Supporting Information for

Organophotoelectrocatalytic $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathbf{H}$ alkylation of heteroarenes with unactivated $C\left(s^{3}\right)-H$ compounds

Qinhui Wan, ${ }^{a}$ Xia-Die Wu, ${ }^{\text {a }}$ Zhong-Wei Hou, ${ }^{* a}$ Yongmin Ma, ${ }^{\text {a }}$ and Lei Wang*a,b
${ }^{\text {a }}$ Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
${ }^{\mathrm{b}}$ College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
*E-mail: zhongwei.hou@tzc.edu.cn; leiwang88@hotmail.com

Table of Contents

1. General Considerations S2
2. General Procedure and Setup of Photoelectrosynthesis S2
3. Amplification Synthesis of 3 S3
4. Optimization of the Reaction Conditions S4
5. Faraday Efficiencies of the Reactions S5
6. Unsuccessful C(sp $\left.{ }^{3}\right)-\mathbf{H}$ Substrates S5
7. Characterization Data for the Products S6
8. NMR Spectra for the Products S25

1. General Considerations

Unless otherwise noted, chemicals and materials were purchased from commercial suppliers and used without further purification. All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 or 500 MHz Bruker FT-NMR spectrometer. Data were reported as chemical shifts in ppm relative to TMS (0.00 ppm) or $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$ or DMSO- d_{6} (2.50 ppm) for ${ }^{1} \mathrm{H} \mathrm{NMR}$ and CDCl_{3} (77.2 ppm) or DMSO- d_{6} (40.0 ppm) for ${ }^{13} \mathrm{C}$ NMR. The abbreviations used for explaining the multiplicities were as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. The coupling constants, J, are reported in Hertz (Hz). High resolution mass spectroscopy data of the products were collected on an Agilent Technologies 6540 UHD Accurate-Mass QTOF LC/MS (ESI). X-Ray data were collected on a Bruker SMART APEXII instrument with an $\mathrm{I} \mu \mathrm{S}$ Mo microsource $(\lambda=0.7107 \mathrm{~A})$. Products were purified by flash chromatography on $200-300$ mesh silica gels, SiO_{2}. XINRUI ${ }^{\circledR}$ DJS-292B potentiostat made in China was used as a power supply device. The reticulated vitreous carbon (RVC) anode and Pt plate cathode are commercially available from Gaoss Union in China.

2. General Procedure and Setup of Photoelectrosynthesis

General Procedure for the C-H Alkylation: A 20 mL tube (Figure S1A, height: 9.5 cm , outer diameter: 2.5 cm , inner diameter: 2.2 cm) equipped with a reticulated vitreous carbon (RVC, 100 PPI, $1.2 \mathrm{~cm} \times 0.8 \mathrm{~cm} \times 0.8 \mathrm{~cm}$) anode and a platinum plate $(1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.1 \mathrm{~mm})$ cathode (Figure S1B) was charged with heteroarene (0.3 mmol, 1 equiv.), cyclohexane ($162 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 5$ equiv.), $\mathrm{PQ}(6.2 \mathrm{mg}, 10 \mathrm{~mol} \%$), LiClO_{4} ($32 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv.). Then $\mathrm{MeCN}(6 \mathrm{~mL}$) and TFA ($46 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$, 2 equiv.) were added and the solution was purged with argon for 10 min . The RVC was fixed on a sharpened graphite rod (diameter: 0.6 cm) and the distance between RVC electrode and platinum electrode was about 0.5 cm . The reaction was carried out at room temperature (cooled by water) using a constant current of 2 mA under irradiation with 420-425 nm LEDs (10 W) for 16 h (Figure S1C). The reaction
mixture was concentrated and the residue was chromatographed through silica gel eluting with ethyl acetate/petroleum ether to give the desired product.

Figure S1. Setup of photoelectrosynthesis.

3. Amplification Synthesis of 3

The amplification reaction between $\mathbf{1}$ and $\mathbf{2}$ was performed on a 1.5 mmol scale by utilizing large electrodes. The reaction was irradiated by a 20 W LED emitting at 427 nm for 35 h , ultimately leading to the formation of $\mathbf{3}$ with a yield of 53% (Figure S2).

Figure S2. Amplification synthesis of $\mathbf{3}$.

