Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

Support Information

Manganese(I)-catalyzed direct nucleophilic addition of C(sp³)–H bonds to aromatic aldehydes

Hongxin Liu,[†] Tingyu Tang,[†] Bin Li,[†] and Baiquan Wang^{*,†,‡}

[†]State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

[‡]State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

Contents

Table of Contents	S1
1. General procedures	S2-S3
2. Characterization of the products	S3–S19
3. Mechanistic studies	S20-S24
4. X-ray crystallography of complexes 3ha and Mn-1	S25
5. References	S26
6. Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra for compounds	S27-S71

1. General procedures.

All reactions were carried out under argon atmosphere using standard Schlenk technique. ¹H NMR (400 MHz or 600 MHz), ¹³C NMR (101 MHz or 151 MHz), and ¹⁹F (376 M Hz) were recorded on a Bruker AV400 NMR or a Bruker AV600 NMR spectrometer with CDCl3 or DMSO-d₆ as solvent. Chemical shifts of ¹H, ¹³C, and ¹⁹F NMR spectra are reported in parts per million (ppm). The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.16$ ppm; DMSO-*d*₆: $\delta_{\rm H} = 2.50$ ppm, $\delta_{\rm C}$ = 39.43 ppm). All coupling constants (J values) were reported in Hertz (Hz). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), and multiplet (m). Column chromatography was performed on silica gel 200-300 mesh. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm and 365nm). High-resolution mass spectrometry (HRMS) was done on a FTICR-mass spectrometer. Unless otherwise noted below, all other compounds have been reported in the literature or are commercially available without any further purification. 1b, 1e, 1f, 1g, 1j, 1k, 1l, 1o, 1p, and [Mn(CO)₄Br]₂ were synthesized following the literature procedures.^[1,2]

1.1 General procedure for the synthesis of derivatives 3. A mixture of 1 (0.2 mmol, 1.0 equiv), 2 (0.4 mmol, 2.0 equiv), $[Mn(CO)_4Br]_2$ (9.9 mg, 0.02 mmol, 10 mol %), Me₂Zn (1 M in toluene, 0.3 mL, 0.3 mmol, 1.5 equiv), and ZnBr₂ (26.7 mg, 0.2 mmol, 1.0 equiv) were weighed in a Schlenk tube equipped with a stir bar. Dry 1,4-dioxane (2.0 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 12 h under Ar atmosphere. After cooling to room temperature, saturated NH₄Cl aqueous solution was added to the system, and then it was extracted three times with ethyl acetate. After removal of solvents under vacuum the purification was performed by flash column chromatography on silica gel (eluent: EtOAc/petroleum ether = 1/5 to 1/2).

1.2 5.0 mmol of scale for the synthesis of 3aa. A mixture of **1a** (716.0 mg, 5.0 mmol, 1.0 equiv), **2a** (1.0612 g, 10.0 mmol, 2.0 equiv), [Mn(CO)₄Br]₂ (246.9 mg, 0.5 mmol, 10 mol %),

Me₂Zn (1 M in toluene, 7.5 mL, 7.5 mmol, 1.5 equiv), and ZnBr₂ (1.126 g, 5 mmol, 1.0 equiv) were weighed in a Schlenk tube equipped with a stir bar. Dry 1,4-dioxane (37.5 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 12 h under Ar atmosphere. After cooling to room temperature, saturated NH₄Cl aqueous solution was added to the system, and then it was extracted three times with ethyl acetate. After removal of solvents under vacuum the purification was performed by flash column chromatography on silica gel (eluent: EtOAc/petroleum ether = 1/5 to 1/2). The product **3aa** (1.0843 g, 87%) was obtained as a white solid.

2. Characterization of the products.

1-Phenyl-2-(quinolin-8-yl)ethan-1-ol (3aa). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 46.8 mg, 94%; mp 65–67 °C. ¹H NMR (CDCl₃, 600 MHz): δ 8.83 (s, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.40 (d, *J* = 7.3 Hz, 2H), 7.37 – 7.31 (m, 3H), 7.28 (t, *J* = 7.3 Hz, 2H), 7.24 – 7.16 (m, 1H), 6.77 (s, 1H), 5.17 – 5.05 (m, 1H), 3.68 (dd, *J* = 13.4, 7.8 Hz, 1H), 3.54 (d, *J* = 13.9 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 149.1, 147.2, 145.4, 137.8, 137.2, 131.4, 128.6, 128.1, 126.8, 126.8, 126.6, 125.7, 121.0, 75.3, 44.0. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₇H₁₆NO, 250.1227; found, 250.1225.

2-(Quinolin-8-yl)-1-(p-tolyl)ethan-1-ol (3ab). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 42.6 mg, 81%; mp 63–67 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.94 (dd, J = 4.2, 1.7 Hz, 1H), 8.23 (dd, J = 8.3, 1.6 Hz, 1H), 7.78 – 7.70 (m, 1H), 7.51 – 7.43 (m, 3H), 7.32 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 6.72 (br, 1H),

5.09 (dd, *J* = 8.3, 2.2 Hz, 1H), 3.73 (dd, *J* = 14.0, 8.4 Hz, 1H), 3.53 (dd, *J* = 14.0, 2.5 Hz, 1H), 2.34 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.3, 147.4, 142.7, 138.2, 137.5, 136.5, 131.7, 129.0, 128.8, 127.0, 126.9, 125.8, 121.2, 75.5, 44.3, 21.3. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₈NO, 264.1383; found, 264.1384.

I-(4-Fluorophenyl)-2-(quinolin-8-yl)ethan-1-ol (*3ac*). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 47.5 mg, 89%; mp 85–90 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.93 (d, *J* = 3.3 Hz, 1H), 8.22 (d, *J* = 8.2 Hz, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.52 – 7.31 (m, 5H), 6.98 (t, *J* = 8.4 Hz, 2H), 6.86 (s, 1H), 5.14 (d, *J* = 7.2 Hz, 1H), 3.66 (dd, *J* = 14.0, 7.6 Hz, 1H), 3.58 (d, *J* = 13.6 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 162.0 (d, *J* = 244.0 Hz), 149.4, 147.4, 141.3, 137.8, 137.5, 131.8, 128.8, 127.4 (d, *J* = 7.9 Hz), 127.0 (d, *J* = 20.7 Hz), 121.3, 115.1, 114.9, 74.9, 44.2. ¹⁹F NMR (CDCl₃, 376 MHz) δ -116.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅FNO, 268.1132; found, 268.1136.

1-(4-Chlorophenyl)-2-(quinolin-8-yl)ethan-1-ol (3ad). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 55.0 mg, 97%; mp 101-105 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.89 (d, *J* = 3.2 Hz, 1H), 8.19 (d, *J* = 8.2 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.47 – 7.34 (m, 3H), 7.30 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.00 (br, 1H), 5.12 (s, 1H), 3.67 – 3.52 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.3, 147.2, 144.0, 137.5, 132.4, 131.7, 128.8, 128.6, 128.3, 127.3, 127.1, 126.8, 121.2, 74.8, 44.0. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅CINO, 284.0873; found, 284.0832.

