Supporting Information

Multiple Non-covalent Interactions Directed
Supramolecular Double Helices: The Orthogonality of
Hydrogen, Halogen and Chalcogen Bonding
Chuan-Zhi Liu,*a Chi Zhang, ${ }^{\text {a }}$ Zhong-Yi Li, ${ }^{\text {a }}$ Jiale Chen, ${ }^{\text {a }}$ Tonglu Wang, ${ }^{a}$ Xiang-Kun Zhang, ${ }^{\text {a }}$ Meng Yan, ${ }^{\text {b }}$ and Bin Zhai*a
${ }^{a}$ Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
${ }^{b}$ School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
*Corresponding authors: Chuan-Zhi Liu: liuchuanzhi@sqnu.edu.cn, Bin Zhai: zhaibin_1978@163.com
Contents
Experimental 2
General experimental 2
Procedure for the synthesis of compound $\mathbf{1}$ and $\mathbf{3}$ 2-6
References 7
${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compuounds 8-20
HR-MS (ESI) of all new compounds 21-26
The crystal structure of compound $\mathbf{1}$ and $\mathbf{3}$ 27
The Hirshfeld surfaces of compound $\mathbf{1}$ and $\mathbf{3}$ 28
CIF report of compound $\mathbf{1 , 2}$, and $\mathbf{3}$ 29-37

General methods. All reagents were obtained from commercial suppliers and used without further purification unless otherwise noted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a 400 MHz or 100 MHz spectrometer in the indicated solvents at $25^{\circ} \mathrm{C}$. Chemical shifts are expressed in parts per million (δ) using residual proton resonances of the deuterated solvents as the internal standards. Crystals were measured using Bruker D8 Venture-Metaljet diffractometer equipped with an PHOTON II area detector and HELIOS multilayer optics monochrommated $\mathrm{Cu}-\mathrm{K}$ alpha radiation (lambda $=1.54184$). Crystal structures were solved by direct method and refined by full-matrix least-squares methods based on F2 using SHELXL-2018 software. Co-crystals of $\mathbf{1}$ and $\mathbf{2}$ were grown by evaporating their solution of dichloromethane, n-hexane and dimethyl sulfoxide ($V: V=5: 1: 0.01$). Crystals of solvate 3 was grown by evaporation of the same mixed solvent as co-crystal of $\mathbf{1}$ and 2. CCDC (Nos. 2344590, 2344598) contains the related crystallographic data, which can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compound 5. To a mixture of compound $4(30 \mathrm{~g}, 1.96 \mathrm{~mol})$ in anhydrous methanol $(100 \mathrm{~mL})$ was added concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ by dropwise. The mixture was heated to reflux and stirred at this temperature for 12 hours. Then water (100 mL) was added to quench to reaction. The aqueous was treated with saturated NaHCO_{3} solution by dropwise to adjust the pH to $7-8$ (The addition of NaHCO_{3} solution must be slowly to prevent excessive bubbles from overflowing in a short time). Then the solution was extracted with $\operatorname{EtOAc}(3 * 100 \mathrm{~mL})$. The combined organic phase was washed with saturated sodium chloride solution (100 mL) and fresh water (100 mL) in sequence. Then the organic phase was dried and concentrated to get crude brown solid. The crude product was further purified by recrystallization to get the pure product ($28 \mathrm{~g}, 86 \%$). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 8.36$ (s, 8 H), 7.42 (d, $J=8.4 \mathrm{~Hz}$, $8 \mathrm{H}), 7.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 8 \mathrm{H}), 2.08(\mathrm{~s}, 24 \mathrm{H})$. This compound was known. ${ }^{1}$
Compound 6. To a solution of compound $5(5 \mathrm{~g}, 29.9 \mathrm{mmol})$ in anhydrous DCM (250 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Ac}_{2} \mathrm{O}(9.15 \mathrm{~g}, 89.7 \mathrm{mmol})$. The mixture was stirred for 5 hours at room temperature. Then the solvent was evaporated under reduced pressure, and the solid residue was slurry in water (20 mL). The isolated product was recrystrallized from methanol/water (2:1) to provide compound $6(5.6 \mathrm{~g}, 90 \%)$ as a white solid. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.13(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.75(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, 3 H), 3.37 ($\mathrm{s}, 2 \mathrm{H}$). This compound was known. ${ }^{2}$
Compound 7. To a solution of compound $6(5.6 \mathrm{~g}, 26.8 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(50 \mathrm{~mL})$ was
added con. $\mathrm{HNO}_{3}(10 \mathrm{~mL})$ by dropwise at $0^{\circ} \mathrm{C}$. Then the solution was warmed to room temperature and stirred for 1 hour. Then the mixture was poured into ice-water $(50 \mathrm{~mL})$, and extracted with EtOAc ($3^{*} 60 \mathrm{~mL}$). The combined organic phase was washed with saturated $\mathrm{NaHCO}_{3}(3 * 100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ in sequence. Then the organic phase was dried and concentrated. The residue was purified by column chromatography (petroleum ether and ethyl acetate, $5: 1$ to $2: 1$), the product was obtained as a yellow solid ($4.9 \mathrm{~g}, 59 \%$). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta 11.17$ (s, $1 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ 169.14, 167.94, 149.19, 138.07, $131.20,126.09,120.82,117.39,53.61,24.26$. HR-MS (ESI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ [M+Na]+: 277.0437. Found: 277.0436.
Compound 8. To a solution of compound $7(4.9 \mathrm{~g}, 19.3 \mathrm{mmol})$ in DMF $(100 \mathrm{~mL})$ was added 1-bromo-2-methylpropane ($5.3 \mathrm{~g}, 38.6 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.3 \mathrm{~g}, 38.6 \mathrm{mmol})$. The mixture was heated to $80^{\circ} \mathrm{C}$ and stirred at this temperature for 15 hours. Then water (100 mL) was added to quench the reaction. The aqueous was extracted with $\operatorname{EtOAc}\left(3^{*} 100 \mathrm{~mL}\right)$ and the combined organic phase was washed (with fresh water for several times to remove residual DMF), dried and concentrated. The residue was purified by column chromatography (petroleum ether and ethyl acetate, 3:1 to 1:1), the pure product was obtained as a white solid ($4.4 \mathrm{~g}, 73 \%$). ${ }^{1} \mathrm{HNMR}$ (400 MHz , CDCl_{3}): $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta 169.65,164.56,164.06,139.94,131.18,128.03,114.58,103.59,75.93$, 52.23, 28.18, 25.94, 19.04. HR-MS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$: 333.1063. Found: 333.1058.

