Supporting Information

MultipleNon-covalentInteractionsDirectedSupramolecularDoubleHelices:TheOrthogonalityofHydrogen, Halogen and Chalcogen Bonding

Chuan-Zhi Liu,*^a Chi Zhang,^a Zhong-Yi Li,^a Jiale Chen,^a Tonglu Wang,^a Xiang-Kun Zhang,^a Meng Yan,^b and Bin Zhai*^a

^{*a*}Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China. ^{*b*}School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.

*Corresponding authors: Chuan-Zhi Liu: liuchuanzhi@sqnu.edu.cn, Bin Zhai: zhaibin_1978@163.com

Contents

Experimental	2
General experimental	2
Procedure for the synthesis of compound 1 and 3	2-6
References	7
¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of compuounds	8-20
HR-MS (ESI) of all new compounds	21-26
The crystal structure of compound 1 and 3	27
The Hirshfeld surfaces of compound 1 and 3	
CIF report of compound 1, 2, and 3	

General methods. All reagents were obtained from commercial suppliers and used without further purification unless otherwise noted. ¹H and ¹³C NMR spectra were recorded with a 400 MHz or 100 MHz spectrometer in the indicated solvents at 25 °C. Chemical shifts are expressed in parts per million (δ) using residual proton resonances of the deuterated solvents as the internal standards. Crystals were measured using Bruker D8 Venture-Metaljet diffractometer equipped with an PHOTON II area detector and HELIOS multilayer optics monochrommated Cu-K alpha radiation (lambda = 1.54184). Crystal structures were solved by direct method and refined by full-matrix least-squares methods based on F2 using SHELXL-2018 software. Co-crystals of 1 and 2 were grown by evaporating their solution of dichloromethane, n-hexane and dimethyl sulfoxide (V:V = 5:1:0.01). Crystals of solvate **3** was grown by evaporation of the same mixed solvent as co-crystal of 1 and 2. CCDC (Nos. 2344590, 2344598) contains the related crystallographic data, which can be obtained free of The Cambridge Crystallographic charge from Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compound 5. To a mixture of compound **4** (30 g, 1.96 mol) in anhydrous methanol (100 mL) was added concentrated H₂SO₄ (10 mL) by dropwise. The mixture was heated to reflux and stirred at this temperature for 12 hours. Then water (100 mL) was added to quench to reaction. The aqueous was treated with saturated NaHCO₃ solution by dropwise to adjust the pH to 7-8 (The addition of NaHCO₃ solution must be slowly to prevent excessive bubbles from overflowing in a short time). Then the solution was extracted with EtOAc (3*100 mL). The combined organic phase was washed with saturated sodium chloride solution (100 mL) and fresh water (100 mL) in sequence. Then the organic phase was dried and concentrated to get crude brown solid. The crude product was further purified by recrystallization to get the pure product (28 g, 86%). ¹HNMR (400 MHz, CDCl₃): δ 8.36 (s, 8H), 7.42 (d, *J* = 8.4 Hz, 8H), 7.11 (d, *J* = 8.8 Hz, 8H), 2.08 (s, 24H). This compound was known.¹

Compound 6. To a solution of compound **5** (5 g, 29.9 mmol) in anhydrous DCM (250 mL) at 0°C was added Ac₂O (9.15 g, 89.7 mmol). The mixture was stirred for 5 hours at room temperature. Then the solvent was evaporated under reduced pressure, and the solid residue was slurry in water (20 mL). The isolated product was recrystrallized from methanol/water (2:1) to provide compound **6** (5.6 g, 90%) as a white solid. ¹HNMR (400 MHz, CDCl₃): δ 10.13 (s, 1H), 7.09 (s, 1H), 6.83-6.75 (m, 2H), 3.86 (s, 3H), 3.37 (s, 2H). This compound was known.²

Compound 7. To a solution of compound 6 (5.6 g, 26.8 mmol) in Ac₂O (50 mL) was

added con. HNO₃ (10 mL) by dropwise at 0°C. Then the solution was warmed to room temperature and stirred for 1 hour. Then the mixture was poured into ice-water (50 mL), and extracted with EtOAc (3*60 mL). The combined organic phase was washed with saturated NaHCO₃ (3*100 mL) and water (100 mL) in sequence. Then the organic phase was dried and concentrated. The residue was purified by column chromatography (petroleum ether and ethyl acetate, 5:1 to 2:1), the product was obtained as a yellow solid (4.9 g, 59%). ¹HNMR (400 MHz, DMSO-*d*₆): δ 11.17 (s, 1H), 10.27 (s, 1H), 8.47 (d, *J* = 2.8 Hz, 1H), 8.28 (d, *J* = 2.8 Hz, 1H), 3.94 (s, 3H), 2.05 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.14, 167.94, 149.19, 138.07, 131.20, 126.09, 120.82, 117.39, 53.61, 24.26. HR-MS (ESI): Calcd for C₁₀H₁₀N₂NaO₆ [M+Na]⁺: 277.0437. Found: 277.0436.