1-(4-Bromophenyl)-2-(quinolin-8-yl)ethan-1-ol (*3ae*). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 60.6 mg, 80%; mp 94-97 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.89 (dd, *J* = 4.1, 1.4 Hz, 1H), 8.20 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.75 – 7.66 (m, 1H), 7.46 – 7.40 (m, 3H), 7.39 (d, *J* = 2.3 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.02 (br, 1H), 5.10 (dd, *J* = 6.4, 2.6 Hz, 1H), 3.67 – 3.52 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.3, 147.2, 144.5, 137.5, 131.8, 131.2, 128.8, 128.6, 127.7, 127.1, 126.9, 121.2, 120.6, 74.8, 44.0. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅BrNO, 328.0332; found, 328.0331.

1-(4-Iodophenyl)-2-(quinolin-8-yl)ethan-1-ol (3af). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 66.7 mg, 88%; mp 78-82 °C. ¹H NMR (CDCl₃, 600 MHz): δ 8.89 (d, *J* = 3.0 Hz, 1H), 8.20 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.49 – 7.40 (m, 2H), 7.37 (d, *J* = 6.8 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.01 (br, 1H), 5.08 (d, *J* = 5.4 Hz, 1H), 3.73 – 3.39 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 149.3, 147.2, 145.2, 137.6, 137.5, 137.2, 131.8, 128.82, 128.78, 128.0, 127.1, 126.9, 121.2, 74.9, 44.0. RMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅INO, 376.0193; found, 376.0192.

1-(4-(tert-Butyl)phenyl)-2-(quinolin-8-yl)ethan-1-ol (3ag). The title compound was

isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/10), 43.7 mg, 72%. ¹H NMR (CDCl₃, 400 MHz): δ 8.91 (d, *J* = 2.8 Hz, 1H), 8.19 (d, *J* = 9.3 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.51 – 7.33 (m, 7H), 6.60 (br, 1H), 5.07 (d, *J* = 7.3 Hz, 1H), 3.77 (dd, *J* = 14.0, 8.8 Hz, 1H), 3.48 (dd, *J* = 14.0, 1.7 Hz, 1H), 1.32 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.9, 149.3, 147.4, 142.7, 138.4, 137.3, 131.5, 128.8, 127.0, 126.9, 125.6, 125.2, 121.2, 75.6, 44.2, 34.6, 31.5. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₂₄NO, 306.1853; found, 306.1849.

1-([1,1'-Biphenyl]-4-yl)-2-(quinolin-8-yl)ethan-1-ol (3*ah*). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 51.9 mg, 80%; mp 61-64 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.90 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.17 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.69 (dd, *J* = 7.4, 2.0 Hz, 1H), 7.57 (dd, *J* = 13.6, 7.8 Hz, 5H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.43 (s, 2H), 7.41 (d, *J* = 2.9 Hz, 2H), 7.32 (d, *J* = 7.3 Hz, 1H), 6.89 (br, 1H), 5.17 (dd, *J* = 8.1, 2.3 Hz, 1H), 3.75 (dd, *J* = 14.1, 8.2 Hz, 1H), 3.58 (dd, *J* = 14.1, 2.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.3, 147.3, 144.6, 141.2, 139.8, 137.9, 137.5, 131.7, 128.8, 127.5, 127.4, 127.3, 127.1, 127.0, 126.9, 126.3, 121.2, 75.3, 44.1. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₃H₂₀NO, 326.1540; found, 326.1539.

1-(4-Methoxyphenyl)-2-(quinolin-8-yl)ethan-1-ol (3ai). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 35.8 mg, 64%. ¹H NMR (CDCl₃, 400 MHz): δ 8.93 (d, *J* = 2.8 Hz, 1H), 8.25 – 8.17 (m, 1H), 7.72 (dd, *J* = 6.6, 3.0 Hz, 1H), 7.50 – 7.41 (m, 3H), 7.34 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 6.66 (br, 1H), 5.10 (d, *J* = 6.6 Hz, 1H), 3.80 (s, 3H), 3.71 (dd, *J* = 14.0, 8.1 Hz, 1H), 3.54 (dd, *J* = 14.0, 2.0 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 158.6, 149.2, 147.2, 138.0, 137.7, 137.4, 131.6, 128.7, 127.0, 126.9, 126.8, 121.1, 113.9, 113.6, 55.3, 44.2. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₈NO₂, 280.1332; found, 280.1329.

I-(4-(Methylthio)phenyl)-2-(quinolin-8-yl)ethan-1-ol (*3aj*). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 36.2 mg, 61%. ¹H NMR (CDCl₃, 600 MHz): δ 8.97 – 8.92 (m, 1H), 8.24 (d, *J* = 7.1 Hz, 1H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.52 – 7.38 (m, 3H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 6.79 (s, 1H), 5.11 (d, *J* = 6.3 Hz, 1H), 3.69 (dd, *J* = 13.8, 8.1 Hz, 1H), 3.57 (d, *J* = 13.8 Hz, 1H), 2.47 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 149.3, 142.7, 137.9, 137.5, 136.6, 131.8, 128.8, 127.7, 127.0, 126.9, 126.8, 126.5, 121.2, 75.1, 44.1, 16.3. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₈NOS, 296.1104; found, 296.1106.

2-(Quinolin-8-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-ol (3ak). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 75.5 mg, 96%; mp 99–102 °C. ¹H NMR (CDCl₃, 600 MHz): δ 8.95 – 8.87 (m, 1H), 8.24 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.63 – 7.59 (m, 1H), 7.55 (d, *J* = 7.8 Hz, 2H), 7.49 (dd, *J* = 7.9, 3.8 Hz, 1H), 7.47 – 7.39 (m, 4H), 7.32 (d, *J* = 6.8 Hz, 1H), 5.21 (d, *J* = 5.6 Hz, 1H), 3.66 (d, *J* = 14.0 Hz, 1H), 3.59 (dd, *J* = 14.0, 7.2 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.5, 149.3, 147.2, 137.6, 137.3, 131.8, 129.0, 128.8, 127.3, 126.9, 126.2, 125.2 (q, *J* = 3.7 Hz). 121.3, 74.9, 44.0. ¹⁹F NMR (CDCl₃, 376 MHz): δ -62.2. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₈H₁₅F₃NO, 318.1100; found, 318.1098.

4-(1-Hydroxy-2-(quinolin-8-yl)ethyl)benzonitrile (3al). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 35.1 mg, 61%; mp 84–86 °C. ¹H NMR (CDCl₃, 600 MHz): δ 8.93 – 8.89 (m, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.48 (dd, *J* = 8.1, 4.2 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 7.7 Hz, 1H), 7.32 (d, *J* = 6.8 Hz, 1H), 5.20 (d, *J* = 5.6 Hz, 1H), 3.65 (d, *J* = 14.0 Hz, 1H), 3.58 (dd, *J* = 14.2, 7.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 150.9, 149.3, 147.1, 137.6, 136.9, 132.1, 131.8, 128.8, 127.3, 126.9, 126.6, 121.3, 119.2, 110.5, 74.7, 43.7. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₅N₂O, 275.1179; found, 275.1177.