Compound 9. To a solution of compound $\mathbf{8}(4.4 \mathrm{~g}, 14.2 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(3.9 \mathrm{~g}, 28.4 \mathrm{mmol})$. The solution was stirred at room temperature for 15 hours. After that, the solvent was removed under reduced pressure, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{EtOAc}(50 \mathrm{~mL})$. Then the EtOAc phase was separated and the aqueous phase was extracted with EtOAc ($2 * 50 \mathrm{~mL}$). The combined organic phase was dried with NaSO_{4}, and concentrated to get the yellow product (2.1 $\mathrm{g}, 55 \%) .{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 3.86$ $(\mathrm{s}, 3 \mathrm{H}), 3.78(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.50,164.09$, 148.94, 132.72, 125.64, 110.57, 98.90, 75.52, 51.88, 28.19, 19.08. HR-MS (ESI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 291.0957. Found: 291.0954.

Compound 10. A mixture of compound $9(2.1 \mathrm{~g}, 7.84 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(210 \mathrm{mg})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ under H_{2} was stirred at room temperature for 4 hours. Then the mixture was filtered and the filtrated was concentrated to get crude product, and the crude product was purified by column chromatography (petroleum ether and ethyl acetate, $10: 1$ to $5: 1$) to get pure product as a brown solid ($1.3 \mathrm{~g}, 70 \%$). ${ }^{1}$ HNMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.15-2.08 (m, 1H), $1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.77, 155.87, 142.77, 125.46, 121.93, 109.28, 100.97, 76.01, 51.43, 28.49, 19.27. HR-MS (ESI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 261.1215$. Found: 261.1220.

Compound 11. To a solution of compound $10(2.0 \mathrm{~g}, 8.4 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{SeO}_{2}(0.93 \mathrm{~g}, 8.4 \mathrm{mmol})$. The solution was heated to $80^{\circ} \mathrm{C}$ and stirred at this temperature for 5 hours. Then the mixture was cooled to rt. $\mathrm{NaOH}(0.67 \mathrm{~g}, 16.8$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The solution was reheated to $40^{\circ} \mathrm{C}$ and stirred at this temperature for 2 hours. Then the solvent was removed under reduced pressure, the residue was adjusted the pH to $3-4$ with dilute hydrochloric acid (1 N). The precipitate was filtered and the yellow filter was product ($2.2 \mathrm{~g}, 88 \%$). ${ }^{1}$ HNMR (400 MHz, DMSO- d_{6}): $\delta 13.33(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.11-2.05 (m, 1H), $1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ 167.34, 160.85, 157.40, 155.90, 131.68, 122.83, 100.86, 74.99, 28.06, 19.40. HR-MS (ESI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Se}[\mathrm{M}+\mathrm{Na}]^{+}: 322.9911$. Found: 322.9908.

