Electronic Supplementary Material (ESI) for ChemComm.
This journal is © The Royal Society of Chemistry 2024

Table of Contents

1) General Information 2
2) Synthetic procedures and characterisation data 3-35
3) Additional optimisation tables 36-38
4) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra 39-57
5) References 57

1) General Information

Except where stated, all reagents were purchased from commercial sources and used without further purification. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF were obtained from an Innovative Technology Inc. PureSolv solvent purification system. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECX400 or JEOL ECS400 spectrometer (operating at 400 MHz and 100 MHz). All Spectroscopic data was acquired at 295 K unless stated otherwise. Chemical shifts (δ) are quoted in parts per million (ppm). The residual solvent peaks, $\delta_{H} 7.26$ and $\delta_{\text {c }}$ 77.16 for CDCl_{3} were used as a reference. Coupling constants (J) are reported in Hertz (Hz) to the nearest 0.1 Hz . The multiplicity abbreviations used are: br s broad singlet, s singlet, d doublet, br d broad doublet, t triplet, br t broad triplet, q quartet, p pentet, dd doublet of doublets, ddd doublet of doublet of doublets, dddd doublet of doublet of doublet of doublets, dt doublet of triplets, ddt doublet of doublet of triplets, td triplet of doublets, m multiplet. Signal assignment was achieved by analysis of DEPT, COSY, HMBC and HSQC experiments where required. In cases where products were formed as a mixture of rotamers, their ratio was determined by integration of signals in the ${ }^{1} \mathrm{H}$ NMR spectrum. Infrared (IR) spectra were recorded on a PerkinElmer UATR 2 spectrometer as a thin film dispersed from either $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CDCl_{3}. Mass spectra (high-resolution) were obtained by the University of York Mass Spectrometry Service, using Electrospray Ionisation (ESI) on a Bruker Daltonics, Micro-tof spectrometer. Melting points were determined using Gallenkamp apparatus. Thin layer chromatography was carried out on Merck silica gel $60 F_{254}$ pre-coated aluminium foil sheets and were visualised using UV light (254 nm) and stained with basic aqueous potassium permanganate or ceric ammonium nitrate. Flash column chromatography was carried out using slurry packed Fluka silica gel (SiO_{2}), 35-70 $\mu \mathrm{m}, 60 \AA$, under a light positive pressure, eluting with the specified solvent system.

2) Synthetic procedures and characterisation data

4-(((Triisopropylsilyl)oxy)methyl)cyclohexan-1-ol (8)