The amplification synthesis of $\mathbf{3}$ was conducted on 1.5 mmol at 10 mA under irradiation with Kessil PR160L LED lamp ($427 \mathrm{~nm}, 20 \mathrm{~W}$) for 35 h by using a piece of $\operatorname{RVC}(1.2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm})$ as the anode and a Pt plate $(1.5 \mathrm{~cm} \times 1.5 \mathrm{~cm} \times 0.3$ $\mathrm{mm})$ as the cathode. The reaction mixture consisted $\mathbf{1}(198 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 1$ equiv), $\mathbf{2}$
($0.81 \mathrm{~mL}, 7.5 \mathrm{mmol}, 5$ equiv), $\mathrm{PQ}(31 \mathrm{mg}, 10 \mathrm{~mol} \%), \mathrm{LiClO}_{4}(160 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv), TFA ($230 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$, 2 equiv) and $\mathrm{MeCN}(14 \mathrm{~mL})$. When the reaction was completed, the reaction mixture was concentrated under reduced pressure. Then the residue was chromatographed through silica gel eluting with ethyl acetate/petroleum ether to give the desired product $\mathbf{3}$ as a colorless oil ($179 \mathrm{mg}, 53 \%$ yield).

4. Optimization of the Reaction Conditions

Table 1 Optimization of the reaction conditions ${ }^{a}$

 1		 3
Entry	Variation from the standard conditions	Yield (\%) ${ }^{\text {b }}$
1	none	$72^{\text {c }}$
2	PQ ($5 \mathrm{~mol} \%$)	55
3	no PQ	0
4	no electricity	14
5	no light	0
6	TFA (1 equiv.)	65
7	no TFA	21
8	no LiClO_{4}	60
9	2 (3 equiv.)	39
10	under air	32
11	12 h	54
12	$3 \mathrm{~mA}, 12 \mathrm{~h}$	65

${ }^{a}$ Reaction conditions: undivided cell, 4-methylquinoline ($1,0.3 \mathrm{mmol}$), cyclohexane ($2,1.5 \mathrm{mmol}$), PQ (10 $\mathrm{mol} \%)$, TFA (0.6 mmol$), \mathrm{LiClO}_{4}(0.3 \mathrm{mmol}), \mathrm{MeCN}(6 \mathrm{~mL}), 2 \mathrm{~mA}, \mathrm{LEDs}(420-425 \mathrm{~nm}, 10 \mathrm{~W}), \mathrm{rt}, 16 \mathrm{~h}(4$ $\mathrm{F} \cdot \mathrm{mol}^{-1}$). ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{c}$ Isolated yield.
5. Faraday Efficiencies of the Reactions

4, 58\% [29\%]

10, 63\% [32\%]

5, 45\% [23\%]

11, 59% [30\%]

16, 54\% [27\%]

17, 45\% [23\%]

22, 56% [28\%]
23, 32\% [16\%]

6, 48\% [24\%]

12, 62\% [31\%]

7, 46\% [23\%]

13, 48\% [24\%]

18, 56\% [28\%]

19, 31\%(8\%) [20\%]

24, 88\% [44\%]
25, 88\% [44\%]

8, 78\% [39\%]

14, 40\% [20\%]

9, 68\% [34\%]

15, 50% [25\%]

20, 33\% [17\%]
21, 38\% [19\%]

26, 26\% [13\%]
27, 47\% [24\%]

28, 40\% [20\%] from purine

29, 39\% [20\%] from fenazaquin

30, 44\% [22\%] from cinchonidine

31, 29\% [15\%] from quinine

37, 73% [37\%]

38, 50% [25\%]

39, 51% [26\%]

Faraday Efficiencies of the reactions were afford in square brackets.
6. Unsuccessful C(sp $\left.^{\mathbf{3}}\right)-\mathbf{H}$ Substrates

7. Characterization Data for the Products

2-Cyclohexyl-4-methylquinoline (3). ${ }^{1}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $20: 1$ to $10: 1$ as a colorless oil ($48 \mathrm{mg}, 72 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}$, $3 H), 2.03-1.98(m, 2 H), 1.91-1.86(m, 2 H), 1.81-1.76(m, 1 H), 1.67-1.57(m, 2 H)$, $1.52-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,147.8$, 144.4, 129.6, 129.1, 127.2, 125.5, 123.7, 120.4, 47.8, 33.0, 26.7, 26.3, 19.0.

2-Cyclohexyl-4-phenylquinoline (4). ${ }^{1}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a colorless oil ($50 \mathrm{mg}, 58 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68$ (ddd, $J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.43$ (ddd, $J=8.2,6.7$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.5,148.8,148.4,138.7,129.7,129.5,129.3,128.6$, $128.4,125.8,125.7,125.7,120.0,47.8,33.0,26.7,26.3$.

