Supporting Information

VPg-Based Bidirectional Synthetic mRNA Circuits Enable Orthogonal Protein Regulation For High-Resolution Cell Separation

Zhenghua Liang^a, Yaxin Hu^a, Cheuk Yin Li^a, Wai Laam Yau^a, Kaixin Tan^a, and Yi Kuang^{*a}

Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Room 5578, Academic Bldg, Clear Water Bay, Kowloon, Hong Kong.

Email: kekuang@ust.hk

MATERIAL AND METHODS

Cell culture

HEK293, HeLa, and HepG2-RFP were cultured in 89% Dulbecco's Modified Eagle Medium (DMEM, Gibco) supplemented with 10% fetal bovine serum and 1% non-essential amino acids (Sigma-Aldrich). SK-BR-3 was cultured in Rosewell Park Memorial Institute 1640 Medium (ATCC 30-2001) with 10% Fetal Bovine Serum. HepG2/RFP cells were prepared by transduction with ready-to-use RNA encoding lentivirus particles for the cell culture system (Amsbio LVP428) according to the manufacturer's protocol. HepG2-RFP cells were sorted with BD FACSAriaTM III (BD Biosciences) and selected by Gibco Geneticin (G418, Gibco). The cell culture is supplemented with 400 μ g/mL G418 in addition to the mentioned culture medium to select the RFP-positive cell. All the cells were maintained at 37 °C with 5% CO₂. The cells were passaged when the confluency was 90%. After trypsinized for 3 minutes, the detached cells were suspended with 5× volume of culture medium and seeded at a density of 1.0 × 10⁵ cells/mL.

The Human iPSC 201B7 cell line was maintained on the iMatrix-511 (Nippi. Inc) coating in the complete StemFit medium (Ajinomoto AK02N). The neural progenitor cell (NPC) was differentiated from the iPSC 201B7 cell line using Gibco PSC Neural Induction Medium (Gibco A1647801) following the manufacturer's instructions.

DNA template generation for *in vitro* transcription

All 5' UTR, 3' UTR, and ORF sequences used in this project are listed in Table S1, Table S2, and Table S3. Primers were purchased from Integrated DNA Technologies and Ruibo Biotech (Guangzhou). All PCR reactions were performed using Q5® Hot Start High-Fidelity 2× Master Mix (NEB) following the manufacturer's protocol. After cloning the ORFs from plasmids, the plasmid DNAs were removed from the PCR product using DpnI (NEB). The 5'UTRs and 3'UTRs were assembled using primers. The full templates for IVT were synthesized by fusion PCR with the attachment of a T7 promotor sequence and purified using the QIAquick® PCR purification kit (Qiagen). The full templates in water were quantified by NanoVue spectrophotometer (GE Healthcare).

Synthesis and purification of mRNA

All RNAs were synthesized by *in vitro* transcription (IVT) using MEGAscript[™] T7 transcription kit (Invitrogen) following the manufacturer's protocol. The reaction cocktail consists of 7.5 nM ATP, 7.5 nM UTP or UTP analogues, 7.5 nM CTP or 5-Methylcytidine-5'-Triphosphate (Trilink), 1.5 nM GTP, and 6 nM cap analog. Non-modified NTPs were included in the T7 transcription kit. UTP analogue options include N¹-methylpseudouridine-5'-Triphosphate (Trilink), Acap analog (NEB), m⁷G(5')ppp(5')G RNA cap structure analogue (NEB), and trimethylated cap analogue (JenaBioscience). TURBO DNase (Invitrogen) was added to the IVT mixture and incubated at 37 °C for 30 minutes to remove the DNA template. The RNA products were purified using the RNEasy®MiniElute cleanup kit (Qiagen) and treated with Antarctic phosphatase (NEB) at 37 °C for 30 minutes to remove triphosphate on the product RNAs. The quality of the final products was confirmed using urea-PAGE and Fragment Analyzer (Agilent Advanced Analytical Technologies Fragment Analyzer). The RNA product in water was quantified by NanoVue spectrophotometer (GE Healthcare). The purified mRNAs were aliquoted and stored at -20 °C until use.

Transfection

HEK293, SK-BR-3, and HeLa were seeded at 2.5×10^4 cells/well into a 48-well plate with 250 µL culture medium one day before the transfection. For co-cultured flow cytometry experiments, HEK293 and HepG2-RFP cell lines were seeded into 48-well plates in a ratio of 1:2 with 3×10^4 cells/well in 0.25 mL/well of the medium. 201B7 and NPC were seeded with 10 µM ROCK inhibitor Y27632 at 2.0×10^4 cells/well and 2.5×10^4 cells/well respectively. After 24 hours, the media were replaced with the complete growth medium without Y27632 before transfection.

mRNAs were transfected using Lipofectamine MessengerMAX (Invitrogen) according to the manufacturer's instructions. The amounts of mRNA used in the experiment are listed in Table S4. iRFP mRNA was used as transfection control for flow cytometry analysis. Ctrl mRNA (FLuc) was used to balance the transfection load with the MCP mRNA-transfected sample.

Flow cytometry and analysis

After transfection, the cells were maintained at 37 °C, 5% CO₂ for 24 hours before analysis. The cells were rinsed using warm PBS buffer and trypsinized (InvitrogenTM) for 3 minutes. The detached cells were suspended in 250 μ L of culture medium and filtered through a 300-micron nylon mesh filter. The fluorescence intensities of the cells were examined using Attune® Nxt (Invitrogen) or BD FACS Aria IIIU or III. EGFP signals were analyzed by excitation laser at 488 nm and emission filter at 530/30 nm. iRFP670 signals were detected by excitation laser at 637 nm and emission filter at 670/14 nm on the Attune Nxt, or by excitation laser at 633 nm and emission filter at 660/20 nm on the BD FACS Aria IIIU and III. mCherry signals were detected by excitation laser at 561 nm and emission filter at 582/15 nm on BD FACS Aria IIIU and III. BFP signals were detected by excitation laser at 561 nm and emission filter at 450/40 nm on BD FACS Aria IIIU and III. BFP signals were detected by excitation laser at 405 nm and emission filter at 450/40 nm on BD FACS Aria III. The mean fluorescent intensities in the arbitrary unit were obtained from the machines directly. The arbitrary units of fluorescent intensity were calibrated using standardized fluorescent beads (Attune Performance Tracking Beads from Invitrogen or CS&T Research Beads from BD) according to the manufacturer's instructions. If the gating is not specified, only iRFP670 positive cells were filtered as positively transfected cells and analyzed. For experiments transfected with miRNA mimic, iRFP was used for normalization of the EGFP signals.

Cell viability assay

A 5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) solution was prepared by dissolving MTT (InvitrogenTM) in PBS followed by filtration through 0.2 μ m filter. The cell viability assay was conducted for cell cultures in a 48-well plate. After transfection, the cells were maintained at 37 °C, 5% CO₂ for 24 hours before analysis. 25 μ L of the MTT solution was added to each well and the mixture was incubated at 37 °C for 4 hours. The purple formazan was dissolved in 275 μ L of 10% SDS in 0.01 M HCl overnight at 37 °C. The well with medium only was used as the blank and underwent the same procedure. The absorbance at 560 nm was measured using Microplate Reader Varioskan (Thermo Fisher Scientific). The absorbance of each sample was adjusted by subtracting that of the blank. The viability of the negative control with only the transfection reagent was set to 100%.

Luciferase assay

24 hours after transfection, the cell medium of each well was collected and stored at -80 °C before the luciferase assay. The Cypridina luciferase (CLuc) assay was conducted based on the protocol by the NEB CLuc assay kit and Wu et al.¹. In detail, 2 μ L of conditioned medium was reacted with 38 μ L of CLuc solution (1 μ M Cypridina luciferin [NanolightTM Technology], 60 mM phosphate buffer pH 6.4, 0.3 M sodium ascorbate, and 20 mM Na₂SO₃, prepared freshly and preincubated at room temperature for 30 minutes) in a black 96-well plate. Each sample was assayed in duplicate, and the medium without transfection of Cluc mRNA was used as blank. The luminescence was detected using Microplate Reader Varioskan (Thermo Scientific) with 2 seconds of mixing at 300 rpm and 25 °C with 10 seconds of integration. The Gaussia luciferase (GLuc) assay was conducted based on the protocol by Tannous². In detail, 10 μ L of conditioned medium was reacted with 50 μ L of GLuc assay solution (20 μ M coelenterazine [NanolightTM Technology], 5 mM NaCl in 1×PBS, prepared freshly and preincubated at room temperature for 30 minutes). The luminescence detection protocol was the same as that of the CLuc assay. The duplicated luminescence signal was averaged and adjusted by subtracting the blank before analysis.