2-(*Quinolin-8-yl*)-1-(*m-tolyl*)*ethan-1-ol* (*3am*). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 42.4 mg, 81%. ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.98 (dd, *J* = 4.0, 1.4 Hz, 1H), 8.35 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.82 (d, *J* = 7.4 Hz, 1H), 7.54 (dd, *J* = 8.3, 4.5 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.22 – 7.11 (m, 3H), 7.02 (d, *J* = 7.0 Hz, 1H), 5.38 (d, *J* = 4.8 Hz, 1H), 5.02 (dt, *J* = 8.9, 4.7 Hz, 1H), 3.61 (dd, *J* = 13.1, 4.7 Hz, 1H), 3.43 (dd, *J* = 13.3, 8.6 Hz, 1H), 2.29 (s, 3H). ¹³C{¹H} NMR (DMSO-*d*₆, 101 MHz): δ 149.5, 146.5, 146.3, 137.5, 136.8, 136.5, 130.7, 128.0, 127.8, 127.2, 126.5, 126.4, 126.1, 123.0, 121.1, 72.8, 41.8, 21.2. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₈NO, 264.1383; found, 264.1379.

1-(3-Fluorophenyl)-2-(quinolin-8-yl)ethan-1-ol (3an). The title compound was isolated as

a white solid (eluent: EtOAc/petroleum ether = 1/10), 43.8 mg, 82%; mp 65-69 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.89 (d, *J* = 2.9 Hz, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 7.69 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.47 – 7.34 (m, 3H), 7.26 – 7.19 (m, 1H), 7.17 – 7.07 (m, 2H), 6.92 – 6.84 (m, 1H), 5.12 (d, *J* = 5.9 Hz, 1H), 3.75 – 3.46 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 163.0 (d, *J* = 245.1 Hz), 149.3, 148.3 (d, *J* = 6.5 Hz), 147.2, 137.53, 137.48, 131.8, 129.6 (d, *J* = 8.1 Hz), 128.8, 127.1, 126.9, 121.4 (d, *J* = 2.6 Hz), 121.2, 113.7 (d, *J* = 21.2 Hz), 112.8 (d, *J* = 21.9 Hz), 74.8, 44.0. ¹⁹F NMR (CDCl₃, 376 MHz): δ -113.6. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₇H₁₅FNO, 268.1132; found, 268.1128.

1-(3-Chlorophenyl)-2-(quinolin-8-yl)ethan-1-ol (3ao). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/10), 53.4 mg, 94%. ¹H NMR (CDCl₃, 400 MHz): δ 8.92 – 8.87 (m, 1H), 8.19 (d, *J* = 8.2 Hz, 1H), 7.70 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.47 – 7.39 (m, 4H), 7.29 – 7.15 (m, 4H), 5.09 (d, *J* = 6.8 Hz, 1H), 3.65 (dd, *J* = 14.0, 7.6 Hz, 1H), 3.54 (d, *J* = 14.0 Hz, 1H). ¹³C {¹H} NMR (CDCl₃, 101 MHz): δ 149.2, 147.6, 147.1, 137.5, 137.4, 134.1, 131.7, 129.5, 128.8, 127.14, 127.05, 126.9, 126.1, 124.0, 121.2, 74.9, 44.0. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅ClNO, 284.0837; found, 284.0832.

I-(3-Bromophenyl)-2-(quinolin-8-yl)ethan-1-ol (*3ap*). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/10 to 1/2), 58.7 mg, 89%. ¹H NMR (CDCl₃, 400 MHz): δ 8.94 – 8.88 (m, 1H), 8.21 (d, *J* = 8.2 Hz, 1H), 7.72 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.59 (s, 1H), 7.49 – 7.41 (m, 3H), 7.38 – 7.27 (m, 2H), 7.17 (t, *J* = 7.7 Hz, 1H), 5.10 (d, *J* = 6.9 Hz, 1H), 3.66 (dd, *J* = 13.9, 7.7 Hz, 1H), 3.55 (d, *J* = 14.0 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.3, 147.9, 147.1, 137.5, 137.4, 131.7, 130.0, 129.8, 129.0, 128.8, 127.2, 126.9, 124.5, 122.4, 121.2, 74.8, 44.0. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅BrNO, 328.0332; found, 328.0328.

I-(3-Methoxyphenyl)-2-(quinolin-8-yl)ethan-1-ol (*3aq*). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/2 to 1/1), 25.8 mg, 46%. ¹H NMR (CDCl₃, 600 MHz): δ 8.99 – 8.87 (m, 1H), 8.23 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.7 Hz, 1H), 7.55 – 7.40 (m, 3H), 7.24 (t, *J* = 7.8 Hz, 1H), 7.00 (d, *J* = 7.9 Hz, 2H), 6.93 (s, 1H), 6.78 (d, *J* = 7.4 Hz, 1H), 5.12 (d, *J* = 7.1 Hz, 1H), 3.77 (s, 3H), 3.72 (dd, *J* = 14.1, 8.2 Hz, 1H), 3.58 (d, *J* = 13.8 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 159.7, 149.2, 147.3, 138.0, 137.6, 131.8, 129.7, 129.3, 128.8, 127.02, 126.97, 121.2, 118.3, 112.8, 111.2, 75.5, 55.3, 44.2. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C1₈H₁₇NO₂, 280.1332; found, 280.1330.

2-(Quinolin-8-yl)-1-(o-tolyl)ethan-1-ol (3ar). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 36.0 mg, 68%; mp 102–104 °C. ¹H NMR (CDCl₃, 600 MHz): δ 9.11 – 8.89 (m, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 7.76 – 7.73 (m, 1H), 7.62 (d, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 5.8 Hz, 3H), 7.23 – 7.19 (m, 1H), 7.18 – 7.15 (m, 2H), 6.68 (s, 1H), 5.41 – 5.27 (m, 1H), 3.70 (dd, *J* = 14.2, 8.5 Hz, 1H), 3.46 (d, *J* = 14.2 Hz, 1H), 2.45 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 149.4, 147.4, 143.7, 138.5, 137.4, 134.0, 131.3, 130.2, 128.8, 127.0, 126.9, 126.8, 126.1, 125.5, 121.3, 72.2, 42.9, 19.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₈NO, 264.1383; found, 264.1380.