4-Chloro-2-cyclohexylquinoline (5). ${ }^{\mathbf{2}}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a yellow oil ($33 \mathrm{mg}, 45 \%$ yield);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dt}, J=8.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.05-$ 1.99 (m, 2H), 1.93-1.86 (m, 2H), 1.82-1.76 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.40 $(\mathrm{m}, 2 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,148.8,142.8,130.3$, $129.5,126.8,125.3,124.1,120.0,47.6,32.9,26.6,26.2$.

4-Bromo-2-cyclohexylquinoline (6). ${ }^{2}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a colorless oil ($42 \mathrm{mg}, 48 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.71$ (ddd, $J=8.3,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=8.3,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ ($\mathrm{tt}, J=12.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.05-1.99 (m, 2H), 1.93-1.86 (m, 2H), 1.81-1.76 (m, 1H), $1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.9,148.6,134.4,130.3,129.6,127.0,126.7,126.6,123.9,47.4,32.9$, 26.6, 26.1.

6-Bromo-2-cyclohexyl-4-methylquinoline (7). ${ }^{3}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a white solid ($42 \mathrm{mg}, 46 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71$ (dd, $J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{tt}, J=12.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ $(\mathrm{s}, 3 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H})$, $1.51-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,146.5$, 143.5, 132.4, 131.5, 128.5, 126.2, 121.3, 119.4, 47.7, 32.9, 26.7, 26.2, 18.9.

7-Bromo-2-cyclohexyl-4-methylquinoline (8). ${ }^{3}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a white solid ($71 \mathrm{mg}, 78 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54$ (dd, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (d, $J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (tt, $J=11.9,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.66-$ $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $167.8,148.6,144.4,132.0,128.8,125.8,125.2,123.1,121.0,47.6,32.8,26.7,26.2$, 18.9.

4-Cyclohexyl-2-methylquinoline (9). ${ }^{1}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a colorless oil ($46 \mathrm{mg}, 68 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46$ $(\mathrm{m}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.82$ $(\mathrm{m}, 1 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.9$, $153.4,148.3,129.7,128.9,125.4,125.3,123.0,118.4,38.9,33.7,27.1,26.5,25.7$.

4-Cyclohexyl-2-phenylquinoline (10). ${ }^{1}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($54 \mathrm{mg}, 63 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23-8.14(\mathrm{~m}, 3 \mathrm{H}), 8.10(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{tt}$, $J=11.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H})$, $1.68-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5,154.1$,
$148.8,140.5,130.9,129.3,129.2,128.9,127.8,127.7,126.0,123.0,115.7,39.3,33.8$, 27.1, 26.5.

4-Cyclohexyl-6-fluoro-2-methylquinoline (11). ${ }^{4}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a yellow oil (43 mg , 59% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{dd}, J=9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J$ $=10.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=9.2,7.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{tt}, J=7.5$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (s, 3H), 1.99-1.91 (m, 4H), 1.87-1.82 (m, 1H), 1.59-1.48 (m, 4H), $1.37-1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.1 \mathrm{~Hz}\right), 158.3$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=2.5 \mathrm{~Hz}\right), 152.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.5 \mathrm{~Hz}\right), 145.4,132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.1 \mathrm{~Hz}\right), 126.0(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=8.9 \mathrm{~Hz}\right), 119.1,118.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25.4 \mathrm{~Hz}\right), 106.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.5 \mathrm{~Hz}\right), 39.2,33.6$, 27.0, 26.4, 25.5; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.8$.

7-Chloro-4-cyclohexyl-2-methylquinoline (12). ${ }^{5}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a colorless oil (48 mg , 62% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{td}, J=8.4,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.68 (s, 3H), 1.97-1.90 (m, 4H), 1.86-1.81 (m, 1H), 1.54-1.48 (m, 4H), 1.36-1.29 (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,153.5,148.9,134.7,128.6,126.3,124.4$, 123.7, 118.7, 39.0, 33.7, 27.0, 26.4, 25.7.

1-Cyclohexyl-6-methoxyisoquinoline (13). ${ }^{6}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($35 \mathrm{mg}, 48 \%$
yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37$ (d, $J=5.7,1 \mathrm{H}), 7.19(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.93 (s, 3H), 3.52-3.44 (m, 1H), 1.97-1.90 (m, 4H), 1.84-1.77 (m, 3H), 1.55-1.47 (m, 2 H), 1.43-1.35 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,160.3,142.8,138.6$, 126.8, 122.1, 119.6, 118.5, 105.2, 55.6, 41.7, 32.7, 27.0, 26.4.