Confocal imaging

Quantitative confocal imaging followed the standard operating manual of CLSM (Leica SP8 Confocal Microscope). Parameters were selected following live sample confocal imaging measurement guidance. HEK293 cells were seeded in the 35 mm confocal dishes (glass bottom dish, SPL) and allowed to stabilize for 24 hours before transfection of mRNA. The seeding density was 1.2×10^5 cells in 2 mL of medium. Fluorescence observation and measurement were performed 24 hours after transfection. $63 \times$ oil immersion objective was used. The images were generated as 2048×2048 pixels with scanning at 100 Hz. Sequential scanning was used for multi-fluorescent quantification. The laser excitation and emission detecting settings were consistent at least throughout one experiment. For the miRNA multi-tracker system, emission filters for each fluorophore were tested and adjusted to ensure minimum channel crosstalk and signal leakages. EBFP2 used the 405 nm laser for excitation and 410-472 nm for emission detection. EGFP used the 488 nm laser for excitation and 493-560 nm for emission detection. mCherry used the 552 nm laser for excitation and 578-642 nm for emission detection. miRFP670 used the 638 nm laser for excitation and 640-670 nm for emission detection.

Image analysis

All image analysis was performed using FIJI (distribution of the ImageJ software, US National Institutes of Health, Bethesda, Maryland, USA). Cell images were extracted, enhanced, and saved in tiff format from microscopy raw data. The enhancement included the default "despeckle" effect and the brightness and contrast adjustment. The same enhancement parameters were applied in samples of the same experiment. The ratiometric images were generated using the Calculus Plus function and further enhanced for better visualization.

Quantification and statistical analysis

Statistical values including the exact number of repeats (N = 3) and statistical significance were reported in the figures. Statistical analysis was performed using Microsoft Excel 2016 with the following formula: "Average ()" for mean values and "STDEV ()" for standard deviations. The significance levels were calculated through single-factor analysis of variance (ANOVA) by Microsoft Excel 2016 and denoted as *P < 0.05, **P < 0.01, ***P < 0.001.

SUPPLEMENTARY FIGURES

Figure S1 VPg overrides cap structures for translation initiation to produce opposite results on different mRNAs. (A) The bar graph showing the MCP-VPg-induced expression enhancement on Acap-MS2-EGFP on SK-BR-3 cells. The expression level of the reporter Acap-MS2-EGFP was set at 1. (B) The bar graph showing the MCP-VPg induced expression repression on ARCA-MS2-EGFP on SK-BR-3 cells. The expression level of the reporter Acap-MS2-EGFP on SK-BR-3 cells. The expression level of the reporter ARCA-MS2-EGFP was set at 1. (C) The bar graph showing the effect of MCP, VPg, and MCP-VPg on Acap-MS2-EGFP on HEK293 cells. The expression level of the reporter Acap-MS2-EGFP was set at 1. (D) The bar graph showing the effect of MCP, VPg, and MCP-VPg on ARCA-MS2-EGFP on HEK293 cells. The expression level of the reporter Acap-MS2-EGFP on HEK293 cells. The expression level of the reporter Acap-MS2-EGFP on HEK293 cells. The expression level of the reporter Acap-MS2-EGFP was set at 1. (D) The bar graph showing the effect of MCP, VPg, and MCP-VPg on ARCA-MS2-EGFP on HEK293 cells. The expression level of the acap-MS2-EGFP was set at 1. (E) The expression levels of the MS2-EGFP mRNAs carrying different cap structures with or without cotransfection of MCP-VPg mRNA on HeLa cells. N=3; data are presented as mean \pm SD with **P < 0.01, ***P < 0.001 calculated through single-factor analysis of variance (ANOVA).

Figure S2 MCP-VPg mRNA-induced bidirectional output regulation on HEK293 cells. (A) The representative histograms showing the gating of positively transfected cells for further analysis. Left: Blank sample; Right: Transfected sample. (B) The relative expression levels showing MCP-VPg mRNA concentration-dependent orthogonal dual reporter expression on HEK293 cells. The expression levels of the Acap-MS2-EGFP and ARCA-MS2-mCherry mRNAs were set at 1. (C) The viability of the HEK293 cells at 24 hours after transfected with 40 ng/mL MCP-VPg, Acap-MS2-EGFP and ARCA-MS2-mCherry mRNAs. N=3; data are presented as mean ± SD.

Figure S3 Optimization of the miR-21-sensing MCP-VPg mRNA. (A) The Acap-MS2-EGFP regulatory effect by miR-21-sensing MCP-VPg mRNA carrying different base modifications on HEK293 cells. The relative EGFP expression without miR-21 mimic was set at 1. (B) The ARCA-MS2-EGFP regulatory effect by miR-21-sensing MCP-VPg mRNA carrying different base modifications on HEK293 cells. The relative EGFP expression without miR-21 mimic was set at 1. (C) The Acap-MS2-EGFP regulatory effect by miR-21-sensing MCP-VPg mRNA carrying different copy numbers of miR-21 binding sites on HEK293 cells. The relative EGFP expression without miR-21 mimic was set at 1. (D) The ARCA-MS2-EGFP regulatory effect by miR-21-sensing MCP-VPg mRNA carrying different copy numbers of miR-21 binding sites on HEK293 cells. The relative EGFP expression without miR-21 mimic was set at 1. (D) The ARCA-MS2-EGFP regulatory effect by miR-21-sensing MCP-VPg mRNA carrying different copy numbers of miR-21 binding sites on HEK293 cells. The relative EGFP expression without miR-21 mimic was set at 1. (D) The ARCA-MS2-EGFP regulatory effect by miR-21-sensing MCP-VPg mRNA carrying different copy numbers of miR-21 binding sites on HEK293 cells. The relative EGFP expression without miR-21 mimic was set at 1. (D) The ARCA-MS2-EGFP regulatory effect by miR-21-sensing MCP-VPg mRNA carrying different copy numbers of miR-21 binding sites on HEK293 cells. The relative EGFP expression without miR-21 mimic was set at 1. N=3; data are presented as mean \pm SD.

Figure S4 VPg-based bidirectional circuits afford high-resolution cell separation. (A) The representative confocal images showing the cell distribution in the bright field and the control iRFP signals on HEK293 cells after transfection of the miR-21 sensing circuit with or without miR-21 mimic. (B) The representative dot plots of EGFP and BFP expressions in NPC and 201B7 cells after transfection of the miR-302-sensing bidirectional circuit.

Figure S5 miR-controlled cell separation by the bidirectional circuit. (A) The bar graph showing the percentage of the gated miR-21 positive cells in Figure 2B and 2C, confirming the accuracy of gating. (B) The representative dot plot showing the performance of the miR-nonsensing circuit on the mixed culture of the HepG2-RFP and HEK293 cells. The percentages represent the HEK293 cells located in the gating of the HepG2 cell population. The high cell population overlap indicates the basal protein expression levels of the two cell lines were similar. (C) The bar graph showing the percentage of the gated HepG2-RFP cells in Figure 2D, confirming the accuracy of gating. (D) The bar graph showing the EGFP and BFP expressions of the two cell populations transfected with miR-sensing or miR-nonsensing circuits. N=3; data are presented as mean \pm SD.

Figure S6 The VPg-based bidirectional circuit is flexible in design. (A) The representative histogram showing PCP-VPg-induced expression enhancement of Acap-PP7-EGFP and repression of ARCA-PP7-EGFP on HEK293 cells. The expression levels of Acap-PP7-EGFP and ARCA-PP7-EGFP were set at 1, respectively. N=3. (B) The representative low-magnification confocal images showing the bidirectional regulation of four fluorescent proteins on HEK293 cells. NL represents the nucleus tag and MT represents the mitochondrial tag.