To a suspension of $\mathrm{LiAlH}_{4}\left(3.60 \mathrm{~g}, 94.8 \mathrm{mmol}, 2.0\right.$ equiv) in THF (150 mL) at $0^{\circ} \mathrm{C}$ was slowly added ethyl 4-oxocyclohexanecarboxylate $\mathbf{7}$ ($7.50 \mathrm{~mL}, 47.4 \mathrm{mmol}$). The reaction mixture was stirred under N_{2} atmosphere at $0^{\circ} \mathrm{C}$ and allowed to reach room temperature for 18 hours. The reaction mixture was then cooled back to $0^{\circ} \mathrm{C}$ and quenched with $\mathrm{H}_{2} \mathrm{O}(3.6 \mathrm{~mL}), 15 \% \mathrm{NaOH}$ (3.6 mL), followed by $\mathrm{H}_{2} \mathrm{O}(10.8 \mathrm{~mL})$. The mixture was stirred for a further 15 minutes and allowed to reach room temperature. Anhydrous MgSO_{4} was added, and the mixture was filtered through Celite, which was washed with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were concentrated in vacuo to give a diol as a white sticky residue $(6.17 \mathrm{~g})$ which was directly used for the next step without further purification. To a solution of the crude diol $(6.17 \mathrm{~g}$, assumed to be 47.4 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(190 \mathrm{~mL})$ was added imidazole ($4.84 \mathrm{~g}, 71.1 \mathrm{mmol}, 1.5$ equiv), DMAP ($590 \mathrm{mg}, 4.74 \mathrm{mmol}, 0.1$ equiv), followed by triisopropylsilyl chloride ($11.2 \mathrm{~mL}, 52.1$ $\mathrm{mmol}, 1.1$ equiv). The reaction mixture was stirred under N_{2} atmosphere at room temperature for 16 hours. After this time, an aqueous solution of $2 \mathrm{M} \mathrm{HCl}(75 \mathrm{~mL})$ was added, and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel flash column chromatography (10-30\% EtOAc/hexane) to yield the title compound 8 as a 2:1 mixture of diastereoisomers, as colourless oil ($11.8 \mathrm{~g}, 87 \%$ over two steps). Minor isomer 8: $\boldsymbol{R}_{\boldsymbol{f}}=0.36$ (20\% EtOAc/hexane); IR (ATR) $v_{\text {max }} 3350$ (O-H), 2925, 2865, 1463, 1197, 1064, 882, $783,680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.01-3.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 3.50(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=18.2,6.1$ Hz, H-5), 1.75-1.69 (2H, m, H-2 + H-3), 1.60-1.51 (5H, m, H-2 + H-3 + H-4) 1.45-1.37 (3H, m, $\mathrm{H}-2+\mathrm{H}-3$ and OH$), 1.11-0.97\left(21 \mathrm{H}, \mathrm{m}, \mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 68.1$ (C-1), 67.2 (C-5), 39.5 (C-4), $32.2(\mathrm{C}-2), 23.6(\mathrm{C}-3), 18.2\left(\mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 12.1\left(\mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$ ppm; HRMS (ESI) m / z cald for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{NaO}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$309.2220, found 309.2211. Major isomer 8: $\boldsymbol{R}_{\boldsymbol{f}}=0.25$ (20\% EtOAc/hexane); IR (ATR) $v_{\text {max }} 3339$ (O-H), 2928, 2865, 1463, 1115, 1067, 882, $802,681 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.8,10.8,4.2,4.2 \mathrm{~Hz}, \mathrm{H}-1), 3.46$
($2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=18.9,6.2 \mathrm{~Hz}, \mathrm{H}-5$), 2.02-1.96 (2H, m, H-2), 1.85-1.79 (2H, m, H-2) 1.51-1.37 (3H, $\mathrm{m}, \mathrm{H}-3+\mathrm{H}-4$ and OH), 1.30-1.19 (3H, m, H-3), 1.12-0.95 (21H, m, OSi(CH(CH3$\left.\left.)_{2}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.4$ (C-1), 68.5 (C-5), 39.9 (C-4), 35.3 (C-2), 27.9 (C-3), 18.2 $\left(\mathrm{OSi}\left(\mathrm{CH}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{2}\right)_{3}\right), 12.1\left(\mathrm{OSi}\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm}$; HRMS (ESI) m / z cald for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{NaO}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 309.2220, found 309.2214 .

4-(((Triisopropylsilyl)oxy)methyl)cyclohexan-1-one (9)