1-Cyclohexyl-6-methylisoquinoline (14). ${ }^{6}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a brown oil $(27 \mathrm{mg}, 40 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{tt}, J=11.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$, $1.99-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.5,142.2,139.9,136.9,129.2,126.6,124.8,124.7$, 118.6, 41.7, 32.7, 27.1, 26.4, 21.9.

1-Cyclohexyl-6-fluoroisoquinoline (15). ${ }^{6}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless solid (35 mg , 50% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ (dd, $J=9.3$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}$, $4 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.4 \mathrm{~Hz}\right), 162.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=251.7 \mathrm{~Hz}\right), 143.1,138.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $10.2 \mathrm{~Hz}), 128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.5 \mathrm{~Hz}\right), 123.7,118.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.0 \mathrm{~Hz}\right), 117.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $25.0 \mathrm{~Hz}), 110.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.2 \mathrm{~Hz}\right), 41.9,32.8,27.0,26.3 ;{ }^{19} \mathrm{~F}$ NMR $(377 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-109.1$.

6-Chloro-1-cyclohexylisoquinoline (16). ${ }^{6}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a colorless oil ($40 \mathrm{mg}, 54 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (dd, $J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.48 (tt, $J=11.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.47(\mathrm{~m}$, 2 H), 1.42-1.33 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,143.2,137.4,135.8$, $127.9,126.8,126.4,124.6,118.1,41.8,32.7,27.0,26.3$.

6-Bromo-1-cyclohexylisoquinoline (17). ${ }^{6}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($39 \mathrm{mg}, 45 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64 (dd, $J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.49 (tt, $J=11.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.47$ (m, $2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.2,143.2,137.8,130.5$, $129.8,126.8,124.9,124.4,118.0,41.8,32.7,27.0,26.3$.

1-Cyclohexyl-6-methoxy-3-methylisoquinoline (18). The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a colorless oil ($43 \mathrm{mg}, 56 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.20 (s, $1 \mathrm{H}), 7.10(\mathrm{dd}, J=9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{tt}, J=$ $11.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.37(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 164.7,160.2,151.4,139.3,126.7,120.2,118.5$,
116.3, 104.6, 55.5, 41.8, 32.6, 27.0, 26.3, 24.7; ESI HRMS $m / z(M+H)^{+}$calcd 256.1696, obsd 256.1695 .

2-Cyclohexyl-4-phenylpyridine (19). ${ }^{7}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to petroleum ether : ethyl acetate $30: 1$ as a colorless oil ($22 \mathrm{mg}, 31 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=5.1$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{tt}, J=12.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 2 \mathrm{H})$, $1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.2,149.6,149.0,139.0,129.2,129.0,127.2,119.4$, 119.2, 46.9, 33.2, 26.8, 26.3.

2,6-Dicyclohexyl-4-phenylpyridine ($\mathbf{1 9}^{\prime}$). ${ }^{7}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to petroleum ether : ethyl acetate $30: 1$ as a colorless oil ($8 \mathrm{mg}, 8 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.60(\mathrm{~m}, 2 \mathrm{H})$, $7.4-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{tt}, J=11.8,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 4 \mathrm{H})$, $1.88-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.42(\mathrm{~m}, 8 \mathrm{H}), 1.35-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.28-$ $1.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,149.2,139.8,129.1,128.7,127.3$, 116.2, 46.9, 33.4, 26.8, 26.4.

2-Cyclohexyl-4-methyl-6-(p-tolyl)pyridine (20). The title compound was obtained by eluting with petroleum ether : ethyl acetate $20: 1$ to $10: 1$ as a colorless oil $(25 \mathrm{mg}$, 33% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.26$ (s, $1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{tt}, J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}$, $3 H), 2.05-1.97(m, 2 H), 1.89-1.83(m, 2 H), 1.78-1.73(m, 1 H), 1.56-1.52(m, 1 H)$, $1.47-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,156.6$, 147.7, 138.5, 137.5, 129.5, 127.1, 120.0, 118.7, 46.7, 33.2, 26.8, 26.4, 21.5, 21.; ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 266.1903, obsd 266.1903.

2-Cyclohexylbenzo[d]thiazole (21). ${ }^{5}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($24 \mathrm{mg}, 38 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.44$ (ddd, $J=8.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (ddd, $J=8.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.07(\mathrm{tt}, J=$ $11.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.69-$ $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $177.8,153.3,134.7,126.0,124.7,122.7,121.7,43.6,33.6,26.3,26.0$.