SUPPLEMENTARY TABLES

 Table S1. 5'UTRs used in this work

Name	Sequence (5'-3')	mRNAs containing this UTR sequence	Remark and Reference
5' UTR	GGGCGAAUUAAGAGAGAAAAAGAAGAG UAAGAAGAAAUAUAAGACACCGGUCG CCACC	MCP, VPg, MCP-VPg, PCP- VPg, iRFP670, Ctrl mRNA	3
MS2-5' UTR	GGGCUCAGAUCCGCUAGCGGAUGGUG AGGAUCACCCAUCUAUAAGACACCGG UCGCCACC	MS2-EGFP, MS2-mCherry, MS2-BFP, MS2-GLuc, MS2-CLuc, MS2-EGFP- MT, MS2-miRFP670-MT, MS2-BFP-NL, MS2- mCherry-NL	4
2×MS2- 5'UTR	GGGUCAGAUCCGCUAGCGGAUCCGGG AGCAGGUGAGGAUCACCCAUCUGCCAC GAGCGAGGUGAGGAUCACCCAUCUCG CUCGUGUUCCCACCGGUCGCCACC	2×MS2-PCP-VPg, 2×MS2- EGFP	5
PP7-5' UTR	GGGCUCAGAUCCGCUAGCGGAUUAAG GAGUUUAUAUGGAAACCCUUAUAUAA GACACCGGUCGCCACC	PP7-GFP, PP7-mCherry	6
1×anti- miR-21-5' UTR	GGGCAUCGCGGAUCCUCAACAUCAGUC UGAUAAGCUAAGAUCACACCGGUCGC CACC	miR-21-MCP-VPg (1 copy)	3
4×anti- miR-21-5' UTR	GGGCAUCCUCAACAUCAGUCUGAUAA GCUAUCAACAUCAGUCUGAUAAGCUA UCAACAUCAGUCUGAUAAGCUAUCAA CAUCAGUC UGAUAAGCUAAGAUCACACCGGUCGC CACC	miR-21-MCP-VPg (4 copies, 5 copies, and 8 copies), miR- 21-MCP, miR-21-EGFP	3
4×anti- miR-302- 5' UTR	GGGCAUCCAGCAAGUACAUCCACGUU UAAGUAGCAAGUACAUC CACGUUUAAGUAGCAAGUACAUCCAC GUUUAAGUAGCAAGUAC AUCCACGUUUAAGUAGAUCACACCGG UCGCCACC	miR-302-MCP-VPg	3

Table S2.	3'UTRs	used in	this	work
-----------	--------	---------	------	------

Name	Sequence (5'-3')	mRNAs containing this UTR sequence	Remark and Reference
3' UTR	UCUAGACCUUCUGCGGGGGCUUGCCUUC UGGCCAUGCCCUUCUCUCCCUUGCACC UGUACCUCUUGGUCUUUGAAUAAAGC CUGAGUAGG	MCP, VPg, MCP- VPg, PCP-VPg, iRFP670, MS2- EGFP, MS2- mCherry, MS2-BFP, MS2-GLuc, MS2- CLuc, PP7-GFP, PP7- mCherry, miR-21- MCP-VPg (1 copy, 4 copies), 2×MS2- EGFP, 2×MS2-PCP- VPg, Ctrl mRNA, MS2-EGFP-MT, MS2-miRFP670-MT, MS2-BFP-NL, MS2- mCherry-NL	3
1×anti- miR-21-3' UTR	UCUAGACCUUCUGCGGGGGCUUGCCUUC UGGCCAUGCCCUUCUCUCCCUCAACAU CAGUCUGAUAAGCUACUUGGUCUUUG AAUAAAGCCUGAGUAGG	miR-21-MCP-VPg (5 copies), miR-21- EGFP. miR-21-MCP	5
4×anti- miR-21-3' UTR	UCUAGACCUUCUGCGGGGGCUUGCCUUC UGGCCAUGCCCUUCUCUCCCUCAACAU CAGUCUGAUAAGCUAUCAACAUCAGU CUGAUAAGCUAUCAACAUCAGUCUGA UAAGCUAUCAACAUCAGUCUGAUAAG CUACUUGGUCUUUGAAUAAAGCCUGA GUAGG	miR-21-MCP-VPg (8 copies)	5
1×anti- miR-302- 3' UTR	UCUAGACCUUCUGCGGGGGCUUGCCUUC UGGCCAUGCCCUUCUCUCCCAGCAAGU ACAUCCACGUUUAAGUCUUGGUCUUU GAAUAAAGCCUGAGUAGG	anti-miR-302a-MCP- VPg	5

Table S3. ORFs used in this work

Name	Sequence (5'-3')	mRNAs containing this sequence	Remark and reference
МСР	AUGGCUUCUAACUUUACUCAGUUCGUU CUCGUCGACAAUGGCGGAACUGGCGAC GUGACUGUCGCCCCAAGCAACUUCGCU AACGGGGUCGCUGAAUGGAUCAGCUCU AACUCGCGAUCACAGGCUUACAAAGUA ACCUGUAGCGUUCGUCAGAGCUCUGCG CAGAAUCGCAAAUACACCAUCAAAGUC GAGGUGCCUAAAGGCGCAUGGAGGUCU UACUUAAAUAUGGAACUAACCAUUCCA AUUUUCGCCACGAAUUCCGACUGCGAG CUUAUUGUUAAGGCAAUGCAAGGUCUC CUAAAAGAUGGAAACCCGAUUCCCUCG GCCAUCGCGGCCAACUCCGGCAUCUAC UAG	MCP, miR-21-MCP	Gifted from Hirohide Saito lab in Kyoto University ⁵
VPg	AUGGGAAAGAAGGGCAAGAACAAGAAG GGCCGGGGGCGACCCGGAGUCUUCAGA ACCCGUGGGCUCACGGAUGAGGAGUAC GAUGAAUUCAAGAAGCGCCGCGAGUCU AGGGGCGGCAAGUACUCCAUUGAUGAU UACCUCGCUGACCGCGAGCGAGAAGAA GAACUCCUGGAGCGGGACGAGGAGGAG GCUAUCUUCGGGGAUGGCUUCGGGUUG AAGGCCACCCGCCGUUCCCGCAAGGCA GAGAGAGCCAAACUGGGCCUGGUUUCU GGUGGCGACAUCCGCGCCGCAAGCCG AUCGACUGGAAUGUGGUUGGCCCCUCC UGGGCUGACGAUGACCGCCAGGUCGAC UACGGCGAGAAGAUCAACUUUGAGUAG	VPg	Synthesized by GenScript with sequence from GenBank (Access No. KM102450.1 MNV- VPg) ⁷
MCP- VPg	AUGGCUUCUAACUUUACUCAGUUCGUU CUCGUCGACAAUGGCGGAACUGGCGAC GUGACUGUCGCCCCAAGCAACUUCGCU AACGGGGUCGCUGAAUGGAUCAGCUCU AACUCGCGAUCACAGGCUUACAAAGUA ACCUGUAGCGUUCGUCAGAGCUCUGCG CAGAAUCGCAAAUACACCAUCAAAGUC GAGGUGCCUAAAGGCGCAUGGAGGUCU UACUUAAAUAUGGAACUAACCAUUCCA AUUUUCGCCACGAAUUCCGACUGCGAG CUUAUUGUUAAGGCAAUGCAAGGUCUC CUAAAAGAUGGAAACCGAUUCCCUCG GCCAUCGCGGCCAACUCCGGCAUCUAC GGAAAGAAGGGCAAGAACAAGAAGGGC CGGGGGCGACCCGGAGUCUUCAGAACC CGUGGGCUCACGGAUGAGGAGUACGAU GAAUUCAAGAAGCGCCGCGAGUCUAGG GGCGACAGGAAGCGCGAGAGAACAAGAAGAA CUCCUGGAGCGGGACGAGGAGAAGAAGAA CUCCUGGAGCGGGACGAGGAGGAGAGAGAG GCCACCCGCGUUCCGCGAGGUGAAG GCCACCGCCGUUCCGGAAGAAGAAGAA GCCACCGCCGUUCCGCAAGGCAGAG AGAGCCAAACUGGGCCUGGUUUCUGGU GGCGACAUCGCGCCCGCAAGCCAGAG AGAGCCAACUGGGCCUGGUUUCUGGU GGCGACAUCCGCGCCCGCAAGCCGAUC	MCP-VPg, miR-21- MCP-VPg (1 copy, 4 copies, 5 copies, 8 copies), miR-302- MCP-VPg	Direct fusion of MCP and VPg