To a solution of oxalyl chloride ($2.73 \mathrm{~mL}, 32.2 \mathrm{mmol}, 1.20$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DMSO ($2.38 \mathrm{~mL}, 33.6 \mathrm{mmol}, 1.25$ equiv) dropwise. The mixture was stirred under N_{2} atmosphere at $-78^{\circ} \mathrm{C}$ for 1 hour before being added a solution of alcohol $8(7.69 \mathrm{~g}, 26.8$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour before being added $\mathrm{Et}_{3} \mathrm{~N}$ ($18.7 \mathrm{~mL}, 134 \mathrm{mmol}, 5.0$ equiv). The mixture was allowed to reach room temperature for 1.5 hours. After this time, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL})$ and 2 $\mathrm{M} \mathrm{HCl}(78 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The combined organic layers were washed with $2 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography (5-10\% EtOAc/hexane) to afford the title compound 9 as a colourless oil ($7.49 \mathrm{~g}, 98 \%$ yield): $\boldsymbol{R}_{\boldsymbol{f}}=0.27$ (10% EtOAc/hexane); IR (ATR) $v_{\text {max }}$ 2943, 2866, 1717 (C=O), 1463, 1121, 1104, 1067, 882, $682 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $3.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{H}-5), 2.41(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.3,4.8,3.1 \mathrm{~Hz}, \mathrm{H}-2), 2.34(2 \mathrm{H}, \mathrm{ddd}, J=14.3$, 12.6, $6.2 \mathrm{~Hz}, \mathrm{H}-2$), 2.11 ($2 \mathrm{H}, \mathrm{dddd}, J=13.2,6.2,6.2,3.1 \mathrm{~Hz}, \mathrm{H}-3$), $1.95(1 \mathrm{H}, \mathrm{ttd}, J=12.6,6.2$, $6.2,3.6 \mathrm{~Hz}, \mathrm{H}-4), 1.46(2 \mathrm{H}, \mathrm{dddd}, \mathrm{J}=13.2,12.6,12.6,4.8 \mathrm{~Hz}, \mathrm{H}-3), 1.14-1.03(21 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.6$ (C-1), 67.4 (C-5), 40.7 (C-2), 39.2 (C4), 29.4 (C-3), $18.2\left(\mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 12.1\left(\mathrm{OSi}\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm}$; HRMS (ESI) m / z cald for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NaO}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 307.2064$, found 307.2063. Elemental analysis: Found: $\mathrm{C}, 66.96, \mathrm{H}$, 11.34, $\mathrm{N}, \mathrm{O}_{\mathrm{C}} \mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{C}, 67.55, \mathrm{H}, 11.34, \mathrm{~N}, \mathrm{O}$.

6-(((Triisopropylsilyl)oxy)methyl)cyclohex-13-enone (5)

Using Method A in Scheme 2A

To a solution of cyclohexanone $9(1.67 \mathrm{~g}, 5.88 \mathrm{mmol})$ in chlorobenzene $(60.0 \mathrm{~mL})$ were added $\mathrm{Pd}(\mathrm{OAc})_{2}(66.0 \mathrm{mg}, 0.290 \mathrm{mmol})$ and 4,4'-di-tert-butyl-2,2'-dipyridyl ($79.0 \mathrm{mg}, 0.290 \mathrm{mmol}$) and the reaction was stirred at $120^{\circ} \mathrm{C}$ under a O_{2} balloon. After 72 hours, additional $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($66.0 \mathrm{mg}, 0.290 \mathrm{mmol}$) and 4,4'-di-tert-butyl-2,2'-dipyridyl ($79.0 \mathrm{mg}, 0.290 \mathrm{mmol}$) were added and the O_{2} balloon refreshed. After a further 44 hours, additional $\mathrm{Pd}(\mathrm{OAc})_{2}(66.0 \mathrm{mg}, 0.290$ mmol) and 4,4'-di-tert-butyl-2, $\mathrm{2}^{\prime}$-dipyridyl ($79.0 \mathrm{mg}, 0.290 \mathrm{mmol}$) were added and the O_{2} balloon refreshed. The reaction was stirred for a further 45 hours, then concentrated in vacuo to give a brown oil (2.50 g). The crude product was purified by silica gel flash column chromatography ($3 \%-10 \%$ EtOAc in hexane) and by Kugelrohr distillation to yield the title compound 5 as a pale yellow oil ($1.17 \mathrm{~g}, 70 \%$ yield).