6-Chloro-2-cyclohexylbenzo[d]thiazole (22). ${ }^{8}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to petroleum ether : ethyl acetate $30: 1$ as a white solid ($42 \mathrm{mg}, 56 \%$ yield); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{tt}, J=11.7,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H})$, $1.48-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.3,151.8$, $135.9,130.5,126.7,123.4,121.3,43.5,33.5,26.2,25.9$.

H
3-Cyclohexylquinoxalin-2(1H)-one (23). ${ }^{5}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $5: 1$ to $3: 1$ as a white solid ($22 \mathrm{mg}, 32 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.32(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (td, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{tt}, J=11.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.18(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.3,154.6,132.1,131.9,129.8,128.6,123.5,115.6$, 30.5, 26.3, 26.2.

4-Cyclohexyl-3,6-dimethylpyridazine (24). The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a brown oil ($50 \mathrm{mg}, 88 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.57-$ $2.52(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22$ ($\mathrm{m}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4,156.7,145.1,123.4,39.2,32.6,26.6$, 26.0, 22.1, 19.6; ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 191.1543, obsd 191.1543.

2-Cyclohexyl-4,6-dimethylpyrimidine (25). ${ }^{9}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a white solid ($50 \mathrm{mg}, 88 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{tt}, J=11.8,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82(\mathrm{~s}, 6 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.45(\mathrm{~m}$, $2 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,119.9,43.1,31.1,25.4$ (2C).

2-Cyclohexylquinazoline (26). ${ }^{4}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($16 \mathrm{mg}, 26 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.25(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87$ (ddd, $J=8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (ddd, $J=8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{tt}$, $J=11.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H})$, $1.43-1.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 175.2,155.0,150.3,133.4,129.5$, $127.5,124.3,123.5,41.5,32.2,26.7,26.2$.

6-Chloro-8-cyclohexyl-[1,2,4]triazolo[4,3-b]pyridazine (27). The title compound was obtained by eluting with petroleum ether : ethyl acetate $20: 1$ to $10: 1$ as a yellow solid ($33 \mathrm{mg}, 47 \%$ yield); m.p. $=188.5-186.4^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.00$ (s, 1H), $6.89(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.88(\mathrm{~m}$, $2 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{N}} \mathrm{MR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.5,148.2,143.4,138.9,118.0,39.6,31.8,26.2$, 25.9; ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 237.0902, obsd 237.0907.

6-Cyclohexyl-purine (28). ${ }^{\mathbf{1 0}}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a white solid ($24 \mathrm{mg}, 40 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.66(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.48(\mathrm{~m}$, $1 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H})$, $1.38-1.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 150.0,142.1,42.2,31.5,26.4$, 26.1.

4-(4-(tert-Butyl)phenethoxy)-2-cyclohexylquinazoline (29). The title compound was obtained by eluting with petroleum ether : ethyl acetate $10: 1$ to $5: 1$ as a colorless oil $\left(45 \mathrm{mg}, 39 \%\right.$ yield); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12$ (ddd, $J=8.2,1.5,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{dt}, J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{ddd}, J=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{ddd}, J=$ $8.4,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 2 \mathrm{H})$, $1.80-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $170.5,166.7,151.6,149.6,135.2,133.3,129.0,127.4,126.0,125.6,123.5,115.2$, 67.5, 48.1, 34.9, 34.6, 31.9, 31.5, 26.4, 26.3; ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 389.2587, obsd 389.2587.

(R)-(2-Cyclohexylquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methanol (30). ${ }^{1}$ The title compound was obtained by eluting with dichloromethane : methanol $30: 1$ to $10: 1$ as a brown solid ($50 \mathrm{mg}, 44 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86$ $(\mathrm{dd}, J=8.4,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H})$, $6.15(\mathrm{~s}, 1 \mathrm{H}), 5.57-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.56$ $(\mathrm{m}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.06$ $(\mathrm{m}, 3 \mathrm{H}), 1.96-1.73(\mathrm{~m}, 6 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,147.5,145.3,137.2,129.6,129.3,126.7,123.2,121.9,117.6$, $117.2,67.4,61.2,55.6,47.8,45.2,37.2,32.9,32.8,26.9,26.6,26.1,24.4,18.4$.