1-(2-Fluorophenyl)-2-(quinolin-8-yl)ethan-1-ol (3as). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 43.8 mg, 82%; mp 88–89 °C. ¹H

NMR (CDCl₃, 600 MHz): δ 8.98 – 8.89 (m, 1H), 8.21 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.51 – 7.38 (m, 4H), 7.17 (q, J = 6.4 Hz, 1H), 7.05 – 6.97 (m, 2H), 5.46 (d, J = 6.6 Hz, 1H), 3.73 (dd, J = 14.2, 7.5 Hz, 1H), 3.66 (d, J = 13.6 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 159.68 (d, J = 244.6 Hz), 149.2, 147.3, 137.9, 137.5, 132.4 (d, J = 13.1 Hz), 131.8, 128.7, 128.2 (d, J = 8.2 Hz), 127.5 (d, J = 4.5 Hz), 127.0, 126.9, 123.9 (d, J = 2.9 Hz), 121.2, 114.8 (d, J = 21.6 Hz), 69.5, 42.4. ¹⁹F NMR (CDCl₃, 376 MHz) δ -119.7. δ HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₅FNO, 268.1132; found, 268.1131.

1-(2-Chlorophenyl)-2-(quinolin-8-yl)ethan-1-ol (3at). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 51.9 mg, 92%. ¹H NMR (CDCl₃, 400 MHz): ¹H NMR (600 MHz, Chloroform-*d*) δ 8.96 – 8.90 (m, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.56 (d, *J* = 7.0 Hz, 1H), 7.52 – 7.40 (m, 4H), 7.35 (d, *J* = 7.4 Hz, 1H), 7.16 (dt, *J* = 15.2, 6.9 Hz, 2H), 5.46 (d, *J* = 7.0 Hz, 1H), 3.72 (dd, *J* = 14.2, 7.6 Hz, 1H), 3.61 (d, *J* = 14.2 Hz, 1H). ¹³C {¹H} NMR (CDCl₃, 151 MHz): δ 149.2, 147.2, 142.7, 138.0, 137.5, 131.6, 131.4, 129.1, 128.7, 127.9, 127.4, 126.93, 126.88, 126.7, 121.1, 72.3, 41.7. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅ClNO, 284.0837; found, 284.0837.

1-(2-Bromophenyl)-2-(quinolin-8-yl)ethan-1-ol (3au). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 58.8 mg, 90%; mp 84–86 °C. ¹H NMR (CDCl₃, 600 MHz): δ 8.97 – 8.89 (m, 1H), 8.23 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.54 (d, *J* = 7.7 Hz, 2H), 7.50 – 7.42 (m, 2H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.08 (t, *J* = 7.3 Hz, 1H), 5.39 (d, *J* = 7.3 Hz, 1H), 3.72 (dd, *J* = 14.3, 7.9 Hz, 1H), 3.59 (d, *J* = 14.2 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 149.2, 147.3, 144.2, 138.0, 137.6, 132.5, 131.8, 128.8, 128.4, 127.8, 127.4, 127.04, 126.99, 121.7, 121.2, 74.5, 41.9. HRMS (ESI *m/z*: [M+H]⁺ calcd for C₁₇H₁₅BrNO, 328.0332; found, 328.0329.

I-(2,4-Dichlorophenyl)-2-(quinolin-8-yl)ethan-1-ol (*3av*). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 57.4 mg, 90%; mp 94–97 °C. ¹H NMR (CDCl₃, 600 MHz): δ 8.97 – 8.90 (m, 1H), 8.24 (d, *J* = 8.0 Hz, 1H), 7.75 – 7.70 (m, 1H), 7.63 (br, 1H), 7.49 (dd, *J* = 8.1, 4.2 Hz, 1H), 7.47 – 7.41 (m, 3H), 7.36 (s, 1H), 7.12 (d, *J* = 7.8 Hz, 1H), 5.41 (d, *J* = 6.0 Hz, 1H), 3.81 – 3.49 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 149.2, 147.2, 141.4, 137.7, 137.6, 132.8, 132.0, 131.8, 128.9, 128.8, 128.6, 127.1, 127.1, 121.3, 72.0, 41.5. HRMS (ESI) *m/z*: [M+H]⁺calcd for C₁₇H₁₄Cl₂NO, 318.0447; found, 318.0451.

1-(Naphthalen-2-yl)-2-(quinolin-8-yl)ethan-1-ol (3aw). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 48.7 mg, 81%; mp 99–103 °C. ¹H NMR (CDCl₃, 600 MHz): δ 9.03 – 8.91 (m, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 7.90 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 3H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 1H), 7.51 – 7.38 (m, 5H), 7.02 (s, 1H), 5.32 (d, *J* = 7.1 Hz, 1H), 3.81 (dd, *J* = 14.1, 8.2 Hz, 1H), 3.68 (d, *J* = 13.7 Hz, 1H). ¹³C {¹H} NMR (CDCl₃, 151 MHz): δ 149.3, 147.4, 143.0, 138.0, 137.5, 133.5, 132.9, 131.7, 128.8, 128.1, 127.9, 127.7, 127.0, 126.9, 125.9, 125.5, 124.5, 124.3, 121.2, 75.7, 44.1. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₁₈NO, 300.1383; found, 300.1386.

1-(Furan-2-yl)-2-(quinolin-8-yl)ethan-1-ol (3ax). The title compound was isolated as a

colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 34.8 mg, 73%. ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.94 (dd, J = 4.1, 1.6 Hz, 1H), 8.34 (dd, J = 8.2, 1.8 Hz, 1H), 7.94 – 7.69 (m, 1H), 7.59 – 7.40 (m, 4H), 6.34 (dd, J = 3.0, 1.9 Hz, 1H), 6.23 (d, J = 3.1 Hz, 1H), 5.47 (d, J = 5.0 Hz, 1H), 5.05 (s, 1H), 3.88 – 3.45 (m, 2H). ¹³C{¹H} NMR (DMSO-*d*₆, 101 MHz): δ 158.0, 149.6, 146.4, 141.5, 136.6, 136.5, 130.7, 127.9, 126.6, 126.1, 121.2, 110.1, 105.5, 66.3, 38.1. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₄NO₂, 240.1019; found, 240.1020.

2-(*Quinolin-8-yl*)-1-(thiophen-2-yl)ethan-1-ol (3ay). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 42.5 mg, 79%. ¹H NMR (CDCl₃, 600 MHz): δ 8.96 – 8.85 (m, 1H), 8.21 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.51 (d, *J* = 6.7 Hz, 1H), 7.49 – 7.41 (m, 2H), 7.17 (d, *J* = 4.6 Hz, 1H), 7.02 – 6.90 (m, 2H), 5.39 (d, *J* = 7.2 Hz, 1H), 3.81 (dd, *J* = 14.1, 8.2 Hz, 1H), 3.67 (d, *J* = 13.9 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 150.2, 149.3, 147.2, 137.5, 131.9, 128.8, 127.2, 126.9, 126.6, 123.8, 122.6, 121.2, 71.8, 44.5. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₅H₁₄NOS, 256.0791; found, 256.0795.