	GCUGACGAUGACCGCCAGGUCGACUAC		
	GGCGAGAAGAUCAACUUUGAGUAG		
DCD			Direct fusion of DCD
PCP-		$PCP \cdot VPg, 2 \times W152 - DCP \cdot VPg$	and VPa
vig		1 CI - VI g	anu vi g
			PCP sequence was
	GGUCGGCUGCGCCUCACGGCUUCGCUC		cloned from Addgene
	CGUCAAAACGGAGCCAAGACCGCGUAU		plasmid #27548, a gift
	CGCGUCAACCUAAAACUGGAUCAGGCG		from Kathleen
	GACGUCGUUGAUGCAUCCACCAGCGUC		Collins ⁸
	GCCGGCGAGCUUCCGAAAGUGCGCUAC		
	ACUCAGGUAUGGUCGCACGACGUGACA		
	AUCGUUGCGAAUAGCACCGAGGCCUCG		
	CGCAAAUCGUUGUACGAUUUGACCAAG		
	UCCCUCGUCGCGACCUCGCAGGUCGAA		
	GAUCUUGUCGUCAACCUUGUGCCGCUG		
	GGCCGUGGAAAGAAGGGCAAGAACAAG		
	AAGGGCCGGGGGGGCGACCCGGAGUCUUC		
	AGAACCCGUGGGCUCACGGAUGAGGAG		
	UACGAUGAAUUCAAGAAGCGCCGCGAG		
	UCUAGGGGCGGCAAGUACUCCAUUGAU		
	GAUUACCUCGCUGACCGCGAGCGAGAA		
	GAAGAACUCCUGGAGCGGGACGAGGAG		
	GACUACGGCGAGAAGAUCAACUUUGAG		
	UAG		
EGFP	AUGGGAUCCGUGAGCAAGGGCGAGGAG	MS2-EGFP. miR-	Gifted from Hirohide
	CUGUUCACCGGGGUGGUGCCCAUCCUG	21-EGFP, 2×MS2-	Saito lab in Kyoto
	GUCGAGCUGGACGGCGACGUAAACGGC	EGFP	University ⁵
	CACAAGUUCAGCGUGUCCGGCGAGGGC		5
	GAGGGCGAUGCCACCUACGGCAAGCUG		
	ACCCUGAAGUUCAUCUGCACCACCGGC		
	AAGCUGCCCGUGCCCUGGCCCACCCUCG		
	UGACCACCCUGACCUACGGCGUGCAGU		
	GCUUCAGCCGCUACCCCGACCACAUGA		
	AGCAGCACGACUUCUUCAAGUCCGCCA		
	UGCCCGAAGGCUACGUCCAGGAGCGCA		
	CCAUCUUCUUCAAGGACGACGGCAACU		
	ACAAGACCCGCGCCGAGGUGAAGUUCG		
	AUAUCAUGGCCGACAAGCAGAAGAACG		
	GCAUCAAGGUGAACUUCAAGAUCCGCC		
	ACAACAUCGAGGACGGCAGCGUGCAGC		
	UCGCCGACCACUACCAGCAGAACACCCC		
	CAUCGGCGACGGCCCCGUGCUGCUGCC		
	CGACAACCACUACCUGAGCACCCAGUC		
	CGCCCUGAGCAAAGACCCCAACGAGAA		
	GCGCGAUCACAUGGUCCUGCUGGAGUU		
		1	

	CAUGGACGAGCUGUACAAGAGAUCUCA		
	UAUGCAUCUCGAGUGA		
mCherry	AUGGUGAGCAAGGGCGAGGAGGAUAAC	MS2-mCherry	Cloned from Addgene
_	AUGGCCAUCAUCAAGGAGUUCAUGCGC		plasmid #55110
	UUCAAGGUGCACAUGGAGGGCUCCGUG		mCherry-Nucleus-7,
	AACGGCCACGAGUUCGAGAUCGAGGGC		a gift from Michael
	GAGGGCGAGGGCCGCCCCUACGAGGGC		Davidson
	ACCCAGACCGCCAAGCUGAAGGUGACC		
	AAGGGUGGCCCCUGCCCUUCGCCUGG		
	GACAUCCUGUCCCCUCAGUUCAUGUAC		
	GGCUCCAAGGCCUACGUGAAGCACCCC		
	GCCGACAUCCCCGACUACUUGAAGCUG		
	UCCUUCCCCGAGGGCUUCAAGUGGGAG		
	CGCGUGAUGAACUUCGAGGACGGCGGC		
	GUGGUGACCGUGACCCAGGACUCCUCC		
	CUGCAGGACGGCGAGUUCAUCUACAAG		
	GUGAAGCUGCGCGGCACCAACUUCCCC		
	UCCGACGGCCCCGUAAUGCAGAAGAAG		
	ACCAUGGGCUGGGAGGCCUCCUCCGAG		
	CGGAUGUACCCCGAGGACGGCGCCCUG		
	AAGGGCGAGAUCAAGCAGAGGCUGAAG		
	CUGAAGGACGGCGGCCACUACGACGCU		
	GAGGUCAAGACCACCUACAAGGCCAAG		
	AAGCCCGUGCAGCUGCCCGGCGCCUAC		
	AACGUCAACAUCAAGUUGGACAUCACC		
	UCCCACAACGAGGACUACACCAUCGUG		
	GAACAGUACGAACGCGCCGAGGGCCGC		
	CACUCCACCGGCGGCAUGGACGAGCUG		
	UACAAG		
DED		MC2 DED	Clanad from Addama
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC	MS2-BFP	Cloned from Addgene
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUCAAACCGCCACAAG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGGGGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGGGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA CCCGCGCCGAGGUGAAGUUCGAGGGCG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGGGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA CCCGCGCCGAGGUGAAGUUCGAGGGCG ACACCCUGGUGAACCGCAUCGAGCUGA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA CCCGCGCCGAGGUGAAGUUCGAGGGCG ACACCCUGGUGAACCGCAUCGAGCUGA AGGGCGUCGACUUCAAGGAGGACGCCA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA CCCGCGCCGAGGUGAAGUUCGAGGGCG ACACCCUGGUGAACCGCAUCGAGCUGA AGGGCGUCGACUUCAAGGAGGACGGCA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU AGGGCGUCGACUUCAAGGAGGACGGCA ACGCCUGGGGCACAAGCUGGAGUACA ACUUCUACAGCCACAACAUCUAUAUCA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGCC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA CCCGCGCCGAGGUGAAGUUCGAGGGCG ACACCCUGGUGAACCGCAUCGAGCUGA AGGGCGUCGACUUCAAGGAGGACGGCA ACAUCCUGGGGCACAACAUCUAUAUCA UGGCCGUCAAGCAGAAGAACGGCAUCA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGCC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA CCCGCGCCGAGGUGAAGUUCGAGGGCG ACACCCUGGUGAACCGCAUCGAGCUGA AGGGCGUCGACUUCAAGGAGGAGGACGGCA ACUUCUACAGCCACAACGUGGAGUACA ACUUCAACAGCCACAACAUCUAUAUCA UGGCCGUCAAGCAGAAGAACGGCAUCA AGGUGAACUUCAAGAUCCGCCACACG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGCGAGGGCGAGGCC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGCAUCGAGGCG ACACCCUGGUGAACCGCAUCGAGCUGA AGGCGUCGACUUCAAGGAGGACGGCA ACAUCCUGGGGCACAAGCUGGAGUACA ACUUCAACAGCCACAACAUCUAUAUCA UGGCCGUCAAGCAGAAGAACGGCAUCA AGGUGAACUUCAAGAUCCGCCACAACG UGGAGGACGGCAGCGUGCAGCUCGCCG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGCGAGGGCGAGGCC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU AGGGCGUCGACUUCAAGGAGGACGGCG ACACCCUGGUGAACCGCAUCGAGCUGA AGGCGUCGACUUCAAGGAGGACGGCA ACUUCUACGGCACACAUCUGAGCUGA ACUUCAACAGCCACAACAUCUAUAUCA UGGCCGUCAAGCACACACAUCUAUAUCA UGGCCGUCAAGCAGAAGAACGGCAUCA AGGUGAACUUCAAGAUCCGCCACAACG UGGAGGACGGCAGCAGCUCGCCG ACCACUACCAGCAGAACACCCCCAUCG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA CCCGCGCCGAGGUGAAGUUCGAGGGCG ACACCCUGGUGAACCGCAUCGAGCUGA AGGGCGUCGACUUCAAGGAGGACGGCA ACAUCCUGGGGCACAAGCUGGAGUACA ACUUCAACAGCCACAACAUCUAUAUCA UGGCCGUCAAGCACGAACAUCUAUAUCA UGGCCGUCAAGCACGAACACGCAUCA AGGUGAACUUCAAGAUCCGCCACAACG UGGAGGACGGCACGAGCUGCAGCUCGCG ACCACUACCAGCAGAACACCCCCAUCG GCGACGGCCCGUGCUGCUGCCCGACA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA CCCGCGCCGAGGUGAAGUUCGAGGGCG ACACCCUGGUGAACCGCAUCGAGGCGA AGGGCGUCGACUUCAAGGAGGACGCA ACAUCCUGGGGCACAAGCUGAGGCGA ACUUCAACAGCCACAACAUCUAUAUCA UGGCCGUCAAGCAGAAGACGGCACCAUCA AGGUGAACUUCAAGAACACGCAUCA AGGUGAACUUCAAGAACACGCAUCA AGGUGAACUUCAAGAACGCCACAACG UGGAGGACGGCACGAGAACACCCCAUCG GCGACGGCCCGUGCUGCUGCCCGACA GCCACUACCUGAGCACCACCAUCCGUCC	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU AGGGCGUCGACUUCAAGGAGGAGGACGAA ACACCCUGGUGAACCGCAUCGAGGCGA ACACCCUGGUGAACCGCAUCGAGGCGA ACAUCCUGGGGCACAAGCUGAGGACGAA ACUUCAACAGCCACAACGUGGAGUACA ACUUCAACAGCCACAACAUCUAUAUCA UGGCCGUCAAGCAGAAGAACGGCAUCA AGGUGAACUUCAAGAAGAACGGCAUCA AGGUGAACUUCAAGAACACCCCACACG UGGAGGACGGCACGAGCUGCCCGACA GCCACUACCUGAGCACCACCAUCCGUCC UGAGCAAAGACCCCAACGAGAAGCGCG	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU AGGGCGUCGACUUCAAGGAGGAGGACGGCA ACACCCUGGUGAACCGCAUCGAGGCG ACACCCUGGUGAACCGCAUCGAGCUGA AGGCGUCGACUUCAAGGAGGAGGACGGCA ACUUCAACAGCCACAACAUCUAUAUCA UGGCCGUCAAGCAGAAGAACGGCAUCA AGGUGAACUUCAAGAAGACGCCAUCA AGGUGAACUUCAAGAACACCCCACACG UGGAGGACGGCACGAGCUGCCG ACCACUACCAGCAGAACACCCCCAUCG GCGACGGCCCGUGCUGCUGCCGACA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGCGAGGGCGAGGCC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA CCCGCGCCGAGGUGAAGUUCGAGGGCG ACACCCUGGUGAACCGCAUCGAGCUGA AGGGCGUCGACUUCAAGGAGGAGGACGGCA ACAUCCUGGGGCACAAGCUGGAGUACA ACUUCAACAGCCACAACAUCUAUAUCA UGGCCGUCAAGCAGAAGAACGGCAUCA AGGUGAACUUCAAGAAGAACGGCAUCA AGGUGAACUUCAAGAACACCCCAUCG GCGACGGCCCGUGCUGCCGCACAACG UGGAGGACGGCAGCAGCACCACACG UGGAGGACGGCAGCAGCACCACACG UGAGCAAAGACCCCAACGAGAAGAACGCCG AUCACUACCUGAGCACCCAGUCCGUGC UGAGCAAAGACCCCAACGAGAAGAACGCCG AUCACAUGGUCCUGCUGCUGAGUUCCGCA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson
BFP	AUGGUGAGCAAGGGCGAGGAGCUGUUC ACCGGGGUGGUGCCAUCCUGGUCGAG CUGGACGGCGACGUAAACGGCCACAAG UUCAGCGUGAGGGCGAGGGCGAGGGC GAUGCCACCAACGGCAAGCUGACCCUG AAGUUCAUCUGCACCACCGGCAAGCUG CCCGUGCCCUGGCCCACCCUCGUGACCA CCCUGAGCCACGGCGUGCAGUGCUUCG CCCGCUACCCCGACCACAUGAAGCAGC ACGACUUCUUCAAGUCCGCCAUGCCCG AAGGCUACGUCCAGGAGCGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCAUCU UCUUCAAGGACGACGGCACCUACAAGA CCCGCGCCGAGGUGAAGUUCGAGGGCG ACACCCUGGUGAACCGCAUCGAGCUGA AGGGCGUCGACUUCAAGGAGGAGGACGGCA ACAUCCUGGGGCACAAGCUGGAGUACA ACUUCAACAGCCACAACAUCUAUAUCA UGGCCGUCAAGCAGAAGAACGGCAUCA AGGUGAACUUCAAGAAGAACGGCAUCA AGGUGAACUUCAAGAACACCCCAUCG GCGACGGCCCGUGCUGCCGCACAACG UGGAGGACGGCACGAGCUGCCGCG ACCACUACCAGCAGAACACCCCCAUCG GCGACGGCCCCGUGCUGCUGCCGACA GCCACUACCUGAGCACCAACGAGAAGCGCG AUCACAUGGUCCUGCUGCAGCUCGCCG AUCACAUGGUCCUGCUGAGUUCCGCA CCGCCGCCGGGAUCACUCUCGGCAUGG AUCACAUGGUCCUGCUGAGUUCCGCA	MS2-BFP	Cloned from Addgene plasmid #55248, a gift from Michael Davidson