Compound 8. To a solution of compound **7** (4.9 g, 19.3 mmol) in DMF (100 mL) was added 1-bromo-2-methylpropane (5.3 g, 38.6 mmol) and K₂CO₃ (5.3 g, 38.6 mmol). The mixture was heated to 80°C and stirred at this temperature for 15 hours. Then water (100 mL) was added to quench the reaction. The aqueous was extracted with EtOAc (3*100 mL) and the combined organic phase was washed (with fresh water for several times to remove residual DMF), dried and concentrated. The residue was purified by column chromatography (petroleum ether and ethyl acetate, 3:1 to 1:1), the pure product was obtained as a white solid (4.4 g, 73%). ¹HNMR (400 MHz, CDCl₃): δ 10.88 (s, 1H), 8.83 (s, 1H), 8.55 (s, 1H), 3.93 (d, *J* = 6.4 Hz, 2H), 3.91 (s, 3H), 2.33 (s, 3H), 2.23-2.16 (m, 1H), 1.08 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.65, 164.56, 164.06, 139.94, 131.18, 128.03, 114.58, 103.59, 75.93, 52.23, 28.18, 25.94, 19.04. HR-MS (ESI): Calcd for C₁₄H₁₈N₂NaO₆ [M+Na]⁺: 333.1063. Found: 333.1058.

Compound 9. To a solution of compound **8** (4.4 g, 14.2 mmol) in MeOH (50 mL) was added K₂CO₃ (3.9 g, 28.4 mmol). The solution was stirred at room temperature for 15 hours. After that, the solvent was removed under reduced pressure, the residue was dissolved in H₂O (50 mL) and EtOAc (50 mL). Then the EtOAc phase was separated and the aqueous phase was extracted with EtOAc (2*50 mL). The combined organic phase was dried with NaSO₄, and concentrated to get the yellow product (2.1 g, 55%). ¹HNMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 6.50 (s, 2H), 6.16 (s, 1H), 3.86 (s, 3H), 3.78 (d, *J* = 6.4 Hz, 2H), 2.21-2.14 (m, 1H), 1.07 (d, *J* = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.50, 164.09, 148.94, 132.72, 125.64, 110.57, 98.90, 75.52, 51.88, 28.19, 19.08. HR-MS (ESI): Calcd for C₁₂H₁₆N₂NaO₅ [M+Na]⁺: 291.0957. Found: 291.0954.

Compound 10. A mixture of compound **9** (2.1 g, 7.84 mmol) and Pd/C (210 mg) in MeOH (50 mL) under H₂ was stirred at room temperature for 4 hours. Then the mixture was filtered and the filtrated was concentrated to get crude product, and the crude product was purified by column chromatography (petroleum ether and ethyl acetate, 10:1 to 5:1) to get pure product as a brown solid (1.3 g, 70%). ¹HNMR (400 MHz, CDCl₃): δ 7.32 (s, 1H), 6.27 (s, 1H), 3.83 (s, 3H), 3.69 (d, J = 6.4 Hz, 2H), 2.15-2.08 (m, 1H), 1.04 (d, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.77, 155.87, 142.77, 125.46, 121.93, 109.28, 100.97, 76.01, 51.43, 28.49, 19.27. HR-MS (ESI): Calcd for C₁₂H₁₈N₂NaO₃ [M+Na]⁺: 261.1215. Found: 261.1220.

Compound 11. To a solution of compound **10** (2.0 g, 8.4 mmol) in EtOH (50 mL) at 0°C was added SeO₂ (0.93 g, 8.4 mmol). The solution was heated to 80°C and stirred at this temperature for 5 hours. Then the mixture was cooled to rt. NaOH (0.67 g, 16.8 mmol) in H₂O (10 mL) was added. The solution was reheated to 40°C and stirred at this temperature for 2 hours. Then the solvent was removed under reduced pressure, the residue was adjusted the pH to 3-4 with dilute hydrochloric acid (1 N). The precipitate was filtered and the yellow filter was product (2.2 g, 88%). ¹HNMR (400 MHz, DMSO-*d*₆): δ 13.33 (s, 1H), 7.93 (s, 1H), 7.20 (s, 1H), 3.91 (d, *J* = 6.4 Hz, 2H), 2.11-2.05 (m, 1H), 1.02 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.34, 160.85, 157.40, 155.90, 131.68, 122.83, 100.86, 74.99, 28.06, 19.40. HR-MS (ESI): Calcd for C₁₁H₁₂N₂NaO₃Se [M+Na]⁺: 322.9911. Found: 322.9908.