Compound 14. A mixture of compound 13 ($2.8 \mathrm{~g}, 16.8 \mathrm{mmol}$), compound $\mathbf{1 2}$ (4.3 g , 14.0 mmol), HATU ($8.0 \mathrm{~g}, 21.0 \mathrm{mmol}$), and DIPEA ($5.4 \mathrm{~g}, 42.0 \mathrm{mmol}$) in DMF (20 mL) was stirred at $30{ }^{\circ} \mathrm{C}$ for 15 h . Then water (60 mL) was added to quench to reaction. The aqueous was extracted with DCM ($3 * 50 \mathrm{~mL}$). The combined organic phase was washed with saturated sodium chloride solution (100 mL) and water (100 mL) in sequence. Then the organic phase was dried and concentrated to get crude product. The curde product was removed and the residue was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}=20 / 1$) to afford compound $14(4.1 \mathrm{~g}, 64 \%)$ as a brown solid. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.52(\mathrm{~s}, 2 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.90(\mathrm{~m}$, $4 \mathrm{H}), 2.32-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.11-1.02(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.26$, $160.82,156.85,154.27,146.47,143.56,133.57,131.40,124.88,114.43,106.67$, $98.05,76.15,75.01,28.30,28.06,27.85,19.23,19.11,19.07$. HR-MS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 460.2448$. Found: 460.2447 .
Compound 15. A mixture of compound $14(4.0 \mathrm{~g}, 8.7 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(400 \mathrm{mg})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ under H_{2} atmosphere was stirred at rt for 15 h . Then the mixture was filtered with celite, the filtrated was concentrated, the residue was purified by cloumn
chromatography ($\mathrm{DCM} / \mathrm{MeOH}=20 / 1$) to afford compound $15(3.2 \mathrm{~g}, 86 \%)$ as a brown solid. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 4 \mathrm{H}), 3.81$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ 163.67, 154.17, 150.80, 150.55, 145.73, 143.28, 130.75, $125.63,117.31,114.67,106.51,98.83,77.72,74.89,74.85,28.35,28.19,27.90,19.33$, 19.32, 19.14. HR-MS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 430.2706$. Found: 430.2723 .

Compound 16. A mixture of compound $15(1.7 \mathrm{~g}, 3.96 \mathrm{mmol})$, compound $\mathbf{1 2}(1.23 \mathrm{~g}$, $3.96 \mathrm{mmol})$, HATU ($2.25 \mathrm{~g}, 5.94 \mathrm{mmol}$), and DIPEA ($1.5 \mathrm{~g}, 11.88 \mathrm{mmol}$) in DMF (15 mL) was stirred at $30{ }^{\circ} \mathrm{C}$ for 15 h . Then water (50 mL) was added to quench to reaction. The aqueous was extracted with DCM ($3 * 50 \mathrm{~mL}$). The combined organic phase was washed with saturated sodium chloride solution (100 mL) and water (100 mL) in sequence. Then the organic phase was dried and concentrated to get crude product. The curde product was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}$ $=20 / 1)$ to afford compound $16(1.6 \mathrm{~g}, 57 \%)$ as an off-white solid. ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 9.68(\mathrm{~s}, 1 \mathrm{H}), 9.62(\mathrm{~s}, 1 \mathrm{H}), 9.28(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 6 \mathrm{H}), 2.27-2.07(\mathrm{~m}, 5 \mathrm{H}), 1.08-1.01(\mathrm{~m}, 30 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.01,161.31,160.95,156.59,155.01,154.02,153.96,145.73$, 143.19, 133.43, 131.31, 127.59, 125.59, 121.11, 114.94, 114.80, 106.50, 97.99, 97.91, 76.07, 75.41, 74.91, 28.29, 28.21, 28.14, 28.13, 27.88, 19.30, 19.28, 19.21, 19.15, 19.07. HR-MS (ESI): Calcd for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 723.3969$. Found: 723.3979 .