iRFP670	AUGGCGCGUAAGGUCGAUCUCACCUCC	iRFP	Gifted from Hirohide
	UGCGAUCGCGAGCCGAUCCACAUCCCC		Saito lab in Kyoto
	GGCAGCAUUCAGCCGUGCGGCUGCCUG		University ⁵
	CUAGCCUGCGACGCGCAGGCGGUGCGG		
	AUCACGCGCAUUACGGAAAAUGCCGGC		
	GCGUUCUUUGGACGCGAAACUCCGCGG		
	GUCGGUGAGCUACUCGCCGAUUACUUC		
	GGCGAGACCGAAGCCCAUGCGCUGCGC		
	GUGGUUGAALAGGUUGALAAUUUGUUG		
	ACCAAAGAACUGAAGUCGCUCGAAGAG		
	AUGGCCGCACGGGUGCCGCGCUAUCUG		
	CAGGCGAUGCUCGGCUAUCACCGCGUG		
	AUGUUGUACCGCUUCGCGGACGACGGC		
	UCCGGGAUGGUGAUCGGCGAGGCGAAG		
	CGCAGCGACCUCGAGAGCUUUCUCGGU		
	CAGCACUUUCCGGCGUCGCUGGUCCCG		
	CAGCAGGCGCGGCUACUGUACUUGAAG		
	AACGCGAUCCGCGUGGUCUCGGAUUCG		
	CGCGGCAUCAGCAGCCGGAUCGUGCCC		
	GAGCACGACGCCUCCGGCGCCGCGCUC		
	GAUCUGUCGUUCGCGCACCUGCGCAGC		
	AUCUCGCCCUGCCAUCUCGAAUUUCUG		
	CGGAACAUGGGCGUCAGCGCCUCGAUG		
	UCGCUGUCGAUCAUCAUUGACGGCACG		
	CUAUGGGGAUUGAUCAUCUGUCAUCAU		
	UACGAGCCGCGUGCCGUGCCGAUGGCG		
	CAGCGCGUCGCGGCCGAAAUGUUCGCC		
	GACUUCUUAUCGCUGCACUUCACCGCC		
	GCCCACCACCAACGCAGAUCCAAUCAG		
	UCUUCAAAUUUUGGACCCAUGAAGGGA		
	GGAAAIIIIIIIGGAGGCAGAAGCUCUGGC		
	CCULAUGGCGGUGGAGGCCAAUACUUU		
	GCAAAACCACGAAACCAAGGUGGCUAU		
	GCCGGUUCCAGCAGCAGCAGUAGCUAU		
	GCACUGGCAGAAGAUUUAGAUCUCAU		
	AUGCAUCUCUAUUUA		
CLuc		MS2-CLuc	Cloned from Addgene
	IIIAGUCUACUGCGCCACUGUUCAUUGC	11102 CLUC	nlasmid #53222 a gift
			from Thorston
			Stiowo ⁹
	CULA A GA A GGA GA A LIGUALUGAUA GC		Shewe
	GGAAGAGAUUCCAGUUCCAGGAACCU		
	GGUACAUACGUGUUGGGUCAAGGAACC		
	AAGGGCGGCGACUGGAAGGUGUCCAUC		
	ACCCUGGAGAACCUGGAUGGAACCAAG		
	GGGGCUGUGCUGACCAAGACAAGACUG		
	GAAGUGGCUGGAGACAUCAUUGACAUC		
1	GCUCAAGCUACUGAGAAUCCCAUCACU		