Compound 14. A mixture of compound **13** (2.8 g, 16.8 mmol), compound **12** (4.3 g, 14.0 mmol), HATU (8.0 g, 21.0 mmol), and DIPEA (5.4 g, 42.0 mmol) in DMF (20 mL) was stirred at 30 °C for 15 h. Then water (60 mL) was added to quench to reaction. The aqueous was extracted with DCM (3*50 mL). The combined organic phase was washed with saturated sodium chloride solution (100 mL) and water (100 mL) in sequence. Then the organic phase was dried and concentrated to get crude product. The curde product was removed and the residue was purified by column chromatography (DCM/MeOH =20/1) to afford compound **14** (4.1 g, 64%) as a brown solid. ¹HNMR (400 MHz, CDCl₃): δ 9.52 (s, 2H), 8.89 (s, 1H), 8.29 (d, *J* =7.2 Hz, 1H), 6.84 (d, *J* =7.2 Hz, 1H), 6.55 (s, 1H), 4.06 (d, *J* =8.8 Hz, 2H), 3.92-3.90 (m, 4H), 2.32-2.10 (m, 3H), 1.11-1.02 (m, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 161.26, 160.82, 156.85, 154.27, 146.47, 143.56, 133.57, 131.40, 124.88, 114.43, 106.67, 98.05, 76.15, 75.01, 28.30, 28.06, 27.85, 19.23, 19.11, 19.07. HR-MS (ESI): Calcd for C₂₄H₃₄N₃O₆ [M+H]⁺: 460.2448. Found: 460.2447.

Compound 15. A mixture of compound **14** (4.0 g, 8.7 mmol) and Pd/C (400 mg) in MeOH (50 mL) under H_2 atmosphere was stirred at rt for 15 h. Then the mixture was filtered with celite, the filtrated was concentrated, the residue was purified by cloumn

chromatography (DCM/MeOH =20/1) to afford compound **15** (3.2 g, 86%) as a brown solid. ¹HNMR (400 MHz, CDCl₃): δ 9.96 (s, 1H), 9.60 (s, 1H), 8.25 (d, *J* =7.6 Hz, 1H), 7.59 (s, 1H), 6.82 (d, *J* =7.6 Hz, 1H), 6.46 (s, 1H), 3.91-3.87 (m, 4H), 3.81 (d, *J* =8.4 Hz, 2H), 3.68 (s, 2H), 2.22-2.10 (m, 3H), 1.09-0.99 (m, 18H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.67, 154.17, 150.80, 150.55, 145.73, 143.28, 130.75, 125.63, 117.31, 114.67, 106.51, 98.83, 77.72, 74.89, 74.85, 28.35, 28.19, 27.90, 19.33, 19.32, 19.14. HR-MS (ESI): Calcd for C₂₄H₃₆N₃O₄ [M+H]⁺: 430.2706. Found: 430.2723.

Compound 16. A mixture of compound **15** (1.7 g, 3.96 mmol), compound **12** (1.23 g, 3.96 mmol), HATU (2.25 g, 5.94 mmol), and DIPEA (1.5 g, 11.88 mmol) in DMF (15 mL) was stirred at 30 °C for 15 h. Then water (50 mL) was added to quench to reaction. The aqueous was extracted with DCM (3*50 mL). The combined organic phase was washed with saturated sodium chloride solution (100 mL) and water (100 mL) in sequence. Then the organic phase was dried and concentrated to get crude product. The curde product was purified by column chromatography (DCM/MeOH =20/1) to afford compound **16** (1.6 g, 57%) as an off-white solid. ¹HNMR (400 MHz, CDCl₃): δ 9.68 (s, 1H), 9.62 (s, 1H), 9.28 (s, 1H), 8.86 (s, 1H), 8.81 (s, 1H), 8.24 (d, *J* =7.2 Hz, 1H), 6.81 (d, *J* =7.6 Hz, 1H), 6.54 (s, 2H), 4.04 (d, *J* =8.8 Hz, 2H), 3.95 (d, *J* =9.2 Hz, 2H), 3.90-3.85 (m, 6H), 2.27-2.07 (m, 5H), 1.08-1.01 (m, 30H). ¹³C NMR (100 MHz, CDCl₃) δ 163.01, 161.31, 160.95, 156.59, 155.01, 154.02, 153.96, 145.73, 143.19, 133.43, 131.31, 127.59, 125.59, 121.11, 114.94, 114.80, 106.50, 97.99, 97.91, 76.07, 75.41, 74.91, 28.29, 28.21, 28.14, 28.13, 27.88, 19.30, 19.28, 19.21, 19.15, 19.07. HR-MS (ESI): Calcd for C₃₉H₅₅N₄O₉ [M+H]⁺: 723.3969. Found: 723.3979.