(R)-(2-Cyclohexyl-6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2yl)methanol (31). ${ }^{1}$ The title compound was obtained by eluting with dichloromethane : methanol 30:1 to dichloromethane : methanol 10:1 as a brown solid ($35 \mathrm{mg}, 29 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (s, $1 \mathrm{H}), 7.02(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.59-5.51$ $(\mathrm{m}, 1 \mathrm{H}), 5.05-5.03(\mathrm{~m}, 1 \mathrm{H}), 5.01-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.55$ (dd, $J=13.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.78(\mathrm{~m}$, $1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.07(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.75(\mathrm{~m}, 7 \mathrm{H}), 1.57(\mathrm{td}, J=12.2,3.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7$, $157.9,143.8,143.6,137.4,131.2,124.0,122.1,117.6,117.2,99.3,67.1,60.7,56.4$, 55.5, 47.5, 44.9, 37.4, 33.1, 33.0, 27.0, 26.7 (2C), 26.2, 24.5, 18.4.

2-Cyclohexylquinoline (32) and 2,4-dicyclohexylquinoline (33). ${ }^{\mathbf{1 1}} \mathbf{3 2 : 3 3}=5: 1$; The title compounds were obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to petroleum ether : ethyl acetate $20: 1$ as a colorless oil ($16 \mathrm{mg}, 26 \%$ yield); Characterization Data for 32: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 8.05 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.31(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,148.0,136.5,129.4,129.2,127.6,127.2$, $125.8,119.8,47.8,33.0,26.7,26.3$.

2-Cyclopentyl-4-methylquinoline (34). ${ }^{1}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($42 \mathrm{mg}, 66 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (ddd, $J=8.4,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.4,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (s, 1H), 3.38-3.29 (m, 1H), $2.68(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 4 \mathrm{H})$, 1.79-1.72 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.1, 147.7, 144.2, 129.7, 129.1, 127.1, 125.5, 123.7, 120.8, 49.0, 33.7, 26.2, 19.0.

2-Cycloheptyl-4-methylquinoline (35). ${ }^{12}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($58 \mathrm{mg}, 83 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 1 \mathrm{H})$, $2.67(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.3,147.5,144.5,129.5,129.1,127.1,125.5,123.7,120.4$, 49.7, 35.2, 28.1, 27.6, 19.0.

2-Cyclooctyl-4-methylquinoline (36). ${ }^{13}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($36 \mathrm{mg}, 47 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 3.14-3.07(\mathrm{~m}, 1 \mathrm{H})$,
$2.67(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 169.0,147.5,144.5,129.6,129.1,127.0,125.5,123.7,120.8$, 47.7, 33.7, 26.7, 26.5, 26.3, 19.0.

2-Cyclododecyl-4-methylquinoline (37). ${ }^{1}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($44 \mathrm{mg}, 46 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 1 \mathrm{H})$, $2.68(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.32(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.9,147.8,144.0,129.7,129.0,127.1,125.4,123.7,121.6$, 43.2, 30.3, 24.1, 24.0, 23.8, 23.5, 23.1, 19.0.

2-(Bicyclo[2.2.1]heptan-2-yl)-4-methylquinoline (38). ${ }^{\mathbf{1}}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($35 \mathrm{mg}, 49 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.92(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 2.99-$ $3.03(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-$ $2.21(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.17$ $(\mathrm{m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.7, 147.6, 143.9, 129.8, 128.9, 126.9, $125.4,123.6,121.7,50.2,43.2,36.9,36.4,36.2,30.7,29.3,18.9$.

2-(1,4-Dioxan-2-yl)-4-methylquinoline (39). ${ }^{\mathbf{1}}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $10: 1$ to $5: 1$ as a yellow oil ($50 \mathrm{mg}, 73 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=8.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (ddd, $J=8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53 (ddd, $J=8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (s, 1H), 4.88 (dd, $J=10.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dd, $J=11.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-$ $3.98(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J=11.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 157.9,147.4,145.3,129.9,129.4,127.7,126.3,123.8$, 119.2, 78.9, 71.2, 67.2, 66.5, 19.0.

(4-Methylquinolin-2-yl)methanol (40). ${ }^{\mathbf{1}}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $5: 1$ to $3: 1$ as a colorless oil ($26 \mathrm{mg}, 50 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 158.7,146.6,145.3,129.6,129.3,127.8,126.3,124.0$, 119.1, 64.1, 19.0.

(4-Methylquinolin-2-yl)methanol (41). ${ }^{\mathbf{1}}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate 5:1 to 3:1 as a colorless oil ($29 \mathrm{mg}, 51 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}$,
$3 \mathrm{H}), 1.56(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7,146.3,145.5$, 129.6, 129.4, 127.6, 126.3, 123.9, 118.7, 68.8, 24.2, 19.1.