Compound 17. A mixture of compound $16(1.3 \mathrm{~g}, 1.8 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(130 \mathrm{mg})$ in THF (50 mL) under H_{2} atmosphere was stirred at rt for 4 h , the mixture was filtered with celite, and the filtrated was concentrated, the residue was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}=20 / 1$) and Prep-TLC to afford compound 17 (902 mg , 72%) as an off-white solid. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 9.68(\mathrm{~s}, 1 \mathrm{H})$, 9.63 (s, 1H), 8.91 (s, 1H), 8.24 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (s, 1H), 6.81 (d, J = 7.6 Hz , $1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.79(\mathrm{~m}, 8 \mathrm{H}), 3.66(\mathrm{~s}$, 2 H), 2.24-2.08 (m, 5H), 1.08-0.99 (m, 30H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.60$, $163.23,154.43,153.99,153.77,150.79,150.19,145.63,143.25,130.62,127.15$, $125.69,122.14,117.60,115.15,115.04,106.45,98.91,98.01,77.72,75.38,74.87$, 74.83, 28.37, 28.33, 28.25, 28.15, 27.90, 19.39, 19.33, 19.32, 19.25, 19.15. HR-MS (ESI): Calcd for $\mathrm{C}_{39} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 693.4227$. Found: 693.4228.
Compound 1. To a solution of compounds $\mathbf{1 1}(173 \mathrm{mg}, 0.58 \mathrm{mmol})$ in DMF (20 mL) were added HATU ($878 \mathrm{mg}, 2.3 \mathrm{mmol}$) and DIPEA $(0.4 \mathrm{~mL})$. The mixture was stirred at room temperature for 20 mins . Then compound 17 ($200 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added. The mixture was warmed to $40^{\circ} \mathrm{C}$ and stirred for 12 hours. Then water (50 mL) was added to quench to reaction. The aqueous was extracted with DCM ($3^{*} 50 \mathrm{~mL}$). The combined organic phase was washed with saturated sodium chloride solution (100 mL) and water (100 mL) in sequence. Then the organic phase was dried and concentrated to get crude product. The crude product was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}=20 / 1$ to $25 / 1$) to afford compound $\mathbf{1}(220 \mathrm{mg}, 78 \%)$ as orange-yellow
solid. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 9.75$ ($\mathrm{s}, 1 \mathrm{H}$), 9.69 ($\mathrm{s}, 1 \mathrm{H}$), 9.46 ($\mathrm{s}, 1 \mathrm{H}$), 9.19 (s , $1 \mathrm{H}), 8.88(\mathrm{~s}, 2 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 2 \mathrm{H}), 4.03-3.95(\mathrm{~m}, 8 \mathrm{H}), 3.88-3.86(\mathrm{~m}, 4 \mathrm{H}), 2.31-2.10(\mathrm{~m}, 6 \mathrm{H})$, $1.08-1.02(\mathrm{~m}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.22,162.99,162.23,161.36$, $157.56,156.82,155.32,154.55,154.38,153.84,144.86,130.22,127.51,127.18$, 127.12, 125.90, 121.91, 120.81, 115.39, 114.86, 106.62, 100.91, 97.95, 97.84, 76.13, $75.36,75.33,75.09,28.27,28.25,28.13,27.88,27.85,19.38,19.33,19.27,19.23$, 19.16. HR-MS (ESI): Calcd for $\mathrm{C}_{50} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}: 975.4135$. Found: 975.4126.

Compound 19. To a solution of compounds $11(200 \mathrm{mg}, 0.67 \mathrm{mmol})$ in DMF (10 mL) were added HATU ($510 \mathrm{mg}, 1.34 \mathrm{mmol}$) and DIPEA ($259 \mathrm{mg}, 2.01 \mathrm{mmol}$). The mixture was stirred at room temperature for 20 mins. Then compound 18 (259 mg , 0.74 mmol) was added. The mixture was warmed to $40^{\circ} \mathrm{C}$ and stirred for 12 hours. Then water (100 mL) was added to quench to reaction. The aqueous was extracted with DCM $(3 * 50 \mathrm{~mL})$. The combined organic phase was washed with saturated sodium chloride solution $(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ in sequence. Then the organic phase was dried and concentrated to get crude product. The crude product was slurry in hexane (30 mL) and filtered to get compound 19 as orange-yellow solid (320 mg , 75%). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}$, $1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76\left(\mathrm{dd}, J_{l}=6.8 \mathrm{~Hz}, J_{2}=1.6\right.$ $\mathrm{Hz}, 4 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H}), 1.07-1.04(\mathrm{~m}, 12 \mathrm{H}), 0.98$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.73,161.34,157.57,156.88$, 152.94, 144.97, 130.51, 127.17, 121.43, 120.65, 114.22, 100.87, 98.32, 76.17, 76.16, 75.60, 28.41, 28.34, 28.33, 27.75, 19.36, 19.31, 19.24. HR-MS (ESI): Calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{NaSe}[\mathrm{M}+\mathrm{Na}]^{+}: 657.2167$. Found: 657.2169.
Compound 3. Compound $\mathbf{1 9}$ ($279 \mathrm{mg}, 0.44 \mathrm{mmol}$) was added to hydrochloride gas in ethyl acetate (30 mL) and the suspension was stirred for 1 hour and then concentrated to afford a residue. To a solution of compounds $\mathbf{2 0}(145 \mathrm{mg}, 0.48 \mathrm{mmol})$ in DMF (10 mL) were added HATU ($502 \mathrm{mg}, 1.32 \mathrm{mmol}$) and DIPEA (0.7 mL). The mixture was stirred at room temperature for 20 mins. Then the previously obtained residue was added. The mixture was warmed to $40^{\circ} \mathrm{C}$ and stirred for 12 hours. Then water (100 mL) was added to quench to reaction. The precipitated phase was filtered and recrystallized with EA (2 mL) and $\mathrm{PE}(20 \mathrm{~mL})$ to get pure compound 3 as orange-yellow solid ($285 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.47-9.45(\mathrm{~m}, 2 \mathrm{H})$, $8.44(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.51-8.46(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H})$, $4.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.11-1.00(\mathrm{~m}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.84,161.39,157.53,157.27,154.22,151.70$, $150.92,148.52,146.58,145.65,140.64,140.47,137.90(\mathrm{t}, J=180 \mathrm{~Hz}), 135.08$, $130.28,127.38,120.31,120.02,115.79,100.95,97.33,76.20,75.95,75.43,28.44$, 28.34, 27.75, 19.34, 19.27, 19.23. ${ }^{19} \mathrm{~F}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-106.3 \sim-106.4(\mathrm{~m}$, 1F), -134.86~-134.94 (m, 1F), $-155.0(\mathrm{t}, J=17.1 \mathrm{~Hz}, 1 \mathrm{~F})$. HR-MS (ESI): Calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{NaF}_{3} \mathrm{ISe}[\mathrm{M}+\mathrm{Na}]^{+}$: 841.0589. Found: 841.0582.