Compound 17. A mixture of compound **16** (1.3 g, 1.8 mmol) and Pd/C (130 mg) in THF (50 mL) under H₂ atmosphere was stirred at rt for 4 h, the mixture was filtered with celite, and the filtrated was concentrated, the residue was purified by column chromatography (DCM/MeOH =20/1) and Prep-TLC to afford compound **17** (902 mg, 72%) as an off-white solid. ¹HNMR (400 MHz, CDCl₃): δ 9.73 (s, 1H), 9.68 (s, 1H), 9.63 (s, 1H), 8.91 (s, 1H), 8.24 (d, *J* =7.2 Hz, 1H), 7.61 (s, 1H), 6.81 (d, *J* =7.6 Hz, 1H), 6.53 (s, 1H), 6.45 (s, 1H), 3.94 (d, *J* =8.8 Hz, 2H), 3.89-3.79 (m, 8H), 3.66 (s, 2H), 2.24-2.08 (m, 5H), 1.08-0.99 (m, 30H). ¹³C NMR (100 MHz, CDCl₃) δ 163.60, 163.23, 154.43, 153.99, 153.77, 150.79, 150.19, 145.63, 143.25, 130.62, 127.15, 125.69, 122.14, 117.60, 115.15, 115.04, 106.45, 98.91, 98.01, 77.72, 75.38, 74.87, 74.83, 28.37, 28.33, 28.25, 28.15, 27.90, 19.39, 19.33, 19.32, 19.25, 19.15. HR-MS (ESI): Calcd for C₃₉H₅₇N₄O₇ [M+H]⁺: 693.4227. Found: 693.4228.

Compound 1. To a solution of compounds **11** (173 mg, 0.58 mmol) in DMF (20 mL) were added HATU (878 mg, 2.3 mmol) and DIPEA (0.4 mL). The mixture was stirred at room temperature for 20 mins. Then compound **17** (200 mg, 0.29 mmol) was added. The mixture was warmed to 40 °C and stirred for 12 hours. Then water (50 mL) was added to quench to reaction. The aqueous was extracted with DCM (3*50 mL). The combined organic phase was washed with saturated sodium chloride solution (100 mL) and water (100 mL) in sequence. Then the organic phase was dried and concentrated to get crude product. The crude product was purified by column chromatography (DCM/MeOH =20/1 to 25/1) to afford compound **1** (220 mg, 78%) as orange-yellow

solid. ¹HNMR (400 MHz, CDCl₃): δ 9.75 (s, 1H), 9.69 (s, 1H), 9.46 (s, 1H), 9.19 (s, 1H), 8.88 (s, 2H), 8.62 (s, 1H), 8.23 (d, J = 6.0 Hz, 1H), 7.19 (s, 1H), 6.92 (d, J = 5.6 Hz, 1H), 6.57 (s, 2H), 4.03-3.95 (m, 8H), 3.88-3.86 (m, 4H), 2.31-2.10 (m, 6H), 1.08-1.02 (m, 36H). ¹³C NMR (100 MHz, CDCl₃) δ 163.22, 162.99, 162.23, 161.36, 157.56, 156.82, 155.32, 154.55, 154.38, 153.84, 144.86, 130.22, 127.51, 127.18, 127.12, 125.90, 121.91, 120.81, 115.39, 114.86, 106.62, 100.91, 97.95, 97.84, 76.13, 75.36, 75.33, 75.09, 28.27, 28.25, 28.13, 27.88, 27.85, 19.38, 19.33, 19.27, 19.23, 19.16. HR-MS (ESI): Calcd for C₅₀H₆₇N₆O₉Se [M+H]⁺: 975.4135. Found: 975.4126. Compound 19. To a solution of compounds 11 (200 mg, 0.67 mmol) in DMF (10 mL) were added HATU (510 mg, 1.34 mmol) and DIPEA (259 mg, 2.01 mmol). The mixture was stirred at room temperature for 20 mins. Then compound 18 (259 mg, 0.74 mmol) was added. The mixture was warmed to 40 °C and stirred for 12 hours. Then water (100 mL) was added to quench to reaction. The aqueous was extracted with DCM (3*50 mL). The combined organic phase was washed with saturated sodium chloride solution (100 mL) and water (100 mL) in sequence. Then the organic phase was dried and concentrated to get crude product. The crude product was slurry in hexane (30 mL) and filtered to get compound 19 as orange-yellow solid (320 mg, 75%). ¹HNMR (400 MHz, CDCl₃): δ 9.39 (s, 1H), 8.97 (s, 1H), 8.65 (s, 1H), 7.18 (s, 1H), 6.75 (s, 1H), 6.50 (s, 1H), 4.00 (d, J = 6.8 Hz, 2H), 3.76 (dd, $J_1 = 6.8$ Hz, $J_2 = 1.6$ Hz, 4H), 2.32-2.26 (m, 1H), 2.18-2.03 (m, 2H), 1.60 (s, 9H), 1.07-1.04 (m, 12H), 0.98 (d, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 161.73, 161.34, 157.57, 156.88, 152.94, 144.97, 130.51, 127.17, 121.43, 120.65, 114.22, 100.87, 98.32, 76.17, 76.16, 75.60, 28.41, 28.34, 28.33, 27.75, 19.36, 19.31, 19.24. HR-MS (ESI): Calcd for C₃₀H₄₂N₄O₆NaSe [M+Na]⁺: 657.2167. Found: 657.2169.