2-(Hexan-2-yl)-4-methylquinoline (42). ${ }^{14} \mathrm{C} 2: \mathrm{C} 3=1.9: 1$; The title compound was obtained by eluting with petroleum ether : ethyl acetate 100:1 to petroleum ether : ethyl acetate $50: 1$ as a colorless oil ($15 \mathrm{mg}, 22 \%$ yield); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.08-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H})$, 7.13-7.10 (m, 1H), 3.07-32.98 (m, 0.66 H), 2.86-2.79 (m, 0.34 H$), 2.69(\mathrm{~s}, 3 \mathrm{H})$, $1.85-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 5 \mathrm{H}), 0.88-0.80(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.2,147.8,144.4,129.7,129.1,127.2,125.5,123.8,120.9,120.3,43.1$, $37.9,37.0,30.1,28.7,23.0,21.0,19.1,14.4,14.2$.

4-Methyl-2-(1-methylcyclopentyl)quinoline (43). ${ }^{\mathbf{1}}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate 100:1 to petroleum ether : ethyl acetate $50: 1$ as a Colorless oil ($12 \mathrm{mg}, 17 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{dd}, J$ $=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49 (ddd, $J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 2 \mathrm{H})$, $1.85-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$.
 methylcyclopentyl)quinoline (45). ${ }^{1} \mathbf{4 4 : 4 5}=1: 1$; The title compounds were obtained by eluting with petroleum ether : ethyl acetate 100:1 to petroleum ether : ethyl acetate $50: 1$ as a colorless oil ($15 \mathrm{mg}, 22 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53-8.48$ $(\mathrm{m}, 1 \mathrm{H}), 8.02-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.782-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}$, $1 \mathrm{H}), 3.92-3.83(\mathrm{~m}, 0.5 \mathrm{H}), 3.25-3.23(\mathrm{~m}, 0.5 \mathrm{H}), 2.79-2.78(\mathrm{~m}, 3 \mathrm{H}), 2.42-2.25(\mathrm{~m}$, 2H), 2.19-1.99 (m, 2H), 1.95-1.82 (m, 2H), 1.51-1.35 (m, 2H), 1.09 (d, $J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$.

1-(Cyclohexyloxy)-2,2,6,6-tetramethylpiperidine (46). ${ }^{\mathbf{1 5}}$ The title compound was obtained by eluting with petroleum ether : ethyl acetate $100: 1$ to $50: 1$ as a colorless oil ($10 \mathrm{mg}, 14 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.58$ (tt, $J=9.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07-2.01 (m, 2H), 1.77-1.70(m, 2H), 1.55-1.44 (m, 6H), 1.27-1.09 (m, 18H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 81.9,59.8,40.4,34.6,33.1,26.1,25.3,20.5,17.5 ;$ ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 240.2322, obsd 240.2325 .

10-Cyclohexyl-10-hydroxyphenanthren-9(10H)-one (47). ${ }^{\mathbf{1 6}}$ A 25 mL flask was charged with PQ (62 mg , 1 equiv.), cyclohexane (1 mL). Then MeCN (6 mL) was added and the solution was purged with argon for 10 min . The reaction was carried out at room temperature under irradiation with 420-425 nm LEDs (10 W) for 16 h . The reaction mixture was concentrated and the residue was chromatographed through silica gel. The title compound was obtained by eluting with petroleum ether : ethyl acetate $50: 1$ to $20: 1$ as a colorless oil ($44 \mathrm{mg}, 50 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.85(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.64$
$(\mathrm{m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 1.75-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H})$, 1.37-1.22 (m, 3H), 1.09-0.95 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3$, 139.9, $138.0,135.0,129.9,129.4,128.5,128.4,128.0,127.6,127.0,124.3,123.2,82.4,48.4$, 27.4, 26.5, 26.4, 26.3, 26.0.

