Pd(II)-catalyzed cyclization of 2-methyl aromatic ketones with maleimides through weak chelation assisted dual C-H activation

Gouranga Naskar and Masilamani Jeganmohan*
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
E-mail: mjeganmohan@iitm.ac.in
Electronic Supporting Information (ESI)
Contents

1. General Information 2
2. Experimental Section 2-8
a. Preparation of Ligands, Aromatic Ketones, Esters, and 2-5 Maleimides
b. Optimization of Reaction Conditions 6-7
c. Synthesis of [3+2] Annulation Products 7
d. $1.0 \mathbf{~ m m o l}$ Scale Reaction Procedure 8
e. Application Reactions 8
3. References 8
4. Spectral Data of Synthesized Compounds 9-28
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 29-87

1. General Information

All reactions were carried out in oven-dried glassware. Solvents were purchased from Thermo Fisher Scientific and Spectrochem. Pvt. Ltd., India, and used directly without further purification. Commercially available aromatic acids, maleimides, and metal salts were obtained from Sigma-Aldrich Co., Alfa Aesar, Tokyo Chemical Industry Co. Ltd., BLD Pharmatech Ltd., and Spectrochem. Pvt. Ltd., India. Analytical thin-layer chromatography (TLC) was represented on silica gel $60 \mathrm{~F}_{254}$ aluminium plates. Visualization was achieved by UV light. Products were purified by column chromatography using 100-200 mesh and 60-100 mesh silica gel. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the Bruker instrument $(400 \mathrm{MHz}$ and 500 MHz). Chemical shifts (d) were reported in parts per million (ppm) reference to residual solvent peaks $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right)$. The following abbreviations were used to show the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sext, sextet; sep, septet; m, multiplet; br, broad; dd, double-doublet; td, triple-doublet; tt, tripletriplet; etc. Coupling constants (J) were reported in the Hertz unit (Hz). High-resolution mass spectra (HRMS) were recorded on Bruker Mass spectrometer using electrospray ionizationtime of flight (ESI-TOF).

2. Experimental Section

2.a Preparation of Ligands, Aromatic Ketones, Esters, and Maleimides

Monoprotected amino acid ligands L1-10 were prepared from the commercially available amino acids followed by literature reports ${ }^{1-3}$ and $\mathbf{L 1 1 - 1 2}$ were purchased.

Maleimides $\mathbf{2 a}-\mathbf{b}, \mathbf{2 e}$, and $\mathbf{2 i} \mathbf{i} \mathbf{j}$ were purchased and maleimides $\mathbf{2 c} \mathbf{c} \mathbf{d}, \mathbf{2 f}-\mathbf{h}$, and $\mathbf{2 k} \mathbf{k}$ were synthesized from commercially available maleic anhydride and amines followed by literature reports. ${ }^{4-5}$
-List of substrates

2a

2b

2c

2d

2j

2k

$2 i$

2e

Aromatic ketones and ester were synthesized from commercially available carboxylic acids and p-xylene followed by literature reports. ${ }^{6-10}$

Reaction Procedure 1:

A clean and dry Schlenk round-bottom flask with a magnetic stir bar was charged with corresponding carboxylic acid (1.0-2.0 g) in dry DCM ($25-50 \mathrm{~mL}$) and oxalyl chloride (1.2 equiv) followed by 2-3 drops of N, N-dimethylformamide was added at $0^{\circ} \mathrm{C}$ in the nitrogen atmosphere. The reaction is allowed to reach slowly at room temperature and stir for 5-7 hours at the same temperature. Upon completion, the excess oxalyl chloride and solvent were removed in vacuo and the acid chloride was used for the next step without further purification.

To a stirring solution of N, O-dimethylhydroxylamine hydrochloride (1.1 equiv) and N, N diisopropylethylamine (2.2 equiv) in DCM $(25-50 \mathrm{~mL}$) were added corresponding carboxylic acid chloride and a small amount of 4-(dimethylamino)pyridine. The reaction allowed to stir for 24 hours at room temperature. Upon completion, the organic layer was washed with 0.2 M $\mathrm{HCl}(\mathrm{aq})$ and sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude residue was purified by flash chromatography to afford the aromatic weinreb amides.

To a stirring solution of corresponding carboxylic acid (1.0 g), N -(3-dimethylaminopropyl)N '-ethylcarbodiimide hydrochloride (1.2 equiv) and N, N-diisopropylethylamine (1.2 equiv) in DCM (25 mL) were added N, O-dimethylhydroxylamine hydrochloride (1.2 equiv) and a small amount of 4-(dimethylamino)pyridine. The reaction allowed to stir for 24 hours at room temperature. Upon completion, the organic layer was washed with $0.2 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude residue was purified by flash chromatography to afford the aromatic weinreb amides.

A clean and dry Schlenk round-bottom flask with a magnetic stirrer bar was capped with a rubber septum, evacuated, and refilled with nitrogen three times. The corresponding aromatic weinreb amide ($0.5-1.0 \mathrm{~g}$) in freshly distilled dry THF ($20-40 \mathrm{~mL}$) was added by syringes and cooled to $-78^{\circ} \mathrm{C}$. The 1.5 M THF solution of Grignard reagent (1.0 equiv) was added dropwise by syringe after being stirred at room temperature for 5 hours sat. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ was added to the reaction mixture and the aqueous layer was extracted with EtOAc (3 times), washed with water, sat. $\mathrm{NaCl}(\mathrm{aq})$ and the organic layer were separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtered was concentrated under reduced pressure and the crude residue was purified by silica-gel flash chromatography (hexane/EtOAc; 20/1) to afford the aromatic ketones.

Aromatic ketones 1a-g and 1i-j were synthesized from aromatic weinreb amides and methylmagnesium bromide followed by Reaction Procedure 1. Aromatic ketone 1h was purchased from BLD Pharma. Pvt. Ltd.
-List of substrates

Reaction Procedure 2:

A clean and dry Schlenk round-bottom flask with a magnetic stir bar was charged with corresponding carboxylic acid (1.0 g) in dry DCM (25 mL) and oxalyl chloride (1.2 equiv) followed by 2-3 drops of N, N-dimethylformamide was added at $0^{\circ} \mathrm{C}$ in nitrogen atmosphere. The reaction is allowed to reach slowly at room temperature and stir for 5-7 hours at the same temperature. Upon completion, the excess oxalyl chloride and solvent were removed in vacuo and the carboxylic acid chloride was used for the next step without further purification.

Aluminum chloride (1.1 equiv) was taken in a clean and dry Schlenk round-bottom flask in nitrogen atmosphere followed by carbon disulfide (15 mL) and p-Xylene (1.0 equiv) was added. The stir reaction mixture cooled to $0^{\circ} \mathrm{C}$ and the corresponding acid chloride was added drop by drop. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 hour then allowed to reach slowly at room temperature and stirred for 16 hours at room temperature. Upon completion, the reaction mixture was poured into ice and diluted with DCM. The aqueous layer was washed with DCM (3 times) and the combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude residue was purified by flash chromatography to get the aromatic ketones.