Compound 3. Compound 19 (279 mg, 0.44 mmol) was added to hydrochloride gas in ethyl acetate (30 mL) and the suspension was stirred for 1 hour and then concentrated to afford a residue. To a solution of compounds 20 (145 mg, 0.48 mmol) in DMF (10 mL) were added HATU (502 mg, 1.32 mmol) and DIPEA (0.7 mL). The mixture was stirred at room temperature for 20 mins. Then the previously obtained residue was added. The mixture was warmed to 40 °C and stirred for 12 hours. Then water (100 mL) was added to quench to reaction. The precipitated phase was filtered and recrystallized with EA (2 mL) and PE (20 mL) to get pure compound 3 as orange-yellow solid (285 mg, 79%). ¹HNMR (400 MHz, CDCl₃): δ 9.47-9.45 (m, 2H), 8.44 (d, J = 13.6 Hz, 1H), 8.69 (s, 1H), 8.51-8.46 (m, 1H), 7.20 (s, 1H), 6.56 (s, 1H), 4.03 (d, J = 6.4 Hz, 2H), 3.84-3.81 (m, 4H), 2.35-2.07 (m, 3H), 1.11-1.00 (m, 18H).¹³C NMR (100 MHz, CDCl₃) δ 161.84, 161.39, 157.53, 157.27, 154.22, 151.70, 150.92, 148.52, 146.58, 145.65, 140.64, 140.47, 137.90 (t, J = 180 Hz), 135.08, 130.28, 127.38, 120.31, 120.02, 115.79, 100.95, 97.33, 76.20, 75.95, 75.43, 28.44, 28.34, 27.75, 19.34, 19.27, 19.23. ¹⁹F NMR (300 MHz, CDCl₃): δ -106.3~-106.4 (m, 1F), -134.86~-134.94 (m, 1F), -155.0 (t, J = 17.1 Hz, 1F). HR-MS (ESI): Calcd for C₃₂H₃₄N₄O₅NaF₃ISe [M+Na]⁺: 841.0589. Found: 841.0582.

Reference

[1] H. Goeksu, S. F. Ho, O. Metin, K. Korkmaz, A. Mendoza Garcia, M. S. Gueltekin,

S. Sun, ACS Catal. 2014, 4, 1777–1782.

[2] C. Wei, R. Wang, C. Zhang, G. Xu, Y. Li, Q. Z. Zhang, L. Y. Li, L. Yi, Z. Xi, *Chem-Asian J* 2016, *11*, 1376–1381.

Figure S2. ¹³C NMR (100 MHz, DMSO- d_6) spectrum of compound 7 at 25 °C.

20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 f1 (ppm)

Figure S4. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 8 at 25 °C.

Figure S6. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 9 at 25 °C.

Figure S8. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 10 at 25 °C.

Figure S10. ¹³C NMR (100 MHz, DMSO- d_6) spectrum of compound 11 at 25 °C.

Figure S12. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 14 at 25 °C.

Figure S14. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 15 at 25 °C.

Figure S16. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 16 at 25 °C.

Figure S18. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 17 at 25 °C.

Figure S20. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 1 at 25 °C.

Figure S22. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 19 at 25 °C.

Figure S23. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3 at 25 °C.

Figure S24. ¹⁹F NMR (300 MHz, CDCl₃) spectrum of compound 3 at 25 °C.

Figure S25. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3 at 25 °C.

· · · · ·
Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons 39 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-10 H: 0-10 N: 0-2 O: 0-6 Na: 0-1
20230501-1-1 47 (0.234) 1: TOF MS ES+
100 277.0436
299.0257 301.1417 255.0614 255.0614 261.0694 267.1207269.1350 279.0480 285.1315293.1360 205.1521 202.1450 309.2030
0 - 251.1230
Minimum: -1.5 Maximum: 5.0 10.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 277.0436 277.0437 -0.1 -0.4 6.5 551.4 n/a n/a C10 H10 N2 06 Na

Figure S39. HR-MS (ESI) of compound 7.

