to
establish the rate expression for the reaction between 2-V¢Os(OH)! the and 3.0 mM O, were tracked by
monitoring the absorbance at 1025 nm over the reaction coordinate. Final 2-V¢0s(OH>)!" concentrations
were varied from 0.10 to 0.25 mM, with a constant concentration of O, of 3.0 mM. Samples of cluster stock
solutions in THF were loaded in a long-necked quartz cuvette and sealed with a rubber septum and electrical
tape before removing from the glovebox. In a 1 mL syringe, a sample of oxidant stock solution (10.1 mM
in THF) was measured outside of the glovebox and injected into the cuvettes. After equilibrating to 25 °C
in the spectrophotometer, data acquisition began, and the cluster solution was forcefully injected to ensure
efficient sample mixing. Upon the conclusion of the reaction, the initial rate was obtained by linear fitting
of the reaction from 5 — 15 % completion, where the initial rate is the slope of the linear fit.>” A log-log
plot of initial rates and [2-V¢Os(OH;)!"] similarly reveal a first order dependence on 2-V¢Os(OH)!", with
a slope equal to ~1 (Figure S18 — S20).

Determining Order with Respect to O,: Pseudo-first-order reaction conditions were used to establish the
rate expression for the reaction between 2-VOe(OH2)! the excess O, (10 — 27 equivalents) were tracked
by monitoring the absorbance at 1025 nm over the reaction coordinate. Final oxidant concentrations were
varied from 3.0 to 7.7 mM, with a constant concentration of cluster of 0.30 mM. Samples of THF and
cluster were loaded in a long-necked quartz cuvette and sealed with a rubber septum before removing from
the glovebox. In a 1 mL syringe, a sample of oxidant stock solution (10.1 mM in THF), was measured
outside of the glovebox. After equilibrating to 25 °C in the spectrophotometer, data acquisition began, and
the oxidant solution was forcefully injected to ensure efficient sample mixing. Upon the conclusion of the
reaction, the initial rate was obtained by linear fitting of the reaction from 5 — 15 % completion, where the
initial rate is the slope of the linear fit. A log-log plot of initial rates and [O»] similarly reveal a first order
dependence on O,, with a slope equal to ~1 (Figure S21).>’

Uncertainties were determined by performing a linear regression function on data from triplicate trials for
each condition in Microsoft Excel and calculating a 95% confidence interval. The reported errors are the
first significant figure of the difference between the determined slope and the confidence interval maximum.

Determining the Rate of Reactions for 2-VsOs(OH>)"" and [(VsO7(OH)s(TRISN?),]*. The pseudo-first
order rate expressions for ORR by 2-V¢Os(OH2)"" (kobs = 0.04 M s™) and [(V6O7(OH)s(TRISN?)2]% (kobs
=9.6 x 10 M**s") are used to calculate the rate at 10 mM O using the following equations:

Ratey o (omy,rrisNoz), = Kops[02]7%°

Ratey o, on,) = kops[02]*

The rate determining step of ORR from 2-VsOs(OH2)'" and [(VsO7(OH)s(TRISN?),]* are both established
to be 1H'/1e” process, so a probability factor (n) is introduced to normalize the two rates (Rat€normalized) t0
account for the number of H'/e” pairs on the surface of the cluster. For 2-V¢Os(OH2)"" n = 2, and
[(VeO7(OH)s(TRISN2),] n = 6.