Aromatic Ketones 4a and $\mathbf{4 I}$ were synthesized from commercially available ethylmagnesium bromide and vinylmagnesium bromide followed by Reaction Procedure 1. Substrate $\mathbf{4 i}$ was synthesized from freshly prepared hexylmagnesium bromide followed by Reaction Procedure 1. Aromatic Ketones $\mathbf{4 b}-\mathbf{h}, \mathbf{4} \mathbf{j}-\mathbf{k}$ and $\mathbf{4 m}$ were synthesized from p-xylene and corresponding carboxylic acid chloride followed by Reaction Procedure 2. The aromatic ester $\mathbf{4 0}$ was prepared
from the corresponding carboxylic acid in ethanol solvent in the presence of a catalytic amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at reflux condition followed by the literature procedure.
-List of substrates

4i

4j

4k
4 g

4h

4m

4n

40

2.b Optimization of Reaction Conditions

A clean and oven-dry pressure tube with a magnetic stir bar was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}$ (10$15 \mathrm{~mol} \%), \mathbf{L} 7(10-30 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2.0-3.0 equiv), and the model aromatic ketone 1a ($20.0 \mathrm{mg}, 0.135 \mathrm{mmol}$) and maleimide $\mathbf{2 a}$ ($34.0 \mathrm{mg}, 2.0$ equiv) were added followed by the addition of HFIP $(0.8 \mathrm{~mL}, 0.17 \mathrm{M})$. Afterward, the pressure tube was tightly sealed by a screwcap and stirred at room temperature for 5 minutes then the sealed tube was placed in a preheated oil bath at $120-110^{\circ} \mathrm{C}$ and stirred for 72 hours. After completing the reaction, the reaction mixture was cooled to room temperature and diluted by EtOAc. Then the reaction mixture was filtered by a celite/silica plug and concentrated in vacuo. The crude reaction mixture was used to check ${ }^{1} \mathrm{H}$ NMR for calculating the yield of the resulting product 3aa and mesitylene was taken as an internal standard.

Table S1: Screening of Quantity of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$

Table S2: Screening of Quantity of L7

Table S4: Screening of Reaction Temperature and Time

Table S4: Screening of Quantity of $\operatorname{Pd}(\mathrm{OAc})_{2}$

2.c Synthetic of [3+2] Annulation Products

A clean and oven-dry pressure tube with a magnetic stir bar was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}$ (15 $\mathrm{mol} \%), \mathrm{L} 7(30 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2.5 equiv), and respective aromatic ketone and ester substrate $(40.0 \mathrm{mg})$ and maleimide (2.0 equiv) were added followed by the addition of $\operatorname{HFIP}(0.17 \mathrm{M})$. Afterward, the pressure tube was tightly sealed by a screwcap and stirred at room temperature for 5 minutes. Then the sealed tube was placed in a preheated oil bath at $110^{\circ} \mathrm{C}$ and stirred for 72 hours. After completing the reaction, the reaction mixture was cooled to room temperature and diluted by EtOAc. Then the reaction mixture was filtered by a celite/silica plug and concentrated in vacuo. The residual reaction mixture was purified by silica gel column chromatography using hexane, and EtOAc as eluents to obtain the pure [3+2] annulation products.

2.d 1.0 mmol Scale Reaction Procedure

A clean and oven-dry pressure tube with a magnetic stir bar was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}$ (33.7 $\mathrm{mg}, 15 \mathrm{~mol} \%$), L7 ($52.0 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(687.5 \mathrm{mg}, 2.5$ equiv), and respective aromatic ketone $\mathbf{4 e}(174.0 \mathrm{mg}, 1.0 \mathrm{mmol})$ and maleimide $\mathbf{2 b}$ ($222.0 \mathrm{mg}, 2.0$ equiv) were added followed by the addition of HFIP $(5.9 \mathrm{~mL}, 0.17 \mathrm{M})$. After that, the pressure tube was tightly sealed by a screwcap and stirred at room temperature for 5 minutes. Then the sealed tube was placed in a preheated oil bath at $110^{\circ} \mathrm{C}$ and stirred for 72 hours. After completing the reaction, the reaction mixture was cooled to room temperature and diluted by EtOAc. Then the reaction mixture was filtered by a celite/silica plug and concentrated in vacuo. The residual reaction mixture was purified by silica gel column chromatography using hexane, and EtOAc as eluents to obtain the pure [3+2] annulation products. The annulation product 5eb isolated 209.0 mg as a yellow solid in 74% yield.

2.e Application Reactions ${ }^{11}$

NaBH_{4} (5.0 equiv) was slowly added portion wise onto a solution of ketone $\mathbf{5 0 b}$ (1.0 equiv) in $\mathrm{MeOH}(\mathrm{c}=0.2 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred for 1 hour at the same temperature (monitored by TLC). After completion water was added and the aqueous layer was washed by EtOAc (3 times), the organic phase was dried over MgSO_{4}, filtered and concentrated under vacuum to afford the desired product $\mathbf{6}$ was purified by flash column chromatography. ${ }^{11}$

3. References

1. R. M. Herbst, D. Shemin, Organic Synthesis, 2003, 19, 4-4.
2. G. Naturale, M. Lamblin, C. Commandeur, F. X. Felpin, J. Dessolin, Eur. J. Org. Chem., 2012, 29, 5774-5788.
3. Y. Wang, K. M. Lazor, K. E. DeMeester, H. Liang, T. K. Heiss, C. L. Grimes, J. Am. Chem. Soc., 2017, 139, 13596-13599.
4. J. Zhou, X. Cai, X. Huang, Y. Dai, L. Sun, B. Zhang, H. Qian, Eur. J. Med. Chem., 2017, 138, 1158-1169.
5. J. Han, X. Huang, L. Sun, Z. Li, H. Qian, W. Huang, Biochem. Pharmacol., 2013, 86, 297308.
6. H. Park, Y. Li, J.-Q. Yu, Angew. Chem., Int. Ed., 2019, 58, 11424-11428.
7. T. Solomek, P. Stacko, A. T. Veetil, T. Pospisil, P. Klan, J. Org. Chem. 2010, 75, 7300-7309.
8. T. Pospısil, A. T. Veetil, L. A. P. Antony, P. Klan, Photochem. Photobiol. Sci. 2008, 7, 625632.
9. D. Wu, S.-S. Cui, F. Bian, W. Yu, Org. Lett. 2021, 23, 6057-6061.
10. Y. Masuda, N. Ishida, M. Murakami, J. Am. Chem. Soc. 2015, 137, 14063-14066.
11. M. Lanzi, J. Merad, D. Boyarskaya, G. Maestri, C. Allain, G. Masson, Org. Lett. 2018, 20, 5247-5250.