4-Phenyl-1-(quinolin-8-yl)but-3-en-2-ol (*3az*). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 24.7 mg, 45%. ¹H NMR (CDCl₃, 400 MHz): δ 8.91 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.24 – 8.18 (m, 1H), 7.77 – 7.71 (m, 1H), 7.60 (d, *J* = 6.8 Hz, 1H), 7.51 (d, *J* = 7.7 Hz, 1H), 7.45 (dd, *J* = 8.3, 4.3 Hz, 1H), 7.35 (d, *J* = 7.2 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.20 (t, *J* = 7.2 Hz, 1H), 6.68 (d, *J* = 15.8 Hz, 1H), 6.33 (dd, *J* = 15.8, 6.1 Hz, 1H), 4.73 (q, *J* = 5.3 Hz, 1H), 3.61 – 3.55 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.3, 147.3, 137.9, 137.4, 137.3, 133.1, 131.7, 129.3, 128.9, 128.6, 127.3, 127.1, 126.9, 126.6, 121.2, 73.6, 42.0. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₉H₁₈NO, 276.1383; found,276.1386.

2-(5-Methylquinolin-8-yl)-1-phenylethan-1-ol (3ba). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 40.6 mg, 77%. ¹H NMR (CDCl₃, 400 MHz): δ 8.95 – 8.89 (m, 1H), 8.36 (d, *J* = 8.4 Hz, 1H), 7.46 (dd, *J* = 8.5, 3.9 Hz, 1H), 7.41 (d, *J* = 7.4 Hz, 2H), 7.34 – 7.28 (m, 3H), 7.26 – 7.21 (m, 2H), 6.97 (br, 1H), 5.11 (d, *J* = 6.4 Hz, 1H), 3.66 (dd, *J* = 13.7, 7.7 Hz, 1H), 3.52 (d, *J* = 13.9 Hz, 1H), 2.64 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 148.7, 147.6, 145.7, 136.0, 133.8, 133.6, 131.3, 128.2, 128.1, 127.3, 126.9, 125.9, 120.7, 75.7, 44.2, 18.6. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₈NO, 264.1383; found, 264.1380.

2-(5-Chloroquinolin-8-yl)-1-phenylethan-1-ol (3ca). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 39.1 mg, 69%; mp 70–72 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.94 (d, J = 3.0 Hz, 1H), 8.64 – 8.58 (m, 1H), 7.53 (dd, J = 8.5, 4.1 Hz, 1H), 7.47 (d, J = 7.7 Hz, 1H), 7.36 (d, J = 7.3 Hz, 2H), 7.30 (t, J = 7.8 Hz, 3H), 7.22 (d, J = 7.1 Hz, 1H), 6.13 (br, 1H), 5.16 – 5.07 (m, 1H), 3.71 – 3.48 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.9, 147.9, 145.1, 137.2, 134.1, 131.2, 130.0, 128.3, 127.1, 126.75, 126.66, 125.8, 121.9, 75.3, 43.6. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₇H₁₅ClNO, 284.0837; found, 284.0832.

2-(5-Bromoquinolin-8-yl)-1-phenylethan-1-ol (3da). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/15 to 1/10), 36.2 mg, 55%; mp 78-81 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.93 (d, J = 3.0 Hz, 1H), 8.59 (d, J = 8.5 Hz, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.54 (dd, J = 8.5, 3.8 Hz, 1H), 7.37 (d, J = 7.3 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.24 (dd, J = 7.4, 3.6 Hz, 2H), 6.08 (br, 1H), 5.29 – 5.03 (m, 1H), 3.76 – 3.49 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 150.0, 148.0, 145.1, 138.0, 136.8, 131.8, 130.5, 128.3, 128.0, 127.1, 125.8, 122.3, 120.4, 76.6, 43.6. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₇H₁₅BrNO,328.0332; found, 328.0333.

2-(5-Methoxyquinolin-8-yl)-1-phenylethan-1-ol (3ea). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 46.1 mg, 8.%. ¹H NMR (CDCl₃, 400 MHz): δ 8.89 (d, J = 4.0 Hz, 1H), 8.62 (d, J = 8.4 Hz, 1H), 7.41 (dd, J = 8.3, 3.8 Hz, 3H), 7.35 – 7.27 (m, 3H), 7.22 (d, J = 8.2 Hz, 1H), 6.92 (br, 1H), 6.71 (d, J = 7.9 Hz, 1H), 5.09 (d, J = 6.3 Hz, 1H), 3.94 (s, 3H), 3.59 (dd, J = 14.2, 8.0 Hz, 1H), 3.47 (dd, J = 14.2, 1.9 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 154.1, 149.5, 147.8, 145.7, 132.1, 131.4, 129.6, 128.2, 126.9, 125.9, 121.2, 120.2, 104.3, 75.7, 55.8, 43.8. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₈NO₂, 280.1332; found, 280.1330.

1-Phenyl-2-(5-(trifluoromethyl)quinolin-8-yl)ethan-1-ol (*3fa*). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 37.1 mg, 50%; mp 118-120 °C. ¹H NMR (CDCl₃, 400 MHz): δ 9.00 (s, 1H), 8.55 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 7.4 Hz, 1H), 7.58 (dd, *J* = 8.6, 3.1 Hz, 1H), 7.44 (d, *J* = 7.4 Hz, 1H), 7.39 (d, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.3 Hz, 2H), 7.25 (d, *J* = 6.3 Hz, 1H), 5.95 (br, 1H), 5.17 (s, 1H), 3.80 – 3.58 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 151 MHz): δ 149.9, 147.4, 144.8, 143.0, 133.7, 129.8, 128.3, 127.2, 125.7, 125.2 (q, *J* = 5.5 Hz), 125.0, 124.8, δ 124.1 (q, *J* = 273.5 Hz), 122.3, 75.0, 43.7. ¹⁹F NMR

(CDCl₃, 376 MHz) δ -59.0. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₈H₁₅F₃NO, 318.1100; found, 318.1095.

2-(6-Methylquinolin-8-yl)-1-phenylethan-1-ol (**3ga**). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 41.3 mg, 78%. ¹H NMR (CDCl₃, 400 MHz): δ 8.93 – 8.78 (m, 1H), 8.09 (d, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 9.2 Hz, 3H), 7.39 (dd, *J* = 8.2, 4.1 Hz, 1H), 7.32 (t, *J* = 7.3 Hz, 2H), 7.28 (s, 1H), 7.24 (d, *J* = 6.9 Hz, 1H), 6.99 (br, 1H), 5.09 (d, *J* = 7.6 Hz, 1H), 3.69 (dd, *J* = 13.8, 8.5 Hz, 1H), 3.46 (d, *J* = 14.0 Hz, 1H), 2.45 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 148.4, 146.0, 145.7, 137.8, 136.7, 133.9, 128.9, 128.2, 127.0, 125.9, 125.8, 121.2, 75.7, 44.4, 21.6. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₈NO, 264.1383; found, 264.1381.