Using Method B in Scheme 2A

To a solution of cyclohexanone $9(10.6 \mathrm{~g}, 37.5 \mathrm{mmol})$ in chlorobenzene (375 mL), were added $\mathrm{Pd}(\mathrm{OAc})_{2}(420 \mathrm{mg}, 1.88 \mathrm{mmol}), 4,4^{\prime}$-di-tert-butyl-2,2'-dipyridyl ($510 \mathrm{mg}, 1.88 \mathrm{mmol}$) and KNO_{3} $(1.90 \mathrm{~g}, 18.8 \mathrm{mmol})$ and the reaction was stirred at $120^{\circ} \mathrm{C}$ under a balloon of O_{2}. After 48 hours, additional $\operatorname{Pd}(\mathrm{OAc})_{2}(420 \mathrm{mg}, 1.88 \mathrm{mmol}), 4,4^{\prime}$-di-tert-butyl-2,2'-dipyridyl ($510 \mathrm{mg}, 1.88$ mmol) were added and the O_{2} balloon refreshed. The O_{2} balloon was refreshed every 24 hours and after a further 5 days, the reaction was cooled to room temperature and concentrated in vacuo. The crude product was purified by silica gel flash column chromatography ($3 \%-10 \%$ EtOAc in hexane) and by Kugelrohr distillation to yield the title compound $\mathbf{5}$ as a pale yellow oil ($9.0 \mathrm{~g}, 85 \%$ yield).

From silyl enol ether rac-15

To a solution of crude TMS-enol ether (0.75 g , $2.1 \mathrm{mmol}, 1.0$ equiv) in DMSO (30 mL) was added IBX ($2.94 \mathrm{~g}, 10.5 \mathrm{mmol}, 5.0$ equiv). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ under N_{2} atmosphere overnight before being cooled to room temperature. The reaction mixture was quenched with a saturated aqueous solution of NaHCO_{3} and diluted with hexane $(30 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with hexane ($3 \times 30 \mathrm{~mL}$).

The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography (5-10\% EtOAc/hexane) to the title compound 5 as a light yellow oil (515 mg , 87\% yield over two steps)

Data for 5: B.P. $147^{\circ} \mathrm{C}$ @ 0.6 mbar; $\boldsymbol{R}_{f}=0.38$ (10\% EtOAc/hexane) IR (ATR): $v_{\max } 2942,2891$, 2865, 1682 ($\mathrm{C}=0$), 1462, 1389, 1110, 881, 783, $681 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.00$ (1H, ddd, $J=10.2,2.7,1.4 \mathrm{~Hz}, \mathrm{H}-7), 6.05(1 \mathrm{H}, \mathrm{dd}, J=10.2,2.5 \mathrm{~Hz}, \mathrm{H}-12), 3.76(1 \mathrm{H}, \mathrm{dd}, J=9.6$, 6.4 Hz, H-5), 3.68 (1H, dd, J = 9.6, 6.9 Hz, H-5), 2.63 (1H, dddddd, $J=9.6,6.9,6.4,4.6,2.7,2.5$ $\mathrm{Hz}, \mathrm{H}-6), 2.54(1 \mathrm{H}, \mathrm{ddd}, J=16.5,4.6,4.6 \mathrm{~Hz}, \mathrm{H}-14), 2.39(1 \mathrm{H}, \mathrm{ddd}, J=16.5,12.8,5.0 \mathrm{~Hz}, \mathrm{H}-14)$, $2.10(1 \mathrm{H}$, ddddd, $J=13.3,5.0,4.6,4.6,1.4 \mathrm{~Hz}, \mathrm{H}-15), 1.79(1 \mathrm{H}, \mathrm{dddd}, J=13.3,12.8,9.6,4.6$ $\mathrm{Hz}, \mathrm{H}-15), 1.15-1.00\left(21 \mathrm{H}, \mathrm{m}, \mathrm{OSiCH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl 3$): \delta 199.9(\mathrm{C}-13)$, 152.1 (C-7), $\left.129.8(\mathrm{C}-12), 65.8(\mathrm{C}-5), 29.4(\mathrm{C}-14), 36.7(\mathrm{C}-6), 25.4(\mathrm{C}-15), 17.9\left(\mathrm{OSiCH}_{\left(\mathrm{CH}_{3}\right)}\right)_{2}\right)$, $11.8\left(\mathrm{OSi} \underline{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$ ppm. MS (ESI): m/z $305\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS: Found $\left(\mathrm{M}+\mathrm{Na}^{+}\right), 305.1899$ $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NaO}_{2} \mathrm{Si}$ requires $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$305.1907. $\mathrm{m} / \mathrm{z} 283\left(\mathrm{M}+\mathrm{H}^{+}\right)$; Found $\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 283.2083. $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}$ requires $\left(\mathrm{M}+\mathrm{H}^{+}\right)$283.2088.