4. Spectral Data of Synthesized Compounds:

1-(2,5-Dimethylphenyl)ethan-1-one (1a)
Colourless liquid, prepared followed by reaction procedure 1.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.56 (s, 3H), 2.48 (s, 3H), 2.36 (s, 3H).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 202.0,137.6,135.2,135.2,132.3,132.0,123.0,29.6$, 21.1, 20.9.

1-(2-Methyl-5-(trifluoromethyl)phenyl)ethan-1-one (1b)
Colourless liquid, prepared followed by reaction procedure 1.
${ }^{1} H$ NMR (400 MHz , Chloroform-d) $\delta 7.89$ (s, 1H), 7.60 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.61(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform-d) $\delta 200.6,142.5,138.2,132.7,128.6$ ($\mathrm{q}, J=31.3 \mathrm{~Hz}$), $127.9(\mathrm{q}, J=4.0 \mathrm{~Hz}), 125.9(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.9(\mathrm{~d}, J=272.70 \mathrm{~Hz}), 29.6$, 21.6.

1-(5-Fluoro-2-methylphenyl)ethan-1-one (1c)
Colourless liquid, prepared followed by reaction procedure 1
${ }^{1}$ H NMR (400 MHz , Chloroform-d) $\delta 7.35$ (dd, $J=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19 (dd, $J=8.5,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{td}, J=8.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- \boldsymbol{d}) $\delta 200.5$ (d, $J=2.0 \mathrm{~Hz}$), 160.7 (d, $J=246.4 \mathrm{~Hz}$), 138.9 $(\mathrm{d}, J=5.0 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 133.5(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 118.4(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 116.0(\mathrm{~d}, J$ $=23.2 \mathrm{~Hz}$), 29.5, 20.8.

1-(5-Chloro-2-methylphenyl)ethan-1-one (1d)
Colourless liquid, prepared followed by reaction procedure 1
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.62(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.55 ($\mathrm{s}, 3 \mathrm{H}$), 2.46 (s, 3 H).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 200.5,139.0,136.8,133.4,131.5,131.4,129.2,29.6$, 21.0.

1-(5-Bromo-2-methylphenyl)ethan-1-one (1e)
Colourless liquid, prepared followed by reaction procedure 1
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.76(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.10 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.55 ($\mathrm{s}, 3 \mathrm{H}$), 2.44 (s, 3 H).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 200.3,139.4,137.2,134.3,133.7,132.1,119.2,29.6$, 21.1.

1-(4'-Fluoro-4-methyl-[1,1'-biphenyl]-3-yl)ethan-1-one (1g)

Colourless liquid, prepared followed by reaction procedure 1
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.13 (t, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.62 (s, 3H), 2.55 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz , Chloroform-d) $\delta 201.8,162.6(\mathrm{~d}, J=247.4 \mathrm{~Hz}$), 138.3, 137.9, 137.3, $136.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 132.6,129.9,128.6(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 127.8,115.9(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 29.7$, 21.2.

1-(o-Tolyl)ethan-1-one (1i)
Colourless liquid, prepared followed by reaction procedure 1
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (q, J=7.7 Hz, 2H), $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 201.7$, 138.4, 137.5, 132.0, 131.5, 129.4, 125.7, 29.5, 21.6.

1-(4-Fluoro-2-methylphenyl)ethan-1-one ($\mathbf{1} \mathbf{j}$)
Colourless liquid, prepared followed by reaction procedure 1
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.72(\mathrm{dd}, J=9.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H})$, 2.54 (s, 3H), 2.52 (s, 3H).
${ }^{13}$ C NMR (101 MHz , Chloroform- \boldsymbol{d}) $\delta 200.0$, 165.44 , 162.92 (d, $J=254.5 \mathrm{~Hz}$), 142.6 (d, $J=$ $9.1 \mathrm{~Hz}) 133.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 118.9(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 112.6(\mathrm{~d}, J=21.2$ $\mathrm{Hz}), 29.5,22.0(\mathrm{~d}, J=1.0 \mathrm{~Hz})$.

1-(2,5-Dimethylphenyl)-3-methylbutan-1-one (4b)

Colourless liquid, prepared followed by reaction procedure 2 .
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.75$ (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ (s, 3H), 2.35 (s, 3H), 2.25 (dp, $J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 0.98 (s, 3H), 0.97 (s, 3H).
${ }^{13}$ C NMR (101 MHz , Chloroform-d) $\delta 205.0,138.7$, 135.1, 134.5, 131.8, 131.7, 129.0, 50.7, 25.2, 22.8, 21.0, 20.7.

1-(2,5-Dimethylphenyl)-3,3-dimethylbutan-1-one (4c)
Colourless liquid, prepared followed by reaction procedure 2.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 205.7$, 140.3, 135.0, 133.9, 131.8, 131.5, 128.8, 53.9, 31.8, 30.1, 21.0, 20.5.

1-(2,5-Dimethylphenyl)-2-methylbutan-1-one (4d)
Colourless liquid, prepared followed by reaction procedure 2.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18(\mathrm{p}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{dt}, J=12.9,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.42(\mathrm{dq}, J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 209.4,139.1,135.1,134.4,131.6,131.4,128.2,45.6$, 26.3, 21.0, 20.3, 16.2, 11.9.

Cyclopropyl(2,5-dimethylphenyl)methanone (4e)
Colourless liquid, prepared followed by reaction procedure 2.
${ }^{1} H$ NMR (400 MHz , Chloroform-d) $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~h}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{dp}, J=7.3,3.8$, $3.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 205.4,139.8,135.2,133.7,131.6,131.4,128.9,21.0$, 20.8, 20.3, 12.0.

Cyclobutyl(2,5-dimethylphenyl)methanone (4f)
Colourless liquid, prepared followed by reaction procedure 2 .
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{q}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{p}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{q}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~h}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dh}, J=10.4,5.6,4.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 205.4,136.7,135.4,135.1,131.9,129.2,44.3,25.3$, 21.0, 21.0, 18.0.

Cyclohexyl(2,5-dimethylphenyl)methanone (4g)
Colourless liquid, prepared followed by reaction procedure 2.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-2.97$ (m, $1 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 1.83(\mathrm{dd}, J=23.4,12.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.69(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.18(\mathrm{~m}$, 5 H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 209.1, 139.1, 135.0, 133.9, 131.4, 131.2, 127.7, 49.0, 28.8, 26.0, 25.8, 21.0, 20.1.