2-(6-Fluoroquinolin-8-yl)-1-phenylethan-1-ol (**3ha**). The title compound was isolated as a white solid (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 32.1 mg, 60%; mp 108-112 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.89 (d, *J* = 3.0 Hz, 1H), 8.19 – 8.10 (m, 1H), 7.47 (dd, *J* = 8.3, 4.1 Hz, 1H), 7.41 (d, *J* = 7.3 Hz, 2H), 7.37 – 7.30 (m, 3H), 7.28 – 7.20 (m, 2H), 6.37 (s, 1H), 5.15 (dd, *J* = 8.2, 2.7 Hz, 1H), 3.70 (dd, *J* = 14.0, 8.0 Hz, 1H), 3.58 (dd, *J* = 13.9, 1.9 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 160.0 (d, *J* = 248.9 Hz), 148.5 (d, *J* = 2.5 Hz), 145.0, 144.5, 141.3 (d, *J* = 8.6 Hz), 136.7 (d, *J* = 5.6 Hz), 129.4 (d, *J* = 10.2 Hz), 128.3, 127.1, 125.7, 121.9, 121.5 (d, *J* = 25.5 Hz), 109.6 (d, *J* = 21.2 Hz), 75.1, 43.8. ¹⁹F NMR (CDCl₃, 376 MHz) δ -112.8. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅FNO, 268.1132; found, 268.1130.

2-(6-Bromoquinolin-8-yl)-1-phenylethan-1-ol (3ia). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 45.1 mg, 69%. ¹H NMR (CDCl₃, 400 MHz): δ 8.90 (d, *J* = 3.9 Hz, 1H), 8.11 – 8.04 (m, 1H), 7.85 (d, *J* = 2.0 Hz, 1H), 7.53 (d, *J* = 2.0 Hz, 1H), 7.47 – 7.38 (m, 3H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.26 (s, 1H), 6.21 (br, 1H), 5.10 (d, *J* = 7.5 Hz, 1H), 3.66 (dd, *J* = 14.0, 8.3 Hz, 1H), 3.49 (d, *J* = 13.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.6, 146.0, 145.1, 140.3, 136.3, 134.6, 129.8, 128.8, 128.4, 127.2, 125.8, 122.0, 120.6, 75.3, 43.7. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅BrNO, 328.0332; found, 328.0336.

2-(6-Methoxyquinolin-8-yl)-1-phenylethan-1-ol (3ja). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 38.0 mg, 68%. ¹H NMR (CDCl₃, 400 MHz): δ 8.74 (d, J = 3.1 Hz, 1H), 8.06 (d, J = 8.1 Hz, 1H), 7.42 (d, J = 7.4 Hz, 2H), 7.38 (dd, J = 8.2, 4.1 Hz, 1H), 7.32 (t, J = 7.4 Hz, 2H), 7.23 (d, J = 6.7 Hz, 1H), 7.10 (d, J = 2.6 Hz, 1H), 7.00 – 6.87 (d, J = 2.6 Hz, 1H), 5.10 (d, J = 7.2 Hz, 1H), 3.86 (s, 3H), 3.67 (dd, J = 13.8, 8.1 Hz, 1H), 3.46 (d, J = 14.0 Hz, 1H). ¹³C {¹H} NMR (CDCl₃, 101 MHz): ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 146.7, 145.5, 143.6, 139.8, 136.0, 130.0, 128.3, 127.0, 125.8, 124.2, 121.5, 104.1, 75.4, 55.5, 44.3. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₇NO₂, 280.1332; found, 280.1330.

1-Phenyl-2-(6-(trifluoromethyl)quinolin-8-yl)ethan-1-ol (*3ka*). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/5 to 1/2), 50.4 mg, 79%. ¹H NMR (CDCl₃, 400 MHz): δ 9.02 (d, *J* = 4.0 Hz, 1H), 8.27 (d, *J* = 8.3 Hz, 1H), 8.02 (s, 1H), 7.58 (s, 1H), 7.54 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.40 (d, *J* = 7.5 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.27 – 7.20 (m, 1H), 5.92 (s, 1H), 5.14 (d, *J* = 6.2 Hz, 1H), 3.73 (dd, *J* = 13.9, 8.2 Hz, 1H), 3.62 (dd, *J* = 13.9, 2.1 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 148.4, 144.9, 139.7, 138.2, 128.7, 128.4, 127.7, 127.3, 126.9 (q, *J* = 2.8 Hz), 125.8, 124.7 (q, *J* = 4.3 Hz), 123.9 (q, *J* = 272.1 Hz), 122.3, 75.2, 43.7. ¹⁹F NMR (CDCl₃, 376 MHz) δ -62.5. HRMS

(ESI) m/z: $[M+H]^+$ calcd for C₁₈H₁₅F₃NO, 318.1100; found, 318.1100.

2-(7-Methylquinolin-8-yl)-1-phenylethan-1-ol (3la). The title compound was isolated as a colorless oil (eluent: EtOAc/n-pentane = 1/5 to 1/2), 39.4 mg, 75%. ¹H NMR (CDCl₃, 400 MHz): ¹H NMR (400 MHz, Chloroform-*d*) δ 8.88 (d, *J* = 3.3 Hz, 1H), 8.12 (d, *J* = 8.1 Hz, 1H), 7.60 (d, *J* = 8.3 Hz, 1H), 7.42 (d, *J* = 7.5 Hz, 2H), 7.38 – 7.30 (m, 4H), 7.27 – 7.22 (m, 1H), 6.71 (br, 1H), 5.27 – 4.96 (m, 1H), 3.78 (dd, *J* = 14.1, 8.2 Hz, 1H), 3.57 (d, *J* = 14.0 Hz, 1H), 2.32 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 149.3, 147.9, 145.9, 138.7, 137.1, 134.9, 130.4, 128.3, 127.1, 127.0, 126.0, 125.8, 120.3, 75.4, 38.4, 20.5. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₈NO, 264.1383; found, 264.1377.

2-(7-Chloroquinolin-8-yl)-1-phenylethan-1-ol (3ma). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/10 to 1/5), 23.9 mg, 42%. ¹H NMR (CDCl₃, 400 MHz): δ 8.95 (s, 1H), 8.18 (d, *J* = 8.2 Hz, 1H), 7.66 (d, *J* = 11.0 Hz, 1H), 7.55 (d, *J* = 8.5 Hz, 3H), 7.49 – 7.42 (m, 1H), 7.41 – 7.33 (m, 2H), 7.31 – 7.24 (m, 1H), 5.96 (br, 1H), 5.11 (d, *J* = 9.2 Hz, 1H), 3.97 (dd, *J* = 18.5, 4.7 Hz, 1H), 3.73 (d, *J* = 14.0 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 150.4, 148.3, 145.6, 137.2, 136.1, 135.5, 128.8, 128.4, 127.4, 127.3, 127.2, 125.7, 121.3, 74.9, 39.5. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₄ClNO, 284.0837; found, 284.0840.