	-		
	GUAAACGGUGGAGCUGACCCUAUCAUC		
	GCCAACCCGUACACCAUCGGCGAGGUC		
	ACCAUCGCUGUUGUUGAGAUGCCAGGC		
	UUCAACAUCACCGUCAUUGAGUUCUUC		
	AAACUGAUCGUGAUCGACAUCCUCGGA		
	GGAAGAUCUGUAAGAAUCGCCCCAGAC		
	GGAAAUCCUGAUGACGUUGCAUACUGC		
	AAAGGUCUUCUGGAGCCGUACAAGGAC		
	AGCUGCCGCAACCCCAUCAACUUCUAC		
	UACUACACCAUCUCCUGCGCCUUCGCCC		
	GCUGUAUGGGUGGAGACGAGCGAGCCU		
	CACACGUGCUGCUUGACUACAGGGAGA		
	CGUGCGCUGCUCCCGAAACUAGAGGAA		
	CCUGCGUUUUGUCUGGACAUACUUUCU		
	ACGAUACAUUUGACAAAGCAAGAUACC		
	AAUUCCAGGGUCCCUGCAAGGAGAUUC		
	UUAUGGCCGCCGACUGUUUCUGGAACA		
	CUUGGGAUGUGAAGGUUUCACACAGGA		
	AUGUUGACUCUUACACUGAAGUAGAGA		
	AAGUACGAAUCAGGAAACAAUCGACUG		
	UGCUCGUCGUACAUAUUAGAGAUCCAU		
	UCGAUGGUAAGACUUGCGGUAUUUGCG		
	GUAACUACAACCAGGAUUUCAGUGAUG		
	AUUCUUUUGAUGCUGAAGGAGCCUGUG		
	AUCUGACCCCCAACCCACCGGGAUGCA		
	CCGAAGAACAGAAACCUGAAGCUGAAC		
	GACUCUGCAAUAGUCUCUUCGCCGGUC		
	AAAGUGAUCUUGAUCAGAAAUGUAACG		
	UGUGCCACAAGCCUGACCGUGUCGAAC		
	GAUGCAUGUACGAGUAUUGCCUGAGGG		
	GACAACAGGGUUUCUGUGACCACGCAU		
	GGGAGUUCAAGAAAGAAUGCUACAUAA		
	AGCAUGGAGACACCCUAGAAGUACCAG		
	AUGAAUGCAAAUAG		
GLuc	AUGGGAGUCAAAGUUCUGUUUGCCCUG	MS2-GLuc	Cloned from Addgene
0240	AUCUGCAUCGCUGUGGCCGAGGCCAAG		plasmid #72888 a gift
	CCCACCGAGAACAACGAAGACUUCAAC		from Ute
	AUCGUGGCCGUGGCCAGCAACUUCGCG		Hochgeschwender ¹⁰
			Hoengesenwender
	UGUCUGAUCUGCCUGUCCCACAUCAAG		
	UGCACGCCCAAGAUGAAGAAGUUCAUC		
	CCAGGACGCUGCCACACCUACGAAGGC		
	GACAAAGAGUCCGCACAGGGCGGCAUA		
	GGCGAGGCGAUCGUCGACAUUCCUGAG		
1	AUUCCUGGGUUCAAGGACUUGGAGCCC		

	AUGGAGCAGUUCAUCGCACAGGUCGAU		
	CUGUGUGUGGACUGCACAACUGGCUGC		
	CUCAAAGGGCUUGCCAACGUGCAGUGU		
	UCUGACCUGCUCAAGAAGUGGCUGCCG		
	CAACGCUGUGCGACCUUUGCCAGCAAG		
	AUCCAGGGCCAGGUGGACAAGAUCAAG		
	GGGGCCGGUGGUGACUAG		
FLuc	AUGGAAGAUGCCAAAAACAUUAAGAAG	Ctrl mRNA	Cloned from Addgene
	GGCCCAGCGCCAUUCUACCCACUCGAA		plasmid #66812, a gift
	GACGGGACCGCCGGCGAGCAGCUGCAC		from Ron Weiss ¹¹
	AAAGCCAUGAAGCGCUACGCCCUGGUG		
	CCCGGCACCAUCGCCUUUACCGACGCAC		
	AUAUCGAGGUGGACAUUACCUACGCCG		
	AGUACUUCGAGAUGAGCGUUCGGCUGG		
	CAGAAGCUAUGAAGCGCUAUGGGCUGA		
	AUACAAACCAUCGGAUCGUGGUGUGCA		
	GCGAGAAUAGCUUGCAGUUCUUCAUGC		
	CCGUGUUGGGUGCCCUGUUCAUCGGUG		
	UGGCUGUGGCCCCAGCUAACGACAUCU		
	ACAACGAGCGCGAGCUGCUGAACAGCA		
	UGGGCAUCAGCCAGCCCACCGUCGUAU		
	GCAAGACCGACUACCAGCGCUUCCAAA		
	GCAUGUACCACCUUCGUGACUUCCCAUU		
	CCGCUAUCCUCAGCGUGGUGCCAUUUC		
	GCACUCUCAUCGACAAGUACGACCUAA		
	GCAACUUGCACGAGAUCGCCAGCGGCG		
	GGGCGCCGCUCAGCAAGGAGGUAGGUG		
	GCGAGCUGUGCGUCCGUCCCCCAUCA		
	CAGCCGAACUGGAGAGCAUCCUGCUGC		
	ATTACTICAACAUCUUUUACUCUUUU		

	UCGCCGGCCUGCCCGACGACGAUGCCG		
	GCGAGCUGCCCGCCGCAGUCGUCGUGC		
	UGGAACACGGUAAAACCAUGACCGAGA		
	AGGAGAUCGUGGACUAUGUGGCCAGCC		
	AGGCCAAGAAGGGCGGCAAGAUCGCCG		
	UGUAA		
4×MTS-	AUGUCCGUCCUGACGCCGCUGCUGCUG	MS2-EGFP-MT	Direct fusion of the
EGFP	CGGGGCUUGACAGGCUCGGCCCGGCGG		4×MTS mitochondria
	CUCCCAGUGCCGCGCGCCAAGAUCCAU		tag and EGFP.
	UCGUUGGGGGGAUCCCUCCGUCCUGACG		4×MTS was
	CCGCUGCUGCUGCGGGGCUUGACAGGC		synthesized by
	UCGGCCCGGCGGCUCCCAGUGCCGCGC		GenScript with
	GCCAAGAUCCAUUCGUUGGGGAAGCUU		sequence from
	GCCACCUCCGUCCUGACGCCGCUGCUGC		GenBank (Access No
	UGCGGGGCUUGACAGGCUCGGCCCGGC		$DO479429 \ 1)^{12}$
	GCUCCCAGUGCCGCGCGCCAAGAUCC		BO (7) (29.1)
	GUUUGGUUGGUUGUUUUUAGUGUUGU		
	GCGCCAAGAUCCAUUCGUUGGCGGCCG		
	CCGGCUCCGGAGGAAUGACUAGUGUGA		
	GCAAGGGCGAGGAGCUGUUCACCGGGG		
	UGGUGCCCAUCCUGGUCGAGCUGGACG		
	GCGACGUAAACGGCCACAAGUUCAGCG		
	UGUCCGGCGAGGGCGAGGGCGAUGCCA		
	CCUACGGCAAGCUGACCCUGAAGUUCA		
	UCUGCACCACCGGCAAGCUGCCCGUGC		
	CCUGGCCCACCCUCGUGACCACCCUGAC		
	CUACGGCGUGCAGUGCUUCAGCCGCUA		
	CCCCGACCACAUGAAGCAGCACGACUU		
	CUUCAAGUCCGCCAUGCCCGAAGGCUA		
	CCACCACCCCCACCACCACCOCCCCCCCCCCCCCCCCC		
	CGACUUCAAGGAGGACGGCAACAUCCU		
	GGGGCACAAGCUGGAGUACAACUACAA		
	CAGCCACAACGUCUAUAUCAUGGCCGA		
	CAAGCAGAAGAACGGCAUCAAGGUGAA		
	CUUCAAGAUCCGCCACAACAUCGAGGA		
	CGGCAGCGUGCAGCUCGCCGACCACUA		
	CCAGCAGAACACCCCCAUCGGCGACGG		
	CCCCGUGCUGCUGCCCGACAACCACUAC		
	CUGAGCACCCAGUCCGCCCUGAGCAAA		
	GACCCCAACGAGAAGCGCGAUCACAUG		
	GUCCUGCUGGAGUUCGUGACCGCCGCC		
	GGGAUCACUCUCGGCAUGGACGAGCUG		
	UACAAGUAA		
1×MTS	AUGUCCGUCCUGACGCCGCUGCUGCUC	MS2-iped MT	Direct fusion of
miDED47		19102-11/11-1911	AXMTS mitochondria
			to a state ECED
0			tag and EGFP.
			4×M15 Was
			syntnesized by
	UCGGCCCGGCGGCUCCCAGUGCCGCGC		GenScript with