Methoxy-3-trimethylsilyloxy-1,3-butadiene (11)

A solution of $\mathrm{ZnCl}_{2}(0.17 \mathrm{~g}, 1.2 \mathrm{mmol}, 3.0 \mathrm{~mol} \%)$ in $\mathrm{Et}_{3} \mathrm{~N}(12.2 \mathrm{~mL}, 89.5 \mathrm{mmol}, 2.2$ equiv) was stirred at room temperature for 1 hour. To this solution was added a solution of trans-4-methoxy-3-butene-2-one ($4.0 \mathrm{~mL}, 40.7 \mathrm{mmol}$) in benzene (20 mL), followed by TMSCl (10.3 $\mathrm{mL}, 81.4 \mathrm{mmol}, 2.0$ equiv) over a period of 30 minutes. The reaction mixture was stirred under N_{2} atmosphere at $40^{\circ} \mathrm{C}$ for 19 hours before being cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. The mixture was filtered through Celite and washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo and purified by kugelrohr distillation (40-42 ${ }^{\circ} \mathrm{C}$ at 2 mbar) to give the title compound 11 as a colourless oil ($4.56 \mathrm{~g}, 65 \%$ yield): $\boldsymbol{R}_{f}=0.60$ (10\% EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}, \mathrm{H}-4), 5.35(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}, \mathrm{H}-3), 4.11$ (1H, s, H-1) $4.06(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1) 3.58(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 0.23\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm}$. This compound was characterised only by ${ }^{1} \mathrm{H}$ NMR due to its volatility and instability. The data matched those reported in the literature. ${ }^{1}$

Methyl 2-methoxy-4-(trimethylsilyloxy)cyclohex-3-enecarboxylate (13)

To a solution of diene $11(0.43 \mathrm{~g}, 2.5 \mathrm{mmol})$ in toluene (1.7 mL) was added methyl acrylate ($0.40 \mathrm{~mL}, 4.4 \mathrm{mmol}, 1.7$ equiv). The reaction mixture was stirred under N_{2} atmosphere at 80 ${ }^{\circ} \mathrm{C}$ for 45 hours. The reaction mixture was then cooled to room temperature and concentrated in vacuo to yield a mixture of two diastereomers of cyclohexene $\mathbf{1 3}$ as a yellow oil, which was directly used for the next step without purification ($569 \mathrm{mg},>99 \%$ conversion, 88% crude yield): $\boldsymbol{R}_{\boldsymbol{f}}=0.45$ ($30 \% \mathrm{EtOAc} /$ hexane); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.14(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}, \mathrm{H}-2$), 4.99-4.97 (1H, m, H-2), 4.27-4.23 (1H, m, H-3), $4.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8,4.8 \mathrm{~Hz}, \mathrm{H}-3), 3.71(3 \mathrm{H}, \mathrm{s}$, H-9), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 3.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$), 3.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$), 2.62-2.57 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 2.54-2.49 (1H, m, H-4), 2.11-1.85 (8H, m, H-6 + H-5), $0.21\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right) 0.20\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm}$. This compound was characterised only by ${ }^{1} \mathrm{H}$ NMR due to its instability. The data matched those reported in the literature. ${ }^{2}$

4-(Hydroxymethyl)cyclohex-2-en-1-one (14)