2-(7-Bromoquinolin-8-yl)-1-phenylethan-1-ol (3na). The title compound was isolated as a

colorless oil (eluent: EtOAc/petroleum ether = 1/10 to 1/5), 25.1 mg, 38%. ¹H NMR (CDCl₃, 400 MHz): δ 9.03 – 8.87 (m, 1H), 8.20 (d, *J* = 8.2 Hz, 1H), 7.78 – 7.72 (m, 1H), 7.63 – 7.57 (m, 3H), 7.51 – 7.46 (m, 1H), 7.43 – 7.36 (m, 2H), 7.33 – 7.26 (m, 1H), 5.95 (br, 1H), 5.11 (d, *J* = 9.6 Hz, 1H), 4.05 (dd, *J* = 13.9, 9.8 Hz, 1H), 3.70 (d, *J* = 14.0 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 150.2, 148.2, 145.6, 137.5, 137.2, 131.6, 128.3, 127.6, 127.5, 127.11, 127.06, 125.6, 121.4, 74.8, 42.3. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₇H₁₄BrNO, 328.0332; found, 328.0333.

2-(7-*Methoxyquinolin-8-yl*)-1-phenylethan-1-ol (**3**oa). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/10 to 1/5), 43.8 mg, 79%. ¹H NMR (CDCl₃, 400 MHz): ¹H NMR (400 MHz, Chloroform-*d*) δ 8.89 – 8.84 (m, 1H), 8.10 (d, *J* = 8.2 Hz, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.47 (d, *J* = 7.5 Hz, 2H), 7.35 – 7.27 (m, 4H), 7.23 (d, *J* = 7.5 Hz, 1H), 6.51 (br, 1H), 5.07 (dd, *J* = 7.8, 2.8 Hz, 1H), 3.82 (s, 3H), 3.76 – 3.64 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 157.9, 150.1, 148.4, 146.2, 137.0, 128.0, 127.5, 126.7, 125.8, 123.7, 122.9, 118.9, 114.2, 75.4, 56.5, 34.6. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₈H₁₈NO₂, 280.1332; found, 280.1331.

1-Phenyl-2-(7-(trifluoromethyl)quinolin-8-yl)ethan-1-ol (*3pa*). The title compound was isolated as a colorless oil (eluent: EtOAc/petroleum ether = 1/10 to 1/5), 27.1 mg, 43%. ¹H NMR (CDCl₃, 400 MHz): δ 9.06 (s, 1H), 8.28 (d, *J* = 8.1 Hz, 1H), 7.87 (s, 2H), 7.64 (d, *J* = 7.5 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.34 (d, *J* = 7.3 Hz, 1H), 6.42 (br, 1H), 5.10 (d, *J* = 9.1 Hz, 1H), 4.18 – 4.05 (m, 1H), 3.58 (d, *J* = 14.1 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 150.8, 147.7, 146.1, 138.8, 137.5, 130.3, 130.1, 130.0, 128.6, 127.3, 126.0 (q, *J* = 275.7 Hz), 125.8, 123.4 (q, *J* = 5.5 Hz). 122.9, 76.0, 38.8. ¹⁹F NMR (CDCl₃, 376 MHz) δ -57.6. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₅F₃NO, 318.1100; found, 318.1105.

3. Mechanistic studies

3.1 Procedure for the preparation of Mn-1

[Mn(CO)₄Br]₂ (0.1 mmol, 49 mg) was added into a Schlenk tube under Ar atmosphere. Dry 1,4-dioxane (2.0 mL), 8-methylquinoline **1a** (0.2 mmol, 31 mg), and Me₂Zn (1 M in toluene, 0.3 mL, 0.3 mmol, 1.5 equiv) were then injected into the reaction tube. The reaction mixture was stirred at 120 °C for 24 h. The mixture was diluted with ethyl acetate (20 mL) and filtered through a short pad of silica gel. The solvent was removed by rotary evaporation and the residue was purified by silica gel column chromatography (eluent: EtOAc/petroleum ether = 10/1) to afford the manganacycle **Mn-1**³ in 54% yield (33.4 mg) (*Note: please as far as possible decrease the time of the reaction mixture or Mn-1 in the solvent in air*). Mp 106–107 °C. ¹H **NMR (CDCl₃, 400 MHz)**: δ 8.98 (s, 1H), 8.16 (s, 1H), 7.79 (s, 1H), 7.53 (s, 2H), 7.28 (s, 1H), 2.91 (s, 2H). ¹³C **NMR (CDCl₃, 101 MHz)**: δ 221.3, 218.2, 213.9, 154.4, 153.8, 151.6, 137.8, 132.3, 128.7, 127.8, 123.5, 121.6, 16.3. Anal. Calcd for C₁₄H₈MnNO₄: C, 54.39; H, 2.61; N, 4.53. Found: C, 54.65; H, 2.78; N, 4.27. ¹H NMR (400 MHz, CDCl₃) spectrum of Mn-1

\ 8.16 - 7.79 - 7.53 - 7.28

-8.98

-2.91

				1				_			-											
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
f1 (ppm)																						

A mixture of **1a** (0.2 mmol, 28.6 mg 1.0 equiv), **2a** (0.4 mmol, 42.4 mg, 2.0 equiv), **Mn-1** (12.4 mg, 0.04 mmol, 20 mol %), Me₂Zn (1 M in toluene, 0.3 mL, 0.3 mmol, 1.5 equiv) and ZnBr₂ (45.1 mg, 0.2 mmol, 1.0 equiv) were weighed in a Schlenk tube equipped with a stir bar. Dry 1,4-dioxane (2.0 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 24 h under Ar atmosphere. After cooling to room temperature, saturated NH₄Cl aqueous solution was added to the system, and then extracted three times with ethyl acetate. After removal of the solvent under vacuum, the purification was performed by flash column chromatography on silica gel (eluent: EtOAc/petroleum ether = 1/5 to 1/2) to afford **3aa** in 90% yield (44.8 mg).

3.3 Procedure for the preparation of 3aa from Mn-1

A mixture of **Mn-1** (0.2 mmol, 61.8 mg 1.0 equiv), **2a** (0.4 mmol, 42.4 mg, 2.0 equiv), and ZnBr₂ (45.1 mg, 0.2 mmol, 1.0 equiv) were weighed in a Schlenk tube equipped with a stir bar. Dry 1,4-dioxane (2.0 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 24 h under Ar atmosphere. After cooling to room temperature, saturated NH₄Cl aqueous solution was added to the system, and then extracted three times with ethyl acetate. After removal of the solvent under vacuum, the purification was performed by flash column chromatography on silica gel (eluent: EtOAc/petroleum ether = 1/5 to 1/2) to afford **3ae** in 83% yield (41.4 mg).