1-(2,5-Dimethylphenyl)hexan-1-one (4h)

Colourless liquid, prepared followed by reaction procedure 2 .
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{q}, J=6.4,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.34$ (td, $J=7.0,3.0 \mathrm{~Hz}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform-d) δ 205.2, 138.4, 135.1, 134.6, 131.8, 131.8, 128.9, 41.7, 31.6, 24.2, 22.6, 21.0, 20.7, 14.0.

1-(2,5-Dimethylphenyl)-3,5,5-trimethylhexan-1-one (4j)

Colourless liquid, prepared followed by reaction procedure 2.
${ }^{1} H$ NMR (400 MHz , Chloroform-d) $\delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=16.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}), 2.23(\mathrm{td}, J=12.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{dd}, J=13.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{dd}, J=14.1,6.5 \mathrm{~Hz}$, 1 H), 0.98 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (s, 9H).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 205.1,138.7$, 135.1, 134.6, 131.9, 131.8, 129.0, 51.5, 51.2, 31.3, 30.1, 26.5, 23.0, 21.0, 20.7.

3-Cyclohexyl-1-(2,5-dimethylphenyl)propan-1-one (4k)

Colourless liquid, prepared followed by reaction procedure 2 .
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.59(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.33-1.10(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{q}, J=11.3,10.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform-d) $\delta 205.5,138.4,135.1,134.6,131.8,131.7,128.8,39.3$, 37.5, 33.3, 31.8, 26.6, 26.4, 21.0, 20.8.

1-(2,5-Dimethylphenyl)-3-(methoxy(methyl)amino)propan-1-one (41)
Colourless liquid, prepared followed by reaction procedure 2.
${ }^{1} H$ NMR (400 MHz , Chloroform-d) $\delta 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 2.35$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz , Chloroform-d) δ 203.5, 138.1, 135.2, 134.9, 132.0, 131.9, 129.0, 60.0, 55.8, 45.2, 39.3, 21.0, 20.7.

1-(2,5-Dimethylphenyl)-2-phenylpropan-1-one (4m)

Colourless liquid, prepared followed by reaction procedure 2 .
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.30$ (s, 1H), 7.23 (d, $J=6.4 \mathrm{~Hz}, 4 \mathrm{H}$), 7.16 (t, $J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}$, 3 H), 2.25 ($\mathrm{s}, 3 \mathrm{H}$), 1.52 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 204.9,140.5,138.6,134.8,134.6,131.5,128.8,128.4$, 128.0, 127.0, 50.7, 21.0, 20.3, 18.6 .

Ethyl 2,5-dimethylbenzoate (4o)

Colourless liquid.
${ }^{1}$ H NMR (400 MHz, Chloroform-d) $\delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform-d) δ 168.0, 136.9, 135.2, 132.6, 131.6, 131.0, 129.7, 60.7, 21.3, 20.8, 14.4 .

7-Acetyl-2-ethyl-5-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3aa)
3aa was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 a}$ according to general procedure $2 . c$; eluent is $15 \% \mathrm{EtOAc}$ in hexane; yellow solid (61 mg); yield is 84%.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.47(\mathrm{q}, J=7.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 199.0,179.7,177.3,139.8,139.5,138.0,134.0,131.2$, 130.1, 51.1, 44.2, 36.0, 34.0, 28.0, 21.3, 13.1.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$289.1547, found 289.1524.

7-Acetyl-2,5-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3ab)

3ab was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is $15 \% \mathrm{EtOAc}$ in hexane; colourless crystal (56 mg); yield is 81%.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77-3.59(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 198.9,179.9,177.5,139.8,139.4,138.0,134.0,131.2$, 130.1, 51.1, 44.2, 36.0, 28.0, 25.1, 21.2.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 258.1125$, found 258.1113 .

7-Acetyl-2-methyl-5-(trifluoromethyl)-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (3bb)
$\mathbf{3 b b}$ was prepared from $\mathbf{1 b}(0.20 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is 15% EtOAc in hexane; light brown solid (31 mg); yield is 50%.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.04(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.70(\mathrm{~m}$, $3 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 197.6, 179.2, 176.5, 146.9, 140.6, 134.5, 127.1 (q, $J=$ 3.0 Hz), 126.1 (q, $J=3.0 \mathrm{~Hz}$), $51.0,44.0,36.5,28.0,25.4$.

HRMS (ESI-TOF): m/z was calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$[M+NH$]^{+}$329.1108, found 329.1100.

7-Acetyl-5-fluoro-2-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3cb)
3cb was prepared from $\mathbf{1 c}(0.26 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is 15% EtOAc in hexane; light brown solid (36 mg); yield is 52%.
${ }^{1} H$ NMR (400 MHz , Chloroform-d) $\delta 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-$ 3.62 (m, 3H), 2.93 (s, 3H), 2.55 (s, 3H).
${ }^{13}$ C NMR (101 MHz , Chloroform-d) $\delta 197.6$ (d, $J=2.0 \mathrm{~Hz}$), 179.5, 176.8, 162.2 (d, $J=248.5$ $\mathrm{Hz}), 141.3(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 138.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 134.9(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 117.4(\mathrm{~d}, J=23.2 \mathrm{~Hz})$, 116.7 (d, $J=23.2 \mathrm{~Hz}$), $51.1,51.0,44.2,35.7,27.9$, 25.3.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FNNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$284.0693, found 284.0675.

7-Acetyl-5-chloro-2-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3db)
$\mathbf{3 d b}$ was prepared from $\mathbf{1 d}(0.24 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is 15% EtOAc in hexane; yellow solid (41 mg); yield is 63%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77-3.63(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 197.6, 179.4, 176.7, 141.2, 141.1, 135.0, 133.8, 130.4, 129.5, 51.0, 44.1, 35.9, 28.0, 25.3.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 278.0578$, found 278.0533.

7-Acetyl-5-bromo-2-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3eb)

3eb was prepared from $\mathbf{1 e}(0.19 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is 15% EtOAc in hexane; light brown solid (12 mg); yield is 20%.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 7.92$ (s, 2H), $4.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.61$ (m, 3 H), 2.94 ($\mathrm{s}, 3 \mathrm{H}$), 2.57 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 197.5, 179.4, 176.7, 141.8, 141.4, 135.3, 133.3, 132.5, 121.5, 50.9, 44.0, 36.0, 28.0, 25.3.

HRMS (ESI-TOF): m/z was calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrNNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$343.9893, found 343.9910.

7-Acetyl-2-methyl-5-nitro-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3fb)
$\mathbf{3 f b}$ was prepared from $\mathbf{1 f}(0.22 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is $25 \% \mathrm{EtOAc}$ in hexane; white solid (10 mg); yield is 16%.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=18.6,10.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 198.7, 178.7, 175.9, 147.8, 147.5, 140.1, 132.9, 123.1, 121.7, 61.9, 51.4, 43.7, 34.0, 25.5.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 311.0638$, found 311.0663.