Figure S40. HR-MS (ESI) of compound 8.

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 38 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-12 H: 0-16 N: 0-2 O: 0-6 Na: 0-1 20230501-1-10 49 (0.241) 1: TOF MS ES+

Figure S41. HR-MS (ESI) of compound 9.

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 22 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-12 H: 0-18 N: 0-2 O: 0-3 Na: 0-1

Figure S42. HR-MS (ESI) of compound 10.

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 45 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-11 H: 0-12 N: 0-2 O: 0-3 Se: 0-1 Na: 0-1

20230501-1-11 130 (0.589) 1: TOF MS ES+

Figure S43. HR-MS (ESI) of compound 11.

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 235 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 1-24 H: 1-34 N: 1-3 O: 0-6 Na: 0-1 Se: 0-2

20240329-4-6-Pos 58 (0.245) 1: TOF MS ES+

Figure S44. HR-MS (ESI) of compound 14.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 287 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used C: 1-24 H: 1-36 N: 1-3 O: 0-6 Na: 0-1 Se: 0-2

20240329-4-7-Pos 44 (0.192) 1: TOF MS ES+

Figure S45. HR-MS (ESI) of compound 15.

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 537 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 1-39 H: 1-55 N: 1-4 O: 0-9 Na: 0-1 Se: 0-2 20240329-4-8-Pos 70 (0.291) 1: TOF MS ES+ 1.27e+006 723.3979 100-724.4009 % 725 4043 98.9828 141.9574 1085.0977 746.3801_843.3544 1335.0721 1445.7908 m/z 301.1393 437.1902 589.3123 0-، 1200 200 400 600 700 800 1000 1100 1400 100 300 500 900 1300 1500 Minimum: -1.5 50.0 Maximum: 5.0 10.0 Calc. Mass mDa 723.3969 1.0 PPM i-FIT 567.6 Norm n/a Conf(%) Formula n/a C39 H55 N4 09 Mass 723.3979 DBE 1.4 14.5 n/a

Figure S46. HR-MS (ESI) of compound 16.

Page 1

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 674 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 1-39 H: 1-57 N: 1-4 O: 0-9 Na: 0-1 Se: 0-2 20240329-4-9-Pos 86 (0.352) 1: TOF MS ES+

Figure S47. HR-MS (ESI) of compound 17.

Elemental Composition Report Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 418 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 1-50 H: 1-67 N: 1-6 O: 0-9 Na: 0-1 Se: 0-2 20240329-4-11-Pos 106 (0.433) 1: TOF MS ES+ 975.4126 100-% 975,4494 975.6248 975.6775 975.2496 976.40 m/z 04

T

975.40

975.60

975.80

976.00

976.20

975.20

Conf(%) Formula n/a C50 H67 N6 09 Se DBE 21.5 PPM Calc. Mass mDa 975.4135 -0.9 i-FIT Norm Mass 975.4126 -0.9 49.1n/a

975.00

-1.5 50.0

Figure S48. HR-MS (ESI) of compound 1.

974.80

10.0

974.40

Minimum: Maximum:

974.60

5.0

Page 1

Page 1

1.87e+002

Figure S50. HR-MS (ESI) of compound 3.

Single Mass Analysis

Figure S51. Three sets of intramolecular three-center hydrogen bonding $(O \cdots H \cdots O)$, the N-H protons with oxygen atoms in nearby alkoxy groups) were formed in the crystal state of compound **1**. (The unit of length of hydrogen bond is "Å").

Figure S52. The detailed stacking pattern between P-helix and M-helix. The driving force came from the dual hydrogen bonding (O atom of carbonyl group near pyridine end) O····H (H of the *t*-BuO- on the aromatic ring near the benzoselenadiazole end) (O···H distance: 2.59 Å, the sum of the van der Waals radium of O and H: 2.62 Å). There were no effective π - π interaction between two molecule (the distance between two nearly parallel aromatic rings was 3.56 Å), although it seemed to exist.

Figure S53. Two sets of intramolecular three-center hydrogen bonding $(F \cdots H \cdots O)$ and $O \cdots H \cdots O$, the N-H protons with oxygen atoms in nearby F atom or alkoxy

groups) were formed in the crystal state of compound 3. (The unit of length of hydrogen bond is "Å").

Figure S54. The Hirshfeld surfaces of the molecule of compound 1 in co-crystal of compound 1 and 2 (a) and the molecule of compound 3 in crystal (b). c) and d) 2D fingerprint plot generated by Hirshfeld surface of a) and b).