3.4 KIE experiments:

Competitive KIE experiment

A mixture of **1a** (0.1 mmol, 0.5 equiv), 8-(methyl-*d*₃)quinoline **D**₃-**1a** (0.1 mmol, 0.5 equiv), **2a** (42.4 mg, 0.4 mmol, 2.0 equiv), [Mn(CO)₄Br]₂ (9.9 mg, 0.02 mmol, 10 mol %), Me₂Zn (1 M in toluene, 0.3 mL, 0.3 mmol, 1.5 equiv), and ZnBr₂ (45.1 mg, 1.2 mmol, 1.0 equiv) were weighed in a Schlenk tube equipped with a stir bar. Dry 1,4-dioxane (2.0 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 15 min under Ar atmosphere. After cooling to room temperature, saturated NH₄Cl aqueous solution was added to the system, and then extracted three times with ethyl acetate. After removal of the solvent under vacuum, the residue was solved in CDCl₃ and analyzed by ¹H NMR. Competitive kinetic isotope effect (KIE) value was measured to be 5.67 [0.85/(1-0.85) = 5.67].

Parallel KIE experiment:

A mixture of **1a** (0.1 mmol, 0.5 equiv) or 8-(methyl- d_3)quinoline **D**₃-**1a** (0.1 mmol, 0.5 equiv), **2a** (42.4 mg, 0.4 mmol, 2.0 equiv), [Mn(CO)₄Br]₂ (9.9 mg, 0.02 mmol, 10 mol %), Me₂Zn (1 M in toluene, 0.3 mL, 0.3 mmol, 1.5 equiv), and ZnBr₂ (45.1 mg, 0.2 mmol, 1.0 equiv) were weighed in a Schlenk tube equipped with a stir bar. Dry 1,4-dioxane (2.0 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 15 min under Ar atmosphere. After cooling to room temperature, saturated NH₄Cl aqueous solution was added to the system, and then extracted three times with ethyl acetate. After removal of the solvent under vacuum, the corresponding yields are 37% and 11%. Parallel kinetic isotope effect (KIE) value was measured to be 3.36 (0.37 / 0.11 = 3.36).

3.5 Experiment to explore the electronic effects of the aldehydes.

A mixture of **1a** (0.2 mmol, 1 equiv), **2i** (54.5 mg, 0.4 mmol, 2.0 equiv), **2k** (69.6 mg, 0.4 mmol, 2.0 equiv), [Mn(CO)₄Br]₂ (9.9 mg, 0.02 mmol, 10 mol %), Me₂Zn (1 M in toluene, 0.3 mL, 0.3 mmol, 1.5 equiv), and ZnBr₂ (45.1 mg, 0.2 mmol, 1.0 equiv) were weighed in a Schlenk tube equipped with a stir bar. Dry 1,4-dioxane (2.0 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 24 h under Ar atmosphere. After cooling to room temperature, saturated NH₄Cl aqueous solution was added to the system, and then extracted three times with ethyl acetate. After removal of the solvent under vacuum, the corresponding yields are 12% (**3ai**) and 84% (**3ak**).

3.6 Detection of methane (CH₄) by GC

GC spectrum of the gas of the reaction mixture

4. X-ray crystallography of compounds 3ha and Mn-1

CCDC-2321504 (**3ha**) and 2321505 (**Mn-1**) contain the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure S1. The molecular structure of **3ha**. Thermal ellipsoids are shown at 30% probability level. Hydrogen atoms have been omitted for clarity.

Figure S2. The molecular structure of **Mn-1**. Thermal ellipsoids are shown at 30% probability level. Hydrogen atoms have been omitted for clarity.

5. References:

(1) Pang, Y.; Liu, G.; Huang, C.; Yuan, X.; Li, W.; Xie, J. Angew. Chem., Int. Ed. 2020, 59, 12789–12794.

(2) Wang, N.; Li, R.; Li, L.; Xu, S.; Song, H.; Wang, B. J. Org. Chem. 2014, 79, 5379-5385.

(3) (a) Pfeffer, M.; Urriolabeitia, E. P.; Fischer, J. Effects of Ortho-Substituents in the Synthesis and Stability of Cyclomanganated Benzylamine Derivatives. X-ray Crystal Structure of Mn{C₆H₂(OCH₃)₂-4,6-CH₂NMe₂-2}(CO)₄. *Inorg. Chem.* **1995**, *34*, 643–650. (b) Djukic, J.-P.; Michon, C.; Heiser, D.; Kyritsakas-Gruber, N.; de Cian, A.; Dötz, Karl H.; Pfeffer, M. The Reaction of Diazocyclopentadienyl Compounds with Cyclomanganated Arenes as a Route to Ligand-Appended Cymantrenes. *Eur. J. Inorg. Chem.* **2004**, 2107–2122.

6. Copies of ¹H, ¹³C, and ¹⁹F NMR spectra for compounds

¹H NMR (400 MHz, CDCl₃) spectrum of **3ab**

¹H NMR (400 MHz, CDCl₃) spectrum of **3ac**

$^{13}C\{^{1}H\}$ NMR (151 MHz, CDCl₃) spectrum of **3ae**

S33

fl (ppm)

¹H NMR (600 MHz, CDCl₃) spectrum of **3al**

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **3am**

8.98
8.97
8.98

8.97
8.93
8.97

8.98
8.35
8.35

8.98
8.35
8.35

8.97
8.35
8.35

8.98
8.35
8.35

8.97
7.15
7.15

7.114
7.15
7.15

7.125
7.17
7.16

7.114
7.17
7.17

7.115
7.17
7.17

7.116
7.16
7.16

7.117
7.17
7.17

7.116
7.17
7.17

7.117
7.17
7.17

7.116
7.16
7.16

7.117
7.17
7.17

7.116
7.16
7.16

7.117
7.17
7.17

7.118
7.16

8.35
8.35
8.35

8.35
8.35
8.35

8.35
8.35
8.35

8.35
8.35
8.35

8.35
8.35
8.35

8.35
8.35
8.35</t

¹H NMR (400 MHz, CDCl₃) spectrum of **3an**

S42

10.0 6.5 5.0 4.5 f1 (ppm) 4.0 0.0 8.5 8.0 7.5 7.0 6.0 5.5 3.0 2.0 1.5 1.0 0.5 2.5

S45

¹H NMR (600 MHz, CDCl₃) spectrum of **3at**

f1 (ppm)

¹H NMR (600 MHz, CDCl₃) spectrum of **3au**

S49

¹H NMR (600 MHz, CDCl₃) spectrum of **3aw**

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **3ax**

S53

¹H NMR (400 MHz, CDCl₃) spectrum of **3az**

 $\begin{array}{c} 8.92\\ 8.92\\ 8.92\\ 8.92\\ 8.92\\ 8.92\\ 8.92\\ 8.23\\ 8.22\\ 8.22\\ 8.22\\ 8.22\\ 8.22\\ 8.22\\ 8.22\\ 8.22\\ 8.22\\ 8.22\\ 8.22\\ 8.22\\ 8.22\\ 7.75\\$

¹H NMR (400 MHz, CDCl₃) spectrum of **3ba**

S57

¹H NMR (400 MHz, CDCl₃) spectrum of **3ea**

S59

f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of **3ja**

¹H NMR (400 MHz, CDCl₃) spectrum of **3ka**

f1 (ppm)

S70