7-Acetyl-5-(4-fluorophenyl)-2-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (3gb)
$\mathbf{3 g b}$ was prepared from $\mathbf{1 g}(0.17 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is 15% EtOAc in hexane; yellow liquid (24 mg); yield is 41%.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}$, Chloroform- \boldsymbol{d}) $\delta 7.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{t}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.67(\mathrm{~m}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform-d) δ 198.7, 179.8, $177.3,162.9$ (d, $J=248.5 \mathrm{~Hz}$), 141.6, $140.7,140.3,135.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 134.6,129.2,129.0(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 127.8,116.0(\mathrm{~d}, J=$ 21.2 Hz), 51.2, 44.2, 36.1, 28.1, 25.2.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FNNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 360.1006$, found 360.0999 .

7-Acetyl-2,6-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3hb)
$\mathbf{3 h b}$ was prepared from $\mathbf{1 h}(0.27 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is $15 \% \mathrm{EtOAc}$ in hexane; brown solid (17 mg); yield is 25%.
${ }^{1} H$ NMR (400 MHz , Chloroform-d) $\delta 7.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64 (ddd, $J=10.6,7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H})$, 2.48 (s, 3H), 2.32 (s, 3H).
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 205.2,179.7,177.2,139.3,137.6,135.8,134.6,130.7$, 126.3, 51.3, 44.0, 33.9, 31.6, 25.2, 19.7.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$258.1125, found 258.1104.

7-Acetyl-4-fluoro-2-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3ib)
3ib was prepared from $\mathbf{1 i}(0.26 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure 2.c; eluent is $15 \% \mathrm{EtOAc}$ in hexane; brown solid (38 mg); yield is 55%.
${ }^{1} H$ NMR (400 MHz , Chloroform-d) $\delta 7.85(\mathrm{dd}, J=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.55 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.67$ (m, 3H), 2.95 (s, 3H), 2.56 (s, 3H).
${ }^{13}$ C NMR ($\mathbf{1 0 1 ~ M H z , ~ C h l o r o f o r m - ~} d$) $\delta 197.3,179.0,175.2,162.4$ (d, $J=260.6 \mathrm{~Hz}$), 147.6 (d, $J=6.1 \mathrm{~Hz}), 133.2(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 125.9(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 115.1(\mathrm{~d}, J=$ 21.1 Hz , 49.5, 49.4, 44.3, 37.3, 27.9, 25.3.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$262.0874, found 262.0874.

7-Acetyl-2-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3jb)
$\mathbf{3 j b}$ was prepared from $\mathbf{1} \mathbf{j}(0.30 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is $15 \% \mathrm{EtOAc}$ in hexane; light yellow solid (47 mg); yield is 65%.
${ }^{1} H$ NMR (400 MHz , Chloroform-d) $\delta 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.63(\mathrm{~m}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 198.8, 179.8, 177.4, 142.8, 139.4, 134.2, 130.3, 129.6, 128.0, 51.2, 44.0, 36.4, 28.0, 25.2.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 244.0968$, found 244.0985 .

2,5-Dimethyl-7-propionyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (5ab)
$\mathbf{5 a b}$ was prepared from $\mathbf{4 a}(0.25 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure 2.c; eluent is 15% EtOAc in hexane; light brown solid (41 mg); yield is 62%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.03-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform-d) δ 201.7, 180.0, 177.6, 139.7, 139.4, 138.0, 133.9, 130.3, 129.8, 51.1, 44.2, 36.0, 32.9, 25.2, 21.3, 8.3.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$272.1281, found 272.1277.

2,5-Dimethyl-7-(3-methylbutanoyl)-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (5bb)
$\mathbf{5 b b}$ was prepared from $\mathbf{4 b}(0.21 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . \mathrm{c}$; eluent is $10 \% \mathrm{EtOAc}$ in hexane; light yellow solid (53 mg); yield is 85%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74-3.63(\mathrm{~m}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{tt}, J=13.0,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 0.96$ (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 201.2,180.0,177.6,139.7,139.4,137.9,134.4,130.4$, 129.7, 51.1, 48.7, 44.2, 35.9, 25.2, 25.1, 22.9, 22.8, 21.3.

HRMS (ESI-TOF): m/z was calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$300.1594, found 300.1594.

7-(3,3-Dimethylbutanoyl)-2,5-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (5cb)
$\mathbf{5 c b}$ was prepared from $\mathbf{4 c}(0.20 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is 10% EtOAc in hexane; yellow solid (44 mg); yield is 72%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70-3.61(\mathrm{~m}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) δ 201.6, 180.0, 177.5, 139.40, 139.36, 137.8, 135.6, $130.6,129.5,51.2,51.1,44.2,35.8,31.6,30.1,25.1,21.3$.
HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 314.1751$, found 314.1730.

2,5-Dimethyl-7-(2-methylbutanoyl)-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (5db)
$\mathbf{5 d b}$ was prepared from $\mathbf{4 d}(0.21 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is 10% EtOAc in hexane; yellow oil (45 mg); yield is 72% (dr 1:1).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.57(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.65 (s, 6H), $3.31(\mathrm{~h}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.91$ (s, 6H), 2.41 (s, 6H), 1.76 (ddt, $J=20.3,13.8,7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.42(\mathrm{ddt}, J=14.9,10.7,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3 H), 0.87 (dt, $J=15.5,7.4 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 205.63, 205.61, 180.0, 177.5, 140.03, 139.99, 139.5, 137.9, 133.9, 130.0, 129.6, 51.2, 44.1, 43.01, 42.97, 35.8, 26.7, 26.5, 25.1, 21.3, 17.0, 16.6, 11.9, 11.8.

HRMS (ESI-TOF): m/z was calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$300.1594, found 300.1573.

7-(Cyclopropanecarbonyl)-2,5-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (5eb)
5eb was prepared from $\mathbf{4 e}(0.23 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is $10 \% \mathrm{EtOAc}$ in hexane; brown solid (53 mg); yield is 82%.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.73$ ($\mathrm{s}, 1 \mathrm{H}$), $7.56(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}$, 3 H), 2.91 ($\mathrm{s}, 3 \mathrm{H}$), $2.55(\mathrm{tt}, J=8.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.06-0.94$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz , Chloroform-d) δ 201.6, 180.0, 177.5, 139.2, 138.9, 138.0, 135.3, 130.3, 129.5, 51.2, 44.2, 35.5, 25.1, 21.3, 18.5, 12.0, 11.6.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$284.1281, found 284.1259.