The interaction sites of XB and ChB can be clearly observed from the Hirshfeld surfaces of the molecules of compound **1** and **3** (red circle dot; the clarity of the circle dot is related to the strength of the interaction. Fig. 5a and 5b). From the 2D fingerprint plot generated by Hirshfeld surface of co-crystal of compound **1** and **2** (Fig. 5c), the numerous and complex peak patterns indicated that molecular surface of compound **1** exhibits a diverse range of intermolecular interactions. Therefore, the regions of Se…N ChB and I…N XB can only be roughly determined. However, the 2D fingerprint plot of crystal 3 presented relatively clear intermolecular interactions, including Se…N ChB and I…O XB (Fig. 5d). The discrimination of intermolecular XB and ChB base on Hirshfeld analysis has been further demonstrated.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) exp_3820_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: exp_3820_auto

Bond precision:	C-C = 0.0071	A T	Wavelength=	1.54184
Cell:	a=21.6338(3) alpha=90	b=28.0204 beta=98.5	4(3) 596(1)	c=21.9354(3) gamma=90
Temperature:	173 K			
	Calculated		Reported	
Volume	13147.6(3)		13147.6(3)	
Space group	I 2/a		I 1 2/a 1	
Hall group	-I 2ya		-I 2ya	
Maiatu fammila	C50 H66 N6 O9	Se, C6 F4 I2	C6 F4 I2,	C50 H66 N6 O9 Se,
Molety formula	[+ solvent]		2.062[CH2C	L2]
Q	C56 H66 F4 I2	N6 09 Se [+	C58.06 H70	.12 Cl4.12 F4 I2
Sum formula	solvent]		N6 09 Se	
Mr	1375.91		1550.85	
Dx,g cm-3	1.390		1.567	
Z	8		8	
Mu (mm-1)	8.686		10.261	
F000	5536.0		6228.0	
F000'	5540.58			
h,k,lmax	25,33,26		25,33,26	
Nref	11738		11715	
Tmin,Tmax	0.077,0.105		0.267,1.00	0
Tmin'	0.020			

Correction method= # Reported T Limits: Tmin=0.267 Tmax=1.000 AbsCorr = MULTI-SCAN

Data completeness= 0.998 Theta(max) = 67.077

R(reflections) = 0.0560(10139)

S = 1.036

wR2(reflections)= 0.1582(11715)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Npar= 751

Alert level B PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.93Ang From I1 2.95 eA-3 Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density 2.09 Report PLAT220_ALERT_2_C NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range PLAT222_ALERT_3_C NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range 4.6 Ratio 5.7 Ratio 'MainMol' Ueq as Compared to Neighbors of 'MainMol' Ueq as Compared to Neighbors of PLAT242_ALERT_2_C Low C28 Check PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of PLAT250_ALERT_2_C Large U3/U1 Ratio for <U(i,j)> Tensor(Resd 2) C32 Check 2.4 Note PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 2.040 Check PLAT905_ALEKT_3_C Missing FCF Refl Between Thmin & STh/L= 0.597 19 R 1 3 0, 2 1, -5 2 1, -1 2 1, 3 1, 4 3 1, 1 4 1, -4 2 2, 3 3 2, -2 4 2, -2 1 3, 1 1 4, -3 3 4, -2 1 5, 2 1 5, 4 30 6, 11 28 7, 14 0 14, 19 Report 4 3 1, -3 3 4, -2 1 5, 6 0 24, PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.05Ang From I2 1.67 eA-3

Alert level G

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C58.06 H70.12 C14.12 F4 I2 N6 09 Atom count from the _atom_site data: C56 H66 F4 I2 N6 O9 Se1 CELLZ01 ALERT 1 G Difference between formula and atom site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_sum C58.06 H70.12 Cl4.12 F4 I2 N6 O9 S TEST: Compare cell contents of formula and atom_site data Z*formula cif sites diff atom C 464.48 448.00 16.48 Н 560.96 528.00 32.96 32.96 32.96 0.00 Cl F 32.00 32.00 0.00 Т 16.00 16.00 0.00 48.00 48.00 0.00 N 72.00 72.00 0.00 0 Se 8.00 8.00 0.00 PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 7 Note PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 7 Report PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 3 Report H2 H3 H4 PLAT041_ALERT_1_G Calc. and Reported SumFormula Strings Differ Please Check