To a suspension of $\mathrm{LiAlH}_{4}\left(54 \mathrm{mg}, 1.4 \mathrm{mmol}, 1.4\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(5.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added a solution of crude cyclohexene $13(0.26 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$. The reaction mixture was stirred under N_{2} atmosphere at $-78^{\circ} \mathrm{C}$ for 4 hours and then allowed to reach $0^{\circ} \mathrm{C}$. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.05 \mathrm{~mL})$ followed by $\mathrm{H}_{2} \mathrm{O}$ $(0.15 \mathrm{~mL})$ and allowed to reach room temperature. The mixture was added $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and stirred at room temperature for 15 minutes before being filtered. The filtrate was concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography (50% EtOAc/hexane) to the title compound 14 as a yellow oil ($56 \mathrm{mg}, 44 \%$ yield). $\boldsymbol{R}_{f}=0.17$ (60% EtOAc/hexane); IR (ATR) $v_{\max } 3406$ (O-H), 2927, 2871, 1662 (C=O), 1393, 1256, 1083, 1048, $845 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.97(1 \mathrm{H}$, ddd, $\mathrm{J}=10.2,2.4,1.2 \mathrm{~Hz}, \mathrm{H}-3), 6.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=10.2,2.6 \mathrm{~Hz}, \mathrm{H}-2), 3.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,6.4 \mathrm{~Hz}, \mathrm{H}-7), 3.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,6.6 \mathrm{~Hz}, \mathrm{H}-7), 2.64$ (1H, dddddd, $J=9.8,6.6,6.4,4.8,2.6,2.4 \mathrm{~Hz}, \mathrm{H}-4), 2.55$ ($1 \mathrm{H}, \mathrm{ddd}, J=16.8,4.8,4.8 \mathrm{~Hz}, \mathrm{H}-6$),
$2.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=16.8,12.6,4.8 \mathrm{~Hz}, \mathrm{H}-6), 2.13(1 \mathrm{H}$, ddddd, $J=13.4,4.8,4.8,4.8,1.2 \mathrm{~Hz}, \mathrm{H}-5)$, 1.81 ($1 \mathrm{H}, \mathrm{dddd}, \mathrm{J}=13.4,12.6,9.8,4.8 \mathrm{~Hz}, \mathrm{H}-5$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.9$ (C-1), 151.5 (C-3), 130.5 (C-2), 65.3 (C-7), 39.1 (C-4), 36.8 (C-6), 25.5 (C-5) ppm; HRMS (ESI) m / z cald for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 149.0573$, found 149.0572 .

Triisopropyl((4-((trimethylsilyl)oxy)cyclohex-3-en-1-yl)methoxy)silane (rac-15)

To a solution of freshly distilled diisopropylamine (0.36 mL , 2.5 mmol , 1.2 equiv) in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$, was added n-BuLi (1.4 mL of a 1.89 M solution in hexane, $2.5 \mathrm{mmol}, 1.2$ equiv) dropwise. After stirring for 45 minutes, to this solution was added a solution of cyclohexanone $9(0.60 \mathrm{~g}, 2.1 \mathrm{mmol})$ in THF (9 mL) and stirred for a further 1 hour. Freshly distilled trimethylsilyl chloride ($0.35 \mathrm{~mL}, 2.7 \mathrm{mmol}, 1.3$ equiv) was added at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 minutes and allowed to reach room temperature. The reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(10$ $\mathrm{mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ $\mathrm{mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give racemic TMS-enol ether rac-15 as a light yellow oil, which was directly used for the next step without purification ($749 \mathrm{mg},>99 \%$ conversion).

(S)-Triisopropyl((4-((trimethylsilyl)oxy)cyclohex-3-en-1-yl)methoxy)silane ((S)-15)

To a solution of (+)-bis[(R)-1-phenylethyl]amine ($3.2 \mathrm{~mL}, 14.0 \mathrm{mmol}, 1.3$ equiv) in THF (43 mL) at $-78{ }^{\circ} \mathrm{C}$, was slowly added n-BuLi (6.85 mL of a 1.89 M solution in hexane, $12.9 \mathrm{mmol}, 1.2$ equiv). The pink