Rate

Ratenormatizea = n
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Figure S1. "H NMR of 2-VO4(OH)"" in THF-ds, 21 °C.
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3429 cm! is attributed to the O-H bond stretching frequency of the V-OH..
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Figure S3. EAS of 1-V407' (black dotted trace), 2-Vs0s(OH2)"" (purple trace), and VsOs(MeCN)(OMe);,!-
(blue trace) in THF, 21 °C.
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Figure S7. EAS Scanning kinetics at of 0.30 mM 2-V¢Os(OH3)"" + 10 mM TEMPO in THF, 25 °C. t;=~
1 hr.
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Figure S11. Kinetic traces at 1025 nm of 0.30 mM 2-V¢0s(OHz)!" + 10 mM TEMPO in THF, 0 — 15 °C.
Traces are fit from 0 — 15 % completion of the reaction using a linear regression in Excel. Initial rates are
extracted from the slope of the linear fit, 0.93 <R? < 0.99. Triplicate data sets for temperature are presented.
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Figure S12. Exposure of 2.0 mM 2-VcO6(OH2)"" to 1 atm of O, in THF-ds with hexamethyldisiloxane
(HMDS) as an internal standard (1 mM) to show the formation of H,O (2.47 ppm).
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Figure S13. '"H NMR of 2-VO6(OH>)"" + O, in THF-ds at room temperature, 21 °C.
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Figure S14. '"H NMR of H,O; urea in THF-ds, 21 °C.
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Figure S15. *'P NMR of H,O, urea adduct and PPh; in THF. Referenced to H;POs, 21 °C. Control
experiments reveal that PPh; is unreactive toward O», and previous work from our group has shown that 1-
V0" does not react with PPhs under the described reaction conditions, meaning any OPPhs formation is

solely due to the presence of H,O» produced in situ.?
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Figure S16. 'H NMR of O, and PPh; in THF-ds at 21 °C, revealing only minor formation of OPPh; after

24 h of reaction time.
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Figure S17. 'H NMR of O, 2-VsO4(OHy)", and PPh; in THF-ds at 21 °C. The observed qualitative
conversion of PPh; to OPPh; is indicative of the formation of H>O» in situ.
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Figure S18. EAS Scanning kinetics of 0.30 mM 2-VsO6(OH3)"" + 3 mM O, in THF. 25 °C. No obvious
intermediate is formed unique of the products and reactants by EAS. t;=~ 3 hr.
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Figure S19. EAS Scanning kinetics at 1025 nm of varying concentrations of 2-V¢Os(OH>)"" (0.10 — 0.30
mM) + 3 mM O, in THF, 25 °C. As the H,O, builds up in the reaction, it competes with the O, reduction
causing the kinetic trace to deviate.
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Figure S20. Kinetic traces at 1025 nm of varied concentration 2-V¢OQs(OH3)"" + 3 mM O, in THF, 25 °C.
Traces are fit from 5 — 15 % completion of the reaction using a linear regression in Excel. Initial rates are
extracted from the slope of the linear fit, 0.97 < R? < 0.99. Concentration of cluster is varied from 0.10 —
0.25 mM and is indicated on each plot. Triplicate data sets for each concentration of 2-VOe(OHy)' are
presented.
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Figure S21. Kinetic traces at 1025 nm of 0.30 mM 2-V¢Os(OH2)" + varied concentration of O, in THF, 25
°C. Traces are fit from 5 — 15 % completion of the reaction using a linear regression in Excel. Initial rates
are extracted from the slope of the linear fit, 0.97 < R* < 0.99. Concentration of O is varied from 3.0 — 7.7
mM and is indicated on each plot. Triplicate data sets for each concentration of 2-VsOs(OHz)!" are
presented. *additional baseline correction is applied but ultimately has no effect on the initial rate.
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Figure S22. Log-log plot of the reaction of 0.3 mM 2-V4Os(OH3)"" + XS O, in THF at 25 °C. Order with
respect to O is determined to be 0.9 + 0.2 which is obtained from the slope of the line.
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Figure S23. 'H NMR of VsOs(MeCN)(OMe);»"" in MeCN-d; + 1 atm of O, at 21 °C. The major product of
the reaction is 1-V407'"; asterisks indicate the formation of VsOs(MeCN)?, suggesting that oxidation of a
minority of V¢Os(MeCN)"" occurs via an ET in O,.
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Figure S24. '"H NMR of 2-V406(OD>)"" in THF-ds, 21 °C.

6 4 2 0 2 -4 -6 -8 -10 -12 -

18



——2-V¢04(0D,)"

o mnf/““

Vibrational Band

Compound V=0 (cm') O-R (cm)

2-V504(0D,)"

947 1050

3650 3150

2650 2150 1650 1150 650
Wavenumbers (cm-)

Figure S25. IR of 3-V40s(0OD2)", neat 21 °C.
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Figure S26. EAS of 2-V06(OD>)"" (purple) and 2-V¢Os(OH>)"" (pink) in THF at 21 °C.
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