References

1. Laze, L.; Quevedo-Flores, B.; Bosque, I.; Gonzalez-Gomez, J. C. Alkanes in Minisci-Type Reaction under Photocatalytic Conditions with Hydrogen Evolution. Org. Lett. 2023, 25, 8541-8546.
2. Zhang, L.; Pfund, B.; Wenger, O.; Hu, X. Oxidase-Type C-H/C-H Coupling Using an Isoquinoline-Derived Organic Photocatalyst. Angew. Chem., Int. Ed. 2022, 61, e202202649.
3. Rio-Rodriguez, R. D.; Fragoso-Jarillo, L.; Alema, J. General Electrochemical Minisci Alkylation of N-Heteroarenes with Alkyl Halides. Chem. Sci. 2022, 13, 65126518.
4. Sutherland, D. R.; Veguillas, M.; Lee, A.-L. Metal-, Photocatalyst-, and Light-Free, Late-Stage C-H Alkylation of Heteroarenes and 1,4-Quinones Using Carboxylic Acids. Org. Lett. 2018, 20, 6863-6867.
5. Liang, X.-A.; Niu, L.; Wang, S.; Lei, A. Visible-Light-Induced C(sp ${ }^{3}$)-H Oxidative Arylation with Heteroarenes. Org. Lett. 2019, 21, 2441-2444.
6. Cai, R.-N.; Qiao, J.; Gan, Q.-B.; Wu, L.-Z. Aliphatic C-H Arylation with Heteroarenes without Photocatalysts. Green Chem. 2023, 25, 8500-2504.
7. Li, D.-S.; Liu, T.; Wu, J. Stop-Flow Microtubing Reactor-Assisted Visible LightInduced Hydrogen-Evolution Cross Coupling of Heteroarenes with $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Bonds. ACS Catal. 2022, 12, 4473-4480.
8. Li, Z.-L.; Jin, L.-K.; Cai, C. Efficient Synthesis of 2-Substituted Azoles: Radical CH Alkylation of Azoles with Dicumyl Peroxide, Methylarenes and Cycloalkanes under Metal-Free Condition. Org. Chem. Front. 2017, 4, 2039-2043.
9. Zhang, X.-Y.; Wang, W.-Z.; Yang, H.; Zhang, B. Visible-Light-Initiated,

Photocatalyst-Free Decarboxylative Coupling of Carboxylic Acids with N-Heterocycles. Org. Lett. 2018, 20, 2686-2690.
10. Liu, G.; Mu, X.; Tian, M.; Zou, C.; Yu, M. Metal-Free, Light-Mediated, SiteSpecific, Radical C6-H Alkylation of Purines with Alcohols Intervened by Oxalates without Catalysts. Eur. J. Org. Chem. 2023, 26, e202201491.
11. Garza-Sanchez, R. A.; Tavakoli, G.; Glorius, F. Visible Light-Mediated Direct Decarboxylative C-H Functionalization of Heteroarenes. ACS Catal. 2017, 7, 40574061.
12. Pan, Z.-T.; Shen, L.-M.; Jian, J.-X.; Tong, Q.-X. Minisci Reaction of Heteroarenes and Unactivated $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Alkanes via a Photogenerated Chlorine Radical. Chem. Common. 2023, 59, 1637-1640.
13. Bhakat, M.; Khatua, B.; Guin, J. Metal-, Photocatalytic Aerobic Coupling of Azaarenes and Alkanes via Nontraditional Cl Generation. Org. Lett. 2022, 24, 52765280.
14. Liu, Y.; Shi, B.; Qi, X.; Lei, A. Time-Resolved EPR Revealed the Formation, Structure, and Reactivity of N -Centered Radicals in an Electrochemical $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Arylation Reaction. J. Am. Chem. Soc. 2021, 143, 20863-20872.
15. Lv, X.-Y.; Martin, R. Cu-Catalyzed C(sp^{3}) Amination of Unactivated Secondary Alkyl Iodides Promoted by Diaryliodonium Salts. Org. Lett. 2023, 25, 3750-3754.
16. Wang, X.-Y.; He, Y.-Q.; Zhou, Y.; Xiao, Q. Photoalkylation/-Arylation of orthoDiketones with Unactivated Organic Halides. Org. Lett. 2023, 25, 3847-3852.

8. NMR Spectra for the Products

Compound 3

Compound 4

Compound 5

Compound 6

Compound 7

Compound 8

Compound 9

Compound 10

Compound 11

${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 12

1111

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 13

 11111
MeO

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 14

Compound 15

Compound 16

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 17

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 18

Compound 19

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N			NONJN			
E	夺		20ํo	NNO	\bigcirc	No
\|	\}	।	- -	\checkmark		\bigcirc

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 19 ${ }^{\text {, }}$

Compound 20

Compound 21

${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 22

Compound 23

${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6})

Compound 24

Compound 25

Compound 26

Compound 27

Compound 28

Compound 29

Compound 30

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 31

Compound 32 and 33

Compound 34

Compound 35

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 36

Compound 37

Compound 38

Compound 39

(

${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 40

Compound 41

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d)

Compound 42

Compound 43

Compound 44 and 45

Compound 46

Compound 47

[^0]${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]: | g | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | -1000