	GCCAAGAUCCAUUCGUUGGGGAAGCUU		sequence from
	GCCACCUCCGUCCUGACGCCGCUGCUGC		GenBank (Access No.
	UGCGGGGCUUGACAGGCUCGGCCCGGC		$DO479429(1)^{12}$
	GGCUCCCAGUGCCGCGCGCCAAGAUCC		miRFP670 sequence
			was cloned from
			Address alloged #
			Addgene plasmid #
	GCUCGGCCCGGCGGCUCCCAGUGCCGC		136560, a gift from
	GCGCCAAGAUCCAUUCGUUGGCGGCCG		Vladislav
	CCGGCUCCGGAGGAAUGACUAGUGUAG		Verkhusha ¹³
	CAGGUCAUGCCUCUGGCAGCCCCGCAU		
	UCGGGACCGCCUCUCAUUCGAAUUGCG		
	AACAUGAAGAGAUCCACCUCGCCGGCU		
	CGAUCCAGCCGCAUGGCGCGCUUCUGG		
	UCGUCAGCGAACAUGAUCAUCGCGUCA		
	UGUUGAUCAAGAUCCUGCCGCAUCUCG		
	AUCCCACCGCCGAAGGCAUGCCGGUCG		
	CGGUGCGCUGCCGGAUCGGCAAUCCCU		
	CUACGGAGUACUGCGGUCUGAUGCAUC		
	GGCCUCCGGAAGGCGGGCUGAUCAUCG		
	AACUCGAACGUGCCGGCCCGUCGAUCG		
	AUCUGUCAGGCACGCUGGCGCCGGCGC		
	AGCAAGGCCACGGCCUGGUAUUCUCCG		
	AGUGCCAUGUGCCUGGGCUCGAAUCCU		
	AUUUCGGCAACCGCUAUCCGUCGUCGA		
	CUGUCCCGCAGAUGGCGCGGCAGCUGU		
	ACGUGCGGCAGCGCGUCCGCGUGCUGG		
	UCGACGUCACCUAUCAGCCGGUGCCGC		
	UGGAGCCGCGGCUGUCGCCGCUGACCG		
	GGCGCGAUCUCGACAUGUCGGGCUGCU		
	UCCUGCGCUCGAUGUCGCCGUGCCAUC		
	CCCCACCUCCCCCCUCUCCUCCUCC		
	UCUGUCACCAUUAUCUGCCGCGCUUCA		
	UCCGUUUCGAGCUGCGGGCGAUCUGCA		
	AACGGCUCGCCGAAAGGAUCGCGACGC		
	GGAUCACCGCGCUUGAGAGCUAA		
BFP-	AUGGUGAGCAAGGGCGAGGAGCUGUUC	MS2-BFP-NL	Direct fusion of BFP
3×NLS	ACCGGGGUGGUGCCCAUCCUGGUCGAG		and 3×NLS nucleus
	CUGGACGGCGACGUAAACGGCCACAAG		tag. BFP sequence
	UUCAGCGUGAGGGGGGGGGGGGGGGGGGGG		was cloned from
	GAUGCCACCAACGGCAAGCUGACCCUG		Addgene plasmid
	AAGUUCAUCUGCACCACCGGCAAGCUG		#55248 a gift from
	CCCGUGCCCUGGCCCACCCUCGUGACCA		Michael Davidson
			witchaci Daviusoli.
			3×NIS was along
			from Aller
	ACGACUUCUUCAAGUCCGCCAUGCCCG		Irom Adagene
	AAGGCUACGUCCAGGAGCGCACCAUCU		plasmid #55110, a gift
	UCUUCAAGGACGACGGCACCUACAAGA		trom Michael
	CCCGCGCCGAGGUGAAGUUCGAGGGCG		Davidson
	ACACCCUGGUGAACCGCAUCGAGCUGA		
	AGGGCGUCGACUUCAAGGAGGACGGCA		

	ACAUCCUGGGGCACAAGCUGGAGUACA ACUUCAACAGCCACAAGAUCUAUAUCA UGGCCGUCAAGCAGAAGAACGGCAUCA AGGUGAACUUCAAGAUCCGCCACAACG UGGAGGACGGCAGCGUGCAGCUCGCCG ACCACUACCAGCAGAACACCCCCAUCG GCGACGGCCCCGUGCUGCUGCCGACA GCCACUACCUGAGCACCCAGUCCGUGC UGAGCAAAGACCCCAACGAGAAGCGCG AUCACAUGGUCCUGCUGGAGUUCCGCA CCGCCGCCGGGAUCACUCUCGGCAUGG ACGAGCUGUACAAGUCCGGACUCAGAU CUCGAGCUGUACAAGUCCGGACUCAGAU CUCGAGCUGAUCCAAAAAAGAAGAGAAAGG UAGAUCCAAAAAAGAAGAGAAAGGUAG GAUCCACCGGAUCUAGAUAA		
mCherry -3×NLS	AUGGUGAGCAAGGGCGAGGAGGAUAAC AUGGCAUCAUCAAGGAGUUCAUGCGC UUCAAGGUGCACAUGGAGGGCUCCGUG AACGGCCACGAGUUCGAGAUCGAGGGC GAGGGCGAGGGCCGCCCUACGAGGGC ACCCAGACCGCCAAGCUGAAGGUGACC AAGGGUGGCCCCCUGCCUUCGCCUGG GACAUCCUGUCCCCUCAGUUCAUGUAC GGCUCCAAGGCCUACGUGAAGCACCCC GCCGACAUCCCCGACUACUUGAAGCUG UCCUUCCCCGAGGGCUUCAAGUGGGAG CGCGUGAUGAACUUCGAGGACGGCGGC GUGGUGACCGUGACCCAGGACUCCUCC CUGCAGGACGGCGAGUUCAUCUACAAG GUGAAGCUGCGCGGCACCAACUUCCCC UCCGACGGCCCCGUAAUGCAGAAGAAG ACCAUGGGCUGGGAGGCCUCCUCCGAG GGGUUACCCCGAGGACGCGCCUG AAGGGCGAGAUCAAGCAGAGACGCCGG CGGAUGUACCCCGAGGACGGCGCCUG AAGGGCGAGAUCAAGCAGAGGCUGAAG CUGAAGGACGGCGGCCACUACGACGCU GAGGUCAAGACCACCUACAAGGCCAAG AACGUCAAGACCACCUACAAGGCCAAG AAGCCCGUGCAGCGCGCCACUACGACGCU GAGGUCAAGACCACCUACAAGGCCAAG AACGUCAACAUCAAGUUGGACAUCACC UCCCACAACGAGGACGCCGCGCCUAC AACGUCAACAUCAAGUUGGACAUCACC UCCCACAACGAGGACGCCGAGGCCGCCUAC AACGUCAACAUCAAGUUGGACAUCACC UCCCACAACGAGGACUACACCAUCGUG GAACAGUACGAACGCCGGCGACGAGGCCGC CACUCCACCGGCGGCCACUACGACGCU GAACAUCAACAUCAAGUUGGACAUCACC UCCCACAACGAAGAGAACGAGAAGGUAGAU CCAAAAAAGAAGAAGAGAAAGGUAGAUCCA AAAAGAAGAAGAAGAGAAAGGUAGAUCCA AAAAAGAAGAAGAAAAGGUAGGAUCCACC GGAUCUAGAUAA	MS2-mCherry-NL	Cloned from Addgene plasmid #55110 mCherry-Nucleus-7, a gift from Michael Davidson