Reference

[1] H. Goeksu, S. F. Ho, O. Metin, K. Korkmaz, A. Mendoza Garcia, M. S. Gueltekin,
S. Sun, ACS Catal. 2014, 4, 1777-1782.
[2] C. Wei, R. Wang, C. Zhang, G. Xu, Y. Li, Q. Z. Zhang, L. Y. Li, L. Yi, Z. Xi, Chem-Asian J 2016, 11, 1376-1381.

Figure S1. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) spectrum of compound 7 at $25^{\circ} \mathrm{C}$.

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

Figure S2. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) spectrum of compound 7 at $25^{\circ} \mathrm{C}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8}$ at $25^{\circ} \mathrm{C}$.

Figure $\mathbf{S 4} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8}$ at $25^{\circ} \mathrm{C}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{9}$ at $25^{\circ} \mathrm{C}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9 at $25^{\circ} \mathrm{C}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10 at $25^{\circ} \mathrm{C}$.

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

Figure S8. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 0}$ at $25^{\circ} \mathrm{C}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 1}$ at $25^{\circ} \mathrm{C}$.

Figure S10. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) spectrum of compound 11 at $25{ }^{\circ} \mathrm{C}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 4}$ at $25^{\circ} \mathrm{C}$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 14 at $25^{\circ} \mathrm{C}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 15 at $25^{\circ} \mathrm{C}$.

Figure S14. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{1 5}$ at $25^{\circ} \mathrm{C}$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 16 at $25^{\circ} \mathrm{C}$.

Figure S16. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 16 at $25^{\circ} \mathrm{C}$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 17 at $25^{\circ} \mathrm{C}$.

Figure S18. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 17 at $25^{\circ} \mathrm{C}$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 at $25^{\circ} \mathrm{C}$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 at $25^{\circ} \mathrm{C}$.

Figure S21. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 9}$ at $25^{\circ} \mathrm{C}$.

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$
Figure S22. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 9}$ at $25^{\circ} \mathrm{C}$.

Figure S23. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3}$ at $25^{\circ} \mathrm{C}$.

Figure S24. ${ }^{19} \mathrm{~F}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3}$ at $25^{\circ} \mathrm{C}$.

Figure S25. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3}$ at $25^{\circ} \mathrm{C}$.

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \mathrm{max}=50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
39 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-10 H: 0-10 N: 0-2 \quad O: 0-6 $\quad \mathrm{Na}: 0-1$

20230501-1-1 47 (0.234)
1: TOF MS ES +

Figure S39. HR-MS (ESI) of compound 7.

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
39 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
$\begin{array}{lllll}\mathrm{C}: 0-14 & \mathrm{H}: 0-18 & \mathrm{~N}: 0-2 & \mathrm{O}: 0-6 \quad \mathrm{Na}: 0-1\end{array}$
20230501-1-9 57 (0.272)
1: TOF MS ES +

$$
\begin{array}{llll}
\text { Minimum: } & & & -1.5 \\
\text { Maximum: } & 5.0 & 10.0 & 50.0
\end{array}
$$

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (\%) Formula
$\begin{array}{lllllllll}333.1058 & 333.1063 & -0.5 & -1.5 & 6.5 & 484.2 & \text { n/a } & \text { n/a } & \text { C14 H18 N2 } 06 \mathrm{Na}\end{array}$

Figure S40. HR-MS (ESI) of compound 8 .

Single Mass Analysis
Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
38 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-12 H: 0-16 N: 0-2 $\quad \mathrm{O}: 0-6 \quad \mathrm{Na}: 0-1$
20230501-1-10 49 (0.241)

| 1: TOF MS ES + |
| :--- | :--- | :--- | :--- |

```
\begin{tabular}{llll} 
Minimum: & & & -1.5 \\
Maximum: & 5.0 & 10.0 & 50.0
\end{tabular}
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (\%) Formula
\(\begin{array}{lllllllllllllllllllll}291.0954 & 291.0957 & -0.3 & -1.0 & 5.5 & 542.3 & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { C12 H16 N2 } & 05 \mathrm{Na}\end{array}\)
```

Figure S41. HR-MS (ESI) of compound 9 .
Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
22 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
$\begin{array}{lllll}\mathrm{C}: ~ 0-12 & \mathrm{H}: 0-18 & \mathrm{~N}: 0-2 & \mathrm{O}: 0-3 \quad \mathrm{Na}: 0-1\end{array}$
20230501-1-8 47 (0.234)
1: TOF MS ES+

Minimum:				-1.5					
Maximum:		5.0	10.0	50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf (\%)	Formula	
261.1220	261.1215	0.5	1.9	4.5	524.6	n/a	n/a	C12 H18 N2 03 Na	

Figure S42. HR-MS (ESI) of compound 10.