7-(Cyclobutanecarbonyl)-2,5-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (5fb)
$\mathbf{5 f b}$ was prepared from $\mathbf{4 f}(0.21 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . \mathrm{c}$; eluent is 10% EtOAc in hexane; yellow solid (51 mg); yield is 81%.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{p}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.63(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.19(\mathrm{~m}, 4 \mathrm{H})$, $2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 201.9,180.0,177.6,140.2,139.5,137.8,132.5,130.5$, 129.7, 51.1, 44.2, 42.9, 35.9, 25.2, 25.12, 25.06, 21.3, 18.1.

HRMS (ESI-TOF): m/z was calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$298.1438, found 298.1421.

7-(Cyclohexanecarbonyl)-2,5-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (5gb)
$\mathbf{5 g b}$ was prepared from $\mathbf{4 g}(0.18 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . \mathrm{c}$; eluent is 10% EtOAc in hexane; light yellow solid (56 mg); yield is 93%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.54(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.60(\mathrm{~m}$, $3 \mathrm{H}), 3.17(\mathrm{dt}, J=10.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.16$ (m, 6H).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 205.0,180.0,177.5,140.0,139.5,137.9,133.5,129.9$, $129.5,51.1,46.5,44.1,35.7,29.5,29.2,26.0,25.9,25.8,25.1,21.3$.
HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 326.1751$, found 326.1734.

7-Hexanoyl-2,5-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (5hb)

5hb was prepared from $\mathbf{4 h}(0.20 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure 2.c; eluent is $10 \% \mathrm{EtOAc}$ in hexane; white solid (37 mg); yield is 60%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.73-3.61(\mathrm{~m}, 3 \mathrm{H}), 2.96-2.83(\mathrm{~m}, 5 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{q}, J=7.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-$ $1.30(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform-d) $\delta 201.5,180.0,177.6,139.7,139.4,137.9,134.0,130.4$, 129.8, 51.1, 44.2, 39.7, 35.9, 31.6, 25.1, 24.0, 22.6, 21.3, 14.0.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$314.1751, found 314.1751.

7-Heptanoyl-2,5-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (5ib)
$\mathbf{5 i b}$ was prepared from $\mathbf{4 i}(0.18 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure 2.c; eluent is 10% EtOAc in hexane; light yellow solid (39 mg); yield is 65%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75-3.62(\mathrm{~m}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{p}, J=7.1 \mathrm{~Hz}$, 2H), $1.38-1.28(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform- \boldsymbol{d}) $\delta 201.5,180.0,177.6,139.7,139.5,138.0,134.1,130.4$, 129.8, 51.2, 44.2, 39.8, 36.0, 31.8, 29.1, 25.2, 24.3, 22.6, 21.3, 14.2 .

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$328.1907, found 328.1899.

2,5-Dimethyl-7-(3,5,5-trimethylhexanoyl)-8,8a-dihydroindeno[1,2-c]pyrrole$\mathbf{1 , 3}(\mathbf{2 H}, 3 \mathrm{3H})$-dione ($\mathbf{5 j b}$)
$\mathbf{5 j b}$ was prepared from $\mathbf{4 j}(0.16 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure 2.c; eluent is $10 \% \mathrm{EtOAc}$ in hexane; yellow solid (39 mg); yield is 67% (dr 1:1).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.58$ (s, 2H), 7.56 (s, 2H), $4.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.67 (q, $J=9.0,7.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.91$ (d, $J=2.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.89-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.70(\mathrm{~m}$, 2 H), $2.41(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{dt}, J=12.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{dd}, J=14.1,6.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 0.96 (d, $J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform-d) δ 201.32, 201.27, 180.01, 179.97, 177.6, 139.7, 139.6, $139.4,137.9,134.5,134.4,130.4,130.3,129.7,51.3,51.2,51.1,50.6,49.42,49.40,44.2$, $35.91,35.89,31.29,31.27,30.12,30.09,26.4,26.3,25.2,25.1,23.1,23.0,21.3$.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 356.2220$, found 356.2194.

7-(3-Cyclohexylpropanoyl)-2,5-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (5 kb)
$\mathbf{5} \mathbf{k} \mathbf{b}$ was prepared from $\mathbf{4} \mathbf{k}(0.16 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure $2 . c$; eluent is 10% EtOAc in hexane; brown oil (44 mg); yield is 76%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72-3.61(\mathrm{~m}, 3 \mathrm{H}), 2.95-2.87(\mathrm{~m}, 5 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{t}, J=13.1 \mathrm{~Hz}, 5 \mathrm{H}), 1.56(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.96-0.88(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 201.7, 180.0, 177.5, 139.7, 139.4, 137.9, 134.0, 130.3, 129.7, 51.1, 44.2, 37.4, 37.3, 35.9, 33.3, 31.7, 26.6, 26.3, 25.1, 21.3.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 354.2064$, found 354.2054.

Ethyl 2,5-dimethyl-1,3-dioxo-1,2,3,3a,8,8a-hexahydroindeno[1,2-c]pyrrole-7-carboxylate (50b)
5ob was prepared from $\mathbf{4 0}(0.22 \mathrm{mmol})$ and $\mathbf{2 b}$ according to general procedure 2.c; eluent is $10 \% \mathrm{EtOAc}$ in hexane; off white solid (24 mg); yield is 37%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.60(\mathrm{~m}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 180.0, 177.5, 166.4, 140.6, 138.9, 138.0, 131.5, 130.1, 127.3, 61.1, 51.4, 43.9, 35.9, 25.2, 21.1, 14.5.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NNaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$310.1050, found 310.1052.

7-Acetyl-2-(tert-butyl)-5-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione
 (3ac)

3ac was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 c}$ according to general procedure $2 . \mathrm{c}$; eluent is 10% EtOAc in hexane; light brown solid (49 mg); yield is 61%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72-3.45(\mathrm{~m}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 199.1, 181.0, 178.4, 140.2, 139.9, 137.9, 134.0, 131.1, 130.1, 58.5, 50.9, 44.1, 36.5, 28.4, 28.1, 21.3.

HRMS (ESI-TOF): m/z was calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 300.1594$, found 300.1585.

7-Acetyl-2-isobutyl-5-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3ad)
3ad was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 d}$ according to general procedure $2 . c$; eluent is 10% EtOAc in hexane; light brown solid (56 mg); yield is 69%.
${ }^{1}$ H NMR (400 MHz, Chloroform-d) $\delta 7.63$ (s, 1H), 7.59 (s, 1H), 4.27 (d, J = 7.0 Hz, 1H), $3.79-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.25(\mathrm{dd}, J=7.4,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.91(\mathrm{~m}$, $1 \mathrm{H}), 0.77$ (dd, $J=9.9,6.7 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 199.0, 180.1, 177.7, 139.7, 138.0, 134.0, 131.2, 130.0, 50.9, 46.2, 44.1, 36.2, 28.0, 27.1, 21.3, 20.1, 20.0.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 300.1594$, found 300.1586.