Calc: C56 H66 F4 I2 N6 O9 Se Rep.: C58.06 H70.12 C14.12 F4 I2 N6 O9 Se PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Calc: C50 H66 N6 09 Se, C6 F4 I2 Please Check Rep.: C6 F4 I2, C50 H66 N6 O9 Se, 2.062[CH2CL2] PLAT051_ALERT_1_G Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by . 15.35 % PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large PLAT176_ALERT_4_G The CIF-Embedded .res File Contains SADI Records 40.76 Why ? 6 Report PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records 1 Report PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used 1 Report 0.0100 Report 0.0400 Report PLAT191_ALERT_3_G A Non-default SADI Restraint Value has been used PLAT191_ALERT_3_G A Non-default SADI Restraint Value has been used 0.0400 Report PLAT191 ALERT 3 G A Non-default SADI Restraint Value has been used 0.0400 Report PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar 0.0200 Report PLAT301_ALERT_3_G Main Residue Disorder(Resd 1) 5% Note 2.13 Ang. PLAT410 ALERT 2 G Short Intra H...H Contact H16 ..H43B 1_555 Check x,y,z PLAT431_ALERT_2_G Short Inter HL..A Contact I1 ..N1 2.73 Ang. 1/2+x,1/2+y,1/2+z = 3_555 Check PLAT432_ALERT_2_G Short Inter X...Y Contact I1 3.39 Ang. 1/2+x,1/2+y,1/2+z = 3_555 Check PLAT434_ALERT_2_G Short Inter HL..HL Contact I2 ...F4 3.34 Ang. . 2_657 Check 3/2-x,y,2-z = PLAT606_ALERT_4_G Solvent Accessible VOID(S) in Structure ! Info PLAT860_ALERT_3_G Number of Least-Squares Restraints 96 Note PLAT868_ALERT_4_G ALERTS Due to the Use of _smtbx_masks Suppressed ! Info PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still 75% Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 4 Note 0 2 0, 0 1 1, 0 0 1 1 0, 2, PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File 19 Note -2 4 2, 1 1 0. 2. 4 3 1. PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value Predicted wR2: Based on SigI**2 7.04 or SHELX Weight 15.79 2.25 Note PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 1 Info 0 ALERT level A = Most likely a serious problem - resolve or explain ALERT level B = A potentially serious problem, consider carefully 9 ALERT level C = Check. Ensure it is not caused by an omission or oversight 31 ALERT level G = General information/check it is not something unexpected 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 17 ALERT type 2 Indicator that the structure model may be wrong or deficient 12 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/01/2024; check.def file version of 05/01/2024

Datablock exp_3820_auto - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) exp_3698_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: exp_3698_auto

Bond precision:	C-C = 0.0051 A	W	avelength	a=1.54184
Cell:	a=9.5768(5) alpha=96.600(3)	b=10.04120 beta=101.3	(3) 321 (3)	c=18.3416(5) gamma=98.752(3)
Temperature:	173 K			
	Calculated		Reported	
Volume	1690.13(12)		1690.13(1	.1)
Space group	P -1		P -1	
Hall group	-P 1		-P 1	
Moiety formula	C32 H34 F3 I N4 O	5 Se	C32 H34 F	'3 I N4 O5 Se
Sum formula	C32 H34 F3 I N4 O	5 Se	C32 H34 F	'3 I N4 O5 Se
Mr	817.49		817.49	
Dx,g cm-3	1.606		1.606	
Z	2		2	
Mu (mm-1)	9.207		9.207	
F000	816.0		816.0	
F000'	816.15			
h,k,lmax	11,11,21		11,11,21	
Nref	6040		6014	
Tmin, Tmax	0.137,0.276		0.368,1.0	000
Tmin'	0.061			

Correction method= # Reported T Limits: Tmin=0.368 Tmax=1.000 AbsCorr = MULTI-SCAN

Data completeness= 0.996 Theta(max)= 67.066

R(reflections) = 0.0339(5418)

S = 1.088

Npar= 421

wR2(reflections) = 0.0918(6014)

The Clic	The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.							
PLAT	<pre>lert level B 334_ALERT_3_B Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers</pre>	2	Check					
PLAT	lert level C 911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.597	26	Report					
PLAT PLAT PLAT PLAT PLAT PLAT PLAT PLAT	<pre>lert level G 102_ALERT_2_G Number of Distance or Angle Restraints on AtSite 107_ALERT_5_G Number of Unrefined Donor-H Atoms</pre>	1 2 0.003 1 2.576 Chev 1 80% 1 5 2.8 5	Note Report Degree Report Ang. Ck Note Note Note Low Info					
0 1 11 11 4 6 1 1	ALERT level A = Most likely a serious problem - resolve or exp ALERT level B = A potentially serious problem, consider carefu ALERT level C = Check. Ensure it is not caused by an omission ALERT level G = General information/check it is not something ALERT type 1 CIF construction/syntax error, inconsistent or mi ALERT type 2 Indicator that the structure model may be wrong o ALERT type 3 Indicator that the structure quality may be low ALERT type 4 Improvement, methodology, query or suggestion ALERT type 5 Informative message, check	lain lly or oversig unexpected ssing data r deficient	ht					

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/07/2023; check.def file version of 30/06/2023