Single Mass Analysis
Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
45 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: 0-11 } & \mathrm{H}: 0-12 & \mathrm{~N}: 0-2 & \mathrm{O}: 0-3 & \mathrm{Se}: 0-1 & \mathrm{Na}: 0-1\end{array}$
20230501-1-11 130 (0.589)
1: TOF MS ES+

Figure S43. HR-MS (ESI) of compound 11.

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
235 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: 1-24 } & \mathrm{H}: 1-34 & \mathrm{~N}: 1-3 & \mathrm{O}: 0-6 \quad \mathrm{Na}: 0-1 & \mathrm{Se}: 0-2\end{array}$

20240329-4-6-Pos 58 (0.245)
1: TOF MS ES+

Minimum
Maximum
$\begin{array}{lll}5.0 & 10.0 & 50.0\end{array}$

Figure S44. HR-MS (ESI) of compound 14.

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
287 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llllll}C: & 1-24 & H: ~ 1-36 & N & 1-3 & O\end{array} 0-6 \quad \mathrm{Na}: 0-1 \quad \mathrm{Se}: 0-2$
20240329-4-7-Pos 44 (0.192)
1: TOF MS ES +

Figure S45. HR-MS (ESI) of compound 15.

Elemental Composition Report
Single Mass Analysis
Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
537 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{lllll}C & \text { C: 1-39 } & \mathrm{H}: ~ 1-55 & \mathrm{~N}: ~ 1-4 & \mathrm{O}: 0-9 \\ \mathrm{Na}: 0-1 & \mathrm{Se}: 0-2\end{array}$
20240329-4-8-Pos 70 (0.291)
1: TOF MS ES +

Minimum:
Maximum
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (\%) Formula
$\begin{array}{lllllllll}723.3979 & 723.3969 & 1.0 & 1.4 & 14.5 & 567.6 & \text { norm } & \text { Conf(\%) } & \text { Formula } \\ \text { n/a } & \text { C39 H55 N4 } 09\end{array}$
Figure S46. HR-MS (ESI) of compound 16.

Elemental Composition Report

Single Mass Analysis
Tolerance $=5.0 \mathrm{mDa} /$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
674 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: 1-39 } & \mathrm{H}: 1-57 & \mathrm{~N}: ~ 1-4 & \mathrm{O}: 0-9 & \mathrm{Na}: 0-1 & \mathrm{Se}: 0-2\end{array}$
20240329-4-9-Pos 86 (0.352)
1: TOF MS ES+

Figure S47. HR-MS (ESI) of compound 17.

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
418 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llllll}\mathrm{C}: ~ 1-50 & \mathrm{H}: 1-67 & \mathrm{~N}: 1-6 & \mathrm{O}: 0-9 & \mathrm{Na}: 0-1 \quad \mathrm{Se}: 0-2\end{array}$
$\begin{array}{llll}\text { C: } 1-50 & \mathrm{H}: 1-67 & \mathrm{~N}: 1-6 & \mathrm{O}: 0-9 \\ \text { 20240329-4-11--6os } 106 & \mathrm{Na}: 0-1 \\ \text { 1. } 0.433 \text {) }\end{array}$

Figure S48. HR-MS (ESI) of compound 1.

Single Mass Analysis
Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \mathrm{min}=-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
731 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
$\begin{array}{llllll}\mathrm{C}: 0-30 & \mathrm{H}: 0-42 & \mathrm{~N}: 0-4 & \mathrm{O}: 0-6 & \mathrm{Na}: 0-1 & \mathrm{Se}: 0-4\end{array}$
20230728-2-Icz-136 109 (0.444)
1: TOF MS ES+

Minimum:
$\begin{array}{lllll}\text { Minimum: } & 5.0 & 10.0 & \overline{5} & 50.5\end{array}$
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(\%) Formula
$657.2169 \quad 657.2167 \quad 0.2 \quad 0.3 \quad 12.5 \quad 547.9 \quad \mathrm{n} / \mathrm{a} \quad \mathrm{n} / \mathrm{a} \quad$ C30 H42 N4 06 Na Se
Figure S49. HR-MS (ESI) of compound 19.

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
5338 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{lllllllllll}\text { C: 1-32 } & \mathrm{H}: ~ 1-36 & \mathrm{~N}: ~ 1-4 & \mathrm{O}: 0-5 & \mathrm{Na}: 0-1 & \mathrm{~S}: 0-1 & \mathrm{Br}: 0-1 & \mathrm{~F}: 0-3 & \mathrm{I}: 0-1 & \mathrm{Se}: 0-2\end{array}$
20240329-3-1-Pos 197 (0.789)

Figure S50. HR-MS (ESI) of compound 3.