Table S4. Transfection Tables

Transfection experiment	Reporter mRNA(s)	Regulator mRNA (ARCA- capped)	miRNA mimic or protein input mRNA	Transfectio n control mRNA (ARCA- capped)	Culture condition
Figure 1A	Acap-MS2- EGFP (100 ng)	MCP-VPg (0.5 ng, 0.67 ng, 1 ng, 2 ng, 3.3 ng, 5 ng, 10 ng)	N/A	iRFP670 (15 ng)	48-well plate/0.25 mL
Figure 1B	ARCA-MS2- EGFP (100 ng)	MCP-VPg (0.5 ng, 0.67 ng, 1 ng, 2 ng, 3.3 ng, 5 ng, 10, 13.3 ng)	N/A	iRFP670 (15 ng)	48-well plate/0.25 mL
Figure 1C, S1E	ARCA-MS2- EGFP (100 ng) m7G-MS2- EGFP (100 ng) 3Met-MS2- EGFP (100 ng) Acap-MS2- EGFP (100 ng)	MCP-VPg (13.3 ng)	N/A	iRFP670 (15 ng)	48-well plate/0.25 mL
Figure 1D, S2A, B	Acap-MS2- EGFP (50 ng) and ARCA- MS2-mCherry (50 ng)	MCP-VPg (0.6 ng, 1.3 ng, 2.5 ng, 5 ng, 10 ng)	N/A	iRFP670 (15 ng)	48-well plate/0.25 mL
Figure 2A, S4A	Acap-MS2- EGFP (200 ng) ARCA-MS2- EGFP (200 ng)	miR-21- MCP-VPg (5 copies, 4 ng) miR-21- MCP-VPg (5 copies, 80 ng)	miR-21 mimic (8 pmol)	iRFP670 (25 ng)	Confocal dish/2 mL
Figure 2B, S5A	anti-miR-21- EGFP (5 copies 100 ng) Acap-MS2- EGFP (100 ng)	N/A miR-21- MCP-VPg (5 copies, 2 ng)	miR-21 mimic (1 pmol)	iRFP670 (15 ng)	48-well plate/0.25 mL
Figure 2C, S5A	2×MS2-EGFP (100 ng) ARCA-MS2- EGFP (100 ng)	miR-21- MCP (5 copies, 100 ng) miR-21- MCP-VPg (5 copies, 10 ng)	miR-21 mimic (1 pmol)	iRFP670 (15 ng)	48-well plate/0.25 mL
Figure 2D, S5C, D	Acap-MS2- EGFP (50 ng) and ARCA- MS2-BFP (50 ng)	miR-21- MCP-VPg (5 copies, 10 ng)	N/A	iRFP670 (15 ng)	48-well plate/0.25 mL
Figure 3A	Acap-MS2- CLuc (15 ng) and ARCA-	MCP-VPg (10 ng)	N/A	N/A	48-well plate/0.25 mL

	MS2-GLuc (5					
	ng)					
Figure 3B	Acap-PP7- EGFP (50 ng)	PCP-VPg (100 ng)	N/A		48-well mL	plate/0.25
	PP7-mCherry (50 ng)					
Figure 3D	Acap-PP7- EGFP (50 ng)	2×MS2- PCP-VPg (N1ψ modified, 2 ng)	Ctrl mRNA or MCP (N1ψ modified	iRFP670 (15 ng)	48-well mL	plate/0.25
	ARCA-PP7- EGFP RNA (50 ng)	2×MS2- PCP-VPg (N1ψ modified, 10 ng)	, 50 ng)			
Figure 3E, S6B	MS2-EGFP- MT (25 ng), MS2- miRFP670-MT (25 ng), MS2- BFP-NL (25 ng), MS2- mCherry-NL (25 ng)	MCP-VPg (80 ng)	N/A	N/A	Confocal	dish/2 mL
Figure S1A	Acap-MS2- EGFP (100 ng)	MCP-VPg (10 ng)	N/A	iRFP670 (15 ng)	48-well mL	plate/0.25
Figure S1B	ARCA-MS2- EGFP (100 ng)	MCP-VPg (10 ng)	N/A	iRFP670 (15 ng)	48-well mL	plate/0.25
Figure S1C	Acap-MS2- EGFP (100 ng)	MCP (6.25 ng), VPg (6.5 ng), MCP- VPg (10 ng)	N/A	iRFP670 (15 ng)	48-well mL	plate/0.25
Figure S1D	ARCA-MS2- EGFP (100 ng)	MCP (6.25 ng), VPg (6.5 ng), MCP- VPg (10 ng)	N/A	iRFP670 (15 ng)	48-well mL	plate/0.25
Figure S2C	Acap-MS2- EGFP (50 ng) and ARCA- MS2-mCherry (50 ng)	MCP-VPg (10 ng)	N/A	iRFP670 (15 ng)	48-well mL	plate/0.25
Figure S3A	Acap-MS2- EGFP (100 ng)	miR-21- MCP-VPg (4 copies with no nucleotide modification, N1 ψ modified, 5mC/ ψ modified, 2 ng)	miR-21 mimic (1 pmol)	iRFP670 (15 ng)	48-well mL	plate/0.25
Figure S3B	ARCA-MS2- EGFP (100 ng)	miR-21- MCP-VPg (4 copies with no nucleotide modification, $N1\psi$ modified,	miR-21 mimic (1 pmol)	iRFP670 (15 ng)	48-well mL	plate/0.25

		$5mC/\psi$ modified, 10				
Figure S3C	Acap-MS2- EGFP (100 ng)	miR-21- MCP-VPg (5 copies, 2 ng), same molar amounts of miR-21- MCP-VPg (1, 4, 8 copies)	miR-21 mimic (1 pmol)	iRFP670 (15 ng)	48-well mL	plate/0.25
Figure S3D	ARCA-MS2- EGFP (100 ng)	miR-21- MCP-VPg (5 copies, 2 ng), same molar amounts of miR-21- MCP-VPg (1, 4, 8 copies)	miR-21 mimic (1 pmol)	iRFP670 (15 ng)	48-well mL	plate/0.25
Figure S4B	Acap-MS2- EGFP (50 ng) and ARCA- MS2-BFP (50 ng)	miR-302- MCP-VPg (10 ng)	N/A	iRFP670 (15 ng)	48-well mL	plate/0.25
Figure S5B, C, D	Acap-MS2- EGFP (50 ng) and ARCA- MS2-BFP (50 ng)	MCP-VPg (10 ng)	N/A	iRFP670 (15 ng)	48-well mL	plate/0.25
Figure S6A	Acap-PP7- EGFP (100 ng)	PCP-VPg (100 ng)	N/A	iRFP670 (15 ng)	48-well mL	plate/0.25
	AKCA-PP/- EGFP (100 ng)	PCP-VPg (100 ng)	N/A	1KFP670 (15 ng)	48-well mL	plate/0.25

References:

- 1 C. Wu, C. Suzuki-Ogoh and Y. Ohmiya, *BioTechniques*, 2007, 42, 290–292.
- 2 B. A. Tannous, Nat. Protoc., 2009, 4, 582-591.
- 3 C. J. C. Parr, S. Wada, K. Kotake, S. Kameda, S. Matsuura, S. Sakashita, S. Park, H. Sugiyama, Y. Kuang and H. Saito, *Nucleic Acids Res.*, 2020, **48**, e35–e35.
- 4 H. Nakanishi and H. Saito, Nat. Commun., 2020, 11, 1297.
- 5 S. Matsuura, H. Ono, S. Kawasaki, Y. Kuang, Y. Fujita and H. Saito, Nat. Commun., 2018, 9, 4847.
- 6 M. Jazurek, A. Ciesiolka, J. Starega-Roslan, K. Bilinska and W. J. Krzyzosiak, *Nucleic Acids Res.*, 2016, gkw803.
- 7 C. E. Wobus, S. M. Karst, L. B. Thackray, K.-O. Chang, S. V. Sosnovtsev, G. Belliot, A. Krug, J. M. Mackenzie, K. Y. Green and H. W. Virgin, *PLoS Biol.*, 2004, 2, e432.
- 8 J. R. Hogg and K. Collins, *RNA*, 2007, **13**, 868–880.
- 9 J. P. Charles, J. Fuchs, M. Hefter, J. B. Vischedyk, M. Kleint, F. Vogiatzi, J. A. Schäfer, A. Nist, O. Timofeev, M. Wanzel and T. Stiewe, *Nat. Commun.*, 2014, **5**, 3981.
- 10 K. Berglund, E. Birkner, G. J. Augustine and U. Hochgeschwender, PLoS ONE, 2013, 8, e59759.
- 11 O. Andries, S. Mc Cafferty, S. C. De Smedt, R. Weiss, N. N. Sanders and T. Kitada, J. Control. Release, 2015, 217, 337–344.

- 12 A. E. Palmer, M. Giacomello, T. Kortemme, S. A. Hires, V. Lev-Ram, D. Baker and R. Y. Tsien, *Chem. Biol.*, 2006, **13**, 521–530.
- 13 M. E. Matlashov, D. M. Shcherbakova, J. Alvelid, M. Baloban, F. Pennacchietti, A. A. Shemetov, I. Testa and V. V. Verkhusha, *Nat. Commun.*, 2020, **11**, 239.