Efficient gold recovery by a thiazolyl covalent organic framework

Zhecheng Huang,^a Liecheng Guo,^a Kai Yu,^a Feng Gao,^a Yuting Yang,^{b*} Feng Luo^{a*}

School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China

EXPERIMENTS

Materials and general methods. All the organic monomers and ligand were purchased from Jilin Chinese Academy of Sciences -Yanshen Technology Co., Ltd. Others were purchased from Adamas Reagent, Ltd. and used as received without further purification. X-ray powder diffraction was collected by a Bruker AXSD8 Discover powder diffractometer at 40 kV, 40 mA for Cu K λ (λ = 1.5406 Å). The simulated powder patterns were calculated by Mercury 1.4. Infrared Spectra (IR) were measured by a Bruker VERTEX70 spectrometer in the 500-4000 cm⁻¹ region. The gas adsorption isotherms were collected on a Belsorp-max. Ultrahigh-purity-grade (>99.999%) N₂ gases were used during the adsorption measurement. SEM and EDS measurements were carried out using a Hitachi S-4800 microscope. The analyses of concentrations of metal ions in the solution was carried out by ThermoFisher iCap7600 ICP-OES instruments. X-ray photoelectron spectra (XPS) were collected by Thermo Scientific ESCALAB 250 Xi spectrometer. Solid-state NMR experiments were performed on Varian Infinityplus 300 solid-state NMR spectrometer (300 MHz). Synthesis of ECUT-COF-29. Bdta (0.1 mmol, 60 mg), Tdm (0.2mmol, 24 mg) ,2 mL DMF were weighed into a Pyrex tube. Then the tube was placed in a 120 °C for 3 days. After cooling to room temperature, the precipitated was washed with a large amount of DMF and then methanol. The resulting powder was collected by filtration and dried at 80°C under vacuum overnight to obtain a red powder.

Photocatalytic reduction of gold (III). Au(III) solution was prepared by dissolving Sodium chloroaurate (NaAuCl₄, analytical reagent) in deionized water. Visible light was perpendicularly irradiated on the reaction vessel from a 350W Xe lamp with λ >400 nm.

In kinetics experiments, the Au solution with initial concentration of 100 ppm was used. The dose of adsorbent is 5 mg, while the Au solution is 50 ml. In addition, add 5 ml methanol solution and light for 2 h.

In the maximum adsorption capacity experiment, Au solutions with initial concentrations of 100 ppm, 200 ppm, 300 ppm, 400 ppm, and 500 ppm were used. The dose of the adsorbent is 5 mg, while the dose of the Au solution is 50 ml. In

addition, 5 ml of methanol solution is added, and light for 1 h.

In selective adsorption experiments, a 6-ions mixed solution contains both Au and other 5 metal ions with respectively initial concentration of 10 ppm were used. The dose of adsorbent is 5 mg, while the solution is 50 ml. In addition, add 5ml methanol solution and light for 1 h.

The adsorption amount, Q_e (mg/g), was calculated by the difference of the Au(III) equilibrium concentration before and after adsorption (see equation 1):

$$Q_e = \frac{(C_0 - C_e) \times V}{m} \tag{1}$$

where C_0 (mg/L) and C_e (mg/L) are the initial concentration and equilibrium concentration of Au in the solutions, respectively; V (L) is the volume of testing solution and m (g) is the amount of sorbent.

Fig. S1 TGA curve of ECUT-COF-29.

Fig. S2 EIS Nyquist plots of ECUT-COF-29.

Fig. S3 Transient photocurrent response.

Fig. S4 Gold fragments in the sample after photocatalysis.

Fig. S5 A comparison in gold uptake capacity among reported adsorbents and our case.

Fig. S6 Reduction rate of gold at different pH.

Fig. S7 The SEM-EDS images of samples after photocatalysis.

Fig. S8 HOMO and LUMO of ECUT-COF-29.