7-Acetyl-2-cyclohexyl-5-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3ae)
3ae was prepared from 1a (0.27 mmol) and $\mathbf{2 e}$ according to general procedure 2.c; eluent is 10% EtOAc in hexane; light brown solid (53 mg); yield is 60%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{tt}, J=12.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.53(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.98(\mathrm{~m}$, $2 \mathrm{H}), 1.75(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.14(\mathrm{~m}$, 3H).
${ }^{13}$ C NMR (101 MHz, Chloroform- \boldsymbol{d}) δ 199.0, 180.0, 177.6, 139.8, 137.9, 134.0, 131.1, 130.0, 51.9, 50.8, 43.9, 36.3, 28.9, 28.7, 28.0, 25.9, 25.8, 25.1, 21.3.

HRMS (ESI-TOF): m/z was calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$348.1570, found 348.1581.

7-Acetyl-5-methyl-2-octyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3af)
3af was prepared from $1 \mathbf{a}(0.27 \mathrm{mmol})$ and $\mathbf{2 f}$ according to general procedure $2 . c$; eluent is 10% EtOAc in hexane; light brown solid (60 mg); yield is 63%.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75-3.59(\mathrm{~m}, 3 \mathrm{H}), 3.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{p}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 10 \mathrm{H}), 0.83(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 199.0,179.9,177.5,139.7,139.6,138.0,134.0,131.1$, $130.0,51.0,44.1,39.1,36.1,31.7,29.1,29.1,28.0,27.6,26.7,22.7,21.2,14.1$.
HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 356.2220$, found 356.2189.

7-Acetyl-2-dodecyl-5-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3ag)
3ag was prepared from $1 \mathbf{a}(0.27 \mathrm{mmol})$ and $\mathbf{2 g}$ according to general procedure $2 . \mathrm{c}$; eluent is 10% EtOAc in hexane; light brown solid (67 mg); yield is 60%.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77-3.59(\mathrm{~m}, 3 \mathrm{H}), 3.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{p}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.28-1.15(\mathrm{~m}, 18 \mathrm{H}), 0.86(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 198.9,179.9,177.5,139.8,139.7,138.0,134.0,131.2$, $130.1,51.0,44.2,39.1,36.1,32.0,29.7,29.6,29.5,29.4,29.2,28.0,27.7,26.8,22.8,21.3$, 14.2.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$429.3112, found 429.3137.

7-Acetyl-5-methyl-2-phenethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione
(3ah)

3ah was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 h}$ according to general procedure $2 . c$; eluent is $10 \% \mathrm{EtOAc}$ in hexane; yellow liquid (43 mg); yield is 46%.
${ }^{1}$ H NMR (400 MHz , Chloroform-d) $\delta 7.63$ (s, 1H), $7.51(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.52(\mathrm{~m}, 3 \mathrm{H}), 2.79(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 198.9, 179.6, 177.2, 139.7, 139.5, 137.9, 137.4, 133.9, 131.1, 130.0, 128.8, 128.3, 126.5, 50.9, 43.9, 39.9, 36.1, 33.2, 28.0, 21.3.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 348.1594$, found 348.1601.

7-Acetyl-2-benzyl-5-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3ai)
3ai was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 i}$ according to general procedure $2 . c$; eluent is $\mathbf{1 5 \%}$ EtOAc in hexane; light yellow solid (42 mg); yield is 47%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 4.62-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.61(\mathrm{~m}, 3 \mathrm{H}), 2.57$ (s, 3H), 2.42 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\boldsymbol{\delta}$ 199.0, 179.5, 177.1, 139.8, 139.4, 138.0, 135.7, 133.9, 131.2, 130.1, 128.7, 128.7, 128.0, 51.1, 44.2, 42.6, 36.0, 28.0, 21.2.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 334.1438$, found 334.1431.

7-Acetyl-5-methyl-2-phenyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (3aj)
3aj was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 j}$ according to general procedure $2 . \mathrm{c}$; eluent is 20% EtOAc in hexane; light brown solid (28 mg); yield is 33%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.69(\mathrm{~m}, 3 \mathrm{H}), 2.59$ (s, 3H), 2.44 (s, 3H).
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 199.0, 178.9, 176.4, 139.9, 139.4, 138.2, 134.1, 131.9, 131.4, 130.2, 129.2, 128.7, 126.5, 51.1, 44.4, 36.4, 28.0, 21.3.

HRMS (ESI-TOF): m/z was calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 320.1281$, found 320.1258.

7-Acetyl-2-(4-chlorophenyl)-5-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (3ak)
3ak was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 k}$ according to general procedure $2 . \mathrm{c}$; eluent is 20% EtOAc in hexane; light brown solid (39 mg); yield is 41%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.18 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.69(\mathrm{~m}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}$, 3H).
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 200.0, 178.7, 176.1, 139.8, 139.2, 138.3, 134.4, 134.0, 131.5, 130.3, 130.1, 129.3, 127.7, 51.0, 44.3, 36.4, 28.0, 21.3.

HRMS (ESI-TOF): m/z was calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClNNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 376.0711$, found 376.0715.

7-Acetyl-2-(4-fluorophenyl)-5-methyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (3al)
3al was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 l}$ according to general procedure 2.c; eluent is 20% EtOAc in hexane; yellow solid (30 mg); yield is 33%.
${ }^{1}$ H NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.66$ ($\mathrm{s}, 1 \mathrm{H}$), 7.63 ($\mathrm{s}, 1 \mathrm{H}$), 7.21 (dd, $J=8.2,4.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.10(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.69(\mathrm{~m}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.44$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, Chloroform- \boldsymbol{d}) $\delta 200.0,178.9,176.3,162.2(\mathrm{~d}, J=249.5 \mathrm{~Hz}), 139.8$, $139.2,138.3,134.1,131.4,130.2,128.3(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 127.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=$ 23.2 Hz), 51.0, 44.3, 36.4, 28.0, 21.3.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$338.1187, found 338.1174.

7-Acetyl-5-methyl-2-(perfluorophenyl)-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)dione (3am)
3am was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 m}$ according to general procedure $2 . c$; eluent is 20% EtOAc in hexane; brown solid (50 mg); yield is 45%.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99-3.72(\mathrm{~m}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 198.9, 176.5, 174.1, 139.5, 138.6, 138.5, 134.1, 131.8, 123.0, 51.6, 45.1, 36.4, 27.9, 21.3.

HRMS (ESI-TOF): m/z was calculated for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 432.0630$, found 432.0642.