Figure S51. Three sets of intramolecular three-center hydrogen bonding ($\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$, the N -H protons with oxygen atoms in nearby alkoxy groups) were formed in the crystal state of compound $\mathbf{1}$. (The unit of length of hydrogen bond is " \AA ").

Figure S52. The detailed stacking pattern between P-helix and M-helix. The driving force came from the dual hydrogen bonding (O atom of carbonyl group near pyridine end) $\mathrm{O} \cdots \mathrm{H}$ (H of the $t-\mathrm{BuO}-$ on the aromatic ring near the benzoselenadiazole end) ($\mathrm{O} \cdots \mathrm{H}$ distance: $2.59 \AA$, the sum of the van der Waals radium of O and $\mathrm{H}: 2.62 \AA$). There were no effective $\pi-\pi$ interaction between two molecule (the distance between two nearly parallel aromatic rings was $3.56 \AA$), although it seemed to exist.

Figure S53. Two sets of intramolecular three-center hydrogen bonding ($\mathrm{F} \cdots \mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$, the $\mathrm{N}-\mathrm{H}$ protons with oxygen atoms in nearby F atom or alkoxy
groups) were formed in the crystal state of compound 3. (The unit of length of hydrogen bond is " \AA ").

Figure S54. The Hirshfeld surfaces of the molecule of compound 1 in co-crystal of compound 1 and 2 (a) and the molecule of compound $\mathbf{3}$ in crystal (b). c) and d) 2D fingerprint plot generated by Hirshfeld surface of a) and b).

The interaction sites of XB and ChB can be clearly observed from the Hirshfeld surfaces of the molecules of compound $\mathbf{1}$ and $\mathbf{3}$ (red circle dot; the clarity of the circle dot is related to the strength of the interaction. Fig. 5a and 5b). From the 2D fingerprint plot generated by Hirshfeld surface of co-crystal of compound 1 and 2 (Fig. 5c), the numerous and complex peak patterns indicated that molecular surface of compound 1 exhibits a diverse range of intermolecular interactions. Therefore, the regions of $\mathrm{Se} \cdots \mathrm{NChB}$ and $\mathrm{I} \cdots \mathrm{NXB}$ can only be roughly determined. However, the 2D fingerprint plot of crystal 3 presented relatively clear intermolecular interactions, including $\mathrm{Se} \cdots \mathrm{N}$ ChB and $\mathrm{I} \cdots \mathrm{O}$ XB (Fig. 5d). The discrimination of intermolecular XB and ChB base on Hirshfeld analysis has been further demonstrated.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) exp_3820_auto
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report
Datablock: exp_3820_auto

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0071 \mathrm{~A}$	Wavelength=1.54184	
Cell:	$a=21.6338$ (3)	$\mathrm{b}=28.0204$ (3)	$\mathrm{C}=21.9354$ (3)
	alpha $=90$	beta=98.596(1)	gamma $=90$
Temperature:	173 K		
	Calculated	Reported	
Volume	13147.6(3)	13147.6(3)	
Space group	I 2/a	I $12 / \mathrm{a} 1$	
Hall group	-I 2ya	-I 2ya	
Moiety formula	```C50 H66 N6 O9 S [+ solvent]```	2.062 [CH2CL2]	
Sum formula	```C56 H66 F4 I2 N solvent]```	N6 09 Se	
Mr	1375.91	1550.85	
Dx,g cm-3	1.390	1.567	
Z	8	8	
Mu (mm-1)	8.686	10.261	
F000	5536.0	6228.0	
F000'	5540.58		
h, k, lmax	25,33,26	25,33,26	
Nref	11738	11715	
Tmin, Tmax	$0.077,0.105$	$0.267,1.000$	
Tmin'	0.020		
```Correction method= # Reported T Limits: Tmin=0.267 Tmax=1.000 AbsCorr = MULTI-SCAN```			
Data completenes	$s=0.998$	Theta $(\max )=6$	

$S=1.036 \quad$ Npar $=751$

The following ALERTS were generated. Each ALERT has the format

## test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

- Alert level B

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.93Ang From Il
$2.95 \mathrm{eA}-3$

## Alert level C

PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... PLAT222_ALERT_3_C NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of PLAT250_ALERT_2_C Large U3/U1 Ratio for $\langle U(i, j)\rangle$ Tensor (Resd 2) PLAT906_ALERT_3_C Large K Value in the Analysis of Variance ...... PLAT911_ALERT_3_C Missing FCF Refl Between Thmin \& STh/L= 0.597

1	3	0,	2	1	1,	-5	2	1,	-1	2	1,	0	3	1,	4	3	1,
1	4	1,	-4	2	2,	3	3	2,	-2	4	2,	-2	1	3,	1	1	4,

$\begin{array}{llllllllllllllllll}1 & 4 & 1, & -4 & 2 & 2, & 3 & 3 & 2, & -2 & 4 & 2, & -2 & 1 & 3, & 1 & 1 & 4,\end{array}$

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.05Ang From I2

- Alert level G

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the
_chemical_formula_sum and the formula from the _atom_site^ data.
Atom count from _chemical_formula_sum:C58.06 H70.12 C14.12 F4 I2 N6 O9 Atom count from the _atom_site data: C56 H66 F4 I2 N6 O9 Sel
CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected.
CELLZ01_ALERT_1_G ALERT: Large difference may be due to a
symmetry error - see SYMMG tests
From the CIF: _cell_formula_units_Z 8
From the CIF: _chemical_formula_sum C58.06 H70.12 C14.12 F4 I2 N6 O9 S TEST: Compare cell contents of formula and atom_site data

atom	Z*formula	cif sites diff	
C	464.48	448.00	16.48
H	560.96	528.00	32.96
Cl	32.96	0.00	32.96
F	32.00	32.00	0.00
I	16.00	16.00	0.00
N	48.00	48.00	0.00
O	72.00	72.00	0.00
Se	8.00	8.00	0.00

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms

PLAT041_ALERT_1_G Calc. and Reported SumFormula Strings Differ Please Check

Calc: C56 H66 F4 I2 N6 O9 Se
Rep.: C58.06 H70.12 C14.12 F4 I2 N6 O9 Se
PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ
Calc: C50 H66 N6 O9 Se, C6 F4 I2
Rep.: C6 F4 I2, C50 H66 N6 O9 Se, 2.062 [CH2CL2]
PLAT051_ALERT_1_G Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by . PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large PLAT176_ALERT_4_G The CIF-Embedded .res File Contains SADI Records PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used PLAT191_ALERT_3_G A Non-default SADI Restraint Value has been used PLAT191_ALERT_3_G A Non-default SADI Restraint Value has been used PLAT191_ALERT_3_G A Non-default SADI Restraint Value has been used PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar
 PLAT410_ALERT_2_G Short Intra H...H Contact H16 $\begin{aligned} & \ldots, \mathrm{H} 43 \mathrm{~B} \\ & \mathrm{x}, \mathrm{y}, \mathrm{z}=\end{aligned}$
PLAT431_ALERT_2_G Short Inter HL..A Contact I1 ..N1
$1 / 2+x, 1 / 2+y, 1 / 2+z=$
PLAT432_ALERT_2_G Short Inter X...Y Contact I1 ..C5
PLAT434_ALERT_2_G Short Inter HL..HL Contact I2 ..F4
PLAT606_ALERT_4_G Solvent Accessible VOID(S) in Structure ....... PLAT860_ALERT_3_G Number of Least-Squares Restraints ............... PLAT868_ALERT_4_G ALERTS Due to the Use of _smtbx_masks Suppressed PLAT909_ALERT_3_G Percentage of $I>2$ sig(I) Data at Theta(Max) Still PLAT910_ALERT_3_G Missing \# of FCF Reflection(s) Below Theta(Min).
15.35 \% 40.76 Why ?

6 Report 1 Report 1 Report 0.0100 Report 0.0400 Report 0.0400 Report 0.0400 Report 0.0200 Report 5\% Note 2.13 Ang

1_555 Check 2.73 Ang.

3_555 Check
3.39 Ang

3_555 Check
3.34 Ang 2_657 Check ! Info 96 Note ! Info
75\% Note 4 Note

PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File 19 Note $\begin{array}{llllllllllllllllll}-5 & 2 & 1 & -4 & 2 & 2, & -3 & 3 & 4, & -2 & 1 & 3, & -2 & 1 & 5, & -2 & 4 & 2,\end{array}$ $-121, \quad 0 \quad 0 \quad 2,0 \quad 1 \quad 1,0 \quad 2 \quad 0,0031, \quad 1 \quad 1 \quad 0$, $\begin{array}{lll}1 & 1 & 4, \\ 4 & 3 & 1,\end{array}$
PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value ........... 2.25 Note Predicted wR2: Based on SigI**2 7.04 or SHELX Weight 15.79
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. I Info

ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
9 ALERT level $\mathbf{C}=$ Check. Ensure it is not caused by an omission or oversight
31 ALERT level $\mathbf{G}=$ General information/check it is not something unexpected
5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 17 ALERT type 2 Indicator that the structure model may be wrong or deficient
12 ALERT type 3 Indicator that the structure quality may be low
5 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

## Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or $E$ or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals
Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/01/2024; check.def file version of 05/01/2024


## Cifreport: crystal of $\mathbf{3}$

## checkCIF/PLATON report

Structure factors have been supplied for datablock(s) exp_3698_auto
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

## Datablock: exp_3698_auto



The following ALERTS were generated. Each ALERT has the format

## test-name_ALERT_alert-type_alert-level.

click on the hyperlinks for more details of the test.


O ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
1 ALERT level $C=$ Check. Ensure it is not caused by an omission or oversigh
11 ALERT level $\mathbf{G}=$ General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
4 ALERT type 2 Indicator that the structure model may be wrong or deficient
6 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

## Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or $E$ or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

## Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

## PLATON version of 06/07/2023; check.def file version of 30/06/2023