7-Acetyl-2-(2,5-dimethylphenyl)-5-methyl-8,8a-dihydroindeno[1,2-c]pyrrole$\mathbf{1 , 3}(\mathbf{2 H}, \mathbf{3 a H})$-dione (3an)
3an was prepared from $\mathbf{1 a}(0.27 \mathrm{mmol})$ and $\mathbf{2 n}$ according to general procedure $2 . c$; eluent is $20 \% \mathrm{EtOAc}$ in hexane; brown solid (60 mg); yield is 64% (dr 1:1).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.66$ (s, 2H), 7.64 ($\mathrm{s}, 2 \mathrm{H}$), 7.18 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.09 (d, $J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91-3.68(\mathrm{~m}, 6 \mathrm{H}), 2.59(\mathrm{~s}, 6 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$, 2.14 (s, 3H), 1.58 (s, 3H).
${ }^{13}$ C NMR (101 MHz , Chloroform- \boldsymbol{d}) δ 198.94, 198.89, 179.0, 178.9, 176.5, 176.4, 139.8, 139.7, 139.6, 139.4, 138.2, 138.1, 136.9, 136.8, 134.1, 134.0, 132.4, 132.3, 131.4, 131.3, 131.0, $130.9,130.7,130.6,130.4,130.2,130.0,128.5,128.2,51.35,51.30,44.7,44.5,36.5,36.2$, 28.0, 21.25, 21.23, 20.9, 20.7, 17.4, 16.6.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 348.1594$, found 348.1611.

(3aR,8aR)-7-((R)-cyclopropyl(hydroxy)methyl)-2,5-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (6R)
Eluent is $30 \% \mathrm{EtOAc}$ in hexane; light brown liquid; yield is 23%.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{ddd}, J=10.5,7.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~s}$, $3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H}), 1.24-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.62(\mathrm{td}, J=8.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.53(\mathrm{tt}, J=$ $9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.44-0.33(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\boldsymbol{\delta} 180.2,177.7,140.1,138.2,137.9,135.8,127.3,125.0,76.6$, 51.7, 44.2, 33.4, 25.2, 21.4, 18.4, 3.5, 3.0.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$308.1257, found 308.1235.

(3aR,8aR)-7-((S)-cyclopropyl(hydroxy)methyl)-2,5-dimethyl-8,8a-dihydroindeno[1,2-c]pyrrole-1,3(2H,3aH)-dione (6S)
Eluent is 30% EtOAc in hexane; light brown liquid; yield is 23%.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{td}, J=8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 1 \mathrm{H}), 1.29(\mathrm{dd}, J=5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.64(\mathrm{td}, J=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.54$ $(\mathrm{tt}, J=8.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.41(\mathrm{dq}, J=9.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.33(\mathrm{dq}, J=9.9,5.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 180.3,177.6,139.8,138.2,138.0,136.2,127.4,125.1,76.5$, 51.7, 44.2, 33.3, 25.2, 21.4, 17.8, 3.6, 2.9.

HRMS (ESI-TOF): m / z was calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$308.1257, found 308.1233.

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 1 a

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 1b

$-77.16 \mathrm{CDCl} 3$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 1c

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 1d

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 1e

$\begin{gathered} \text { ñ } \\ \stackrel{\rightharpoonup}{\circ} \\ \stackrel{1}{\mid c} \end{gathered}$	ºñ 	$\stackrel{9}{9}$	$\begin{aligned} & \stackrel{m}{0} \\ & 0 \\ & \stackrel{0}{1} \\ & \stackrel{1}{1} \end{aligned}$	$\stackrel{\sim}{\sim}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 1 g

ヘ

 lum hnn \qquad

N
$-77.16 \mathrm{CDCl} 3$
$\begin{array}{cc}\underset{\sim}{N} & \stackrel{N}{\sim} \\ \underset{\sim}{\sim} & \stackrel{1}{\sim}\end{array}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{1 h}$

		$\begin{aligned} & ⿳ 亠 丷 厂 犬 \\ & 0 \\ & \hline \end{aligned}$	
$\stackrel{\infty}{+}$		$\stackrel{\square}{\square}$	F
$\stackrel{\sim}{\sim}$		$\stackrel{\rightharpoonup}{1}$	－
｜	\ \1！	I	I

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(\mathbf{1 0 1 ~ H z})$ NMR Spectra of $\mathbf{1 i}$

-199.98

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 4b

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 4 c

[^0]${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $4 d$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 4 e

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $4 f$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{4 g}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 4 h

${ }^{1} \mathrm{H}(\mathbf{4 0 0 ~ H z})$ and ${ }^{13} \mathrm{C}(\mathbf{1 0 1 ~ H z})$ NMR Spectra of $\mathbf{4 j}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 4 k

(

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 41

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{4 m}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 40

$\underbrace{\infty}$
$\stackrel{\sim}{\sim}$
-ig

M
0
0
0
\vdots

1

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3 aa

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3ab

			끙				
$\stackrel{\infty}{\infty}$	ถู유ํ	 	$\stackrel{\square}{\square}$	\％	$\stackrel{-}{+}$	N	のヲ̇
$\stackrel{\infty}{\square}$	$\stackrel{\text { O }}{\sim}$		N	in	ボ	－i	へ่
1	11	い111	｜	｜	｜	I	111

Me

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{3 b b}$

[^1]${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3 cb

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{3 d b}$

Me

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3eb

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3fb

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{3 g b}$

$\stackrel{0}{\infty}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3 hb
(ivin

(

$\stackrel{\leftrightarrow}{m} \quad \stackrel{\leftrightarrow}{\sim} \quad \stackrel{\infty}{\infty}$
${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3ib


```
| \underbrace
```


${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{3 j b}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 5 ab

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 5 bb
$\underbrace{\infty}_{i} \overbrace{i}^{\sim}$

$\begin{gathered} \text { N } \\ \stackrel{i}{\sim} \\ \stackrel{1}{2} \end{gathered}$			$\begin{aligned} & \text { m } \\ & 0 \\ & 0 \\ & \stackrel{0}{\wedge} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$		$\stackrel{2}{2}$	

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{5 c b}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 5 db

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 5 eb

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{5 f b}$
(in

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 5 gb

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 5 hb

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 5ib

殿

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{5 j b}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 5 kb

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $5 \mathrm{5b}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3ac
cicc

${ }^{\prime}$ Bu
${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3ad

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3ae

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3af

(

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3 ag

(

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3ah

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3ai

$$
\underset{\sim}{\sim}
$$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3aj
 $\underbrace{\text { ヘヘベヘヘへへへ }}$

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3ak

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3al

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(\mathbf{1 0 1 ~ H z})$ NMR Spectra of 3am

	$\stackrel{\square}{0}$
	11

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 3an

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of 6R

NOESY (500 Hz) NMR Spectra of 6R

${ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{~Hz})$ NMR Spectra of $\mathbf{6 S}$

NOESY (500 Hz) NMR Spectra of $\mathbf{6 S}$

[^0]:

[^1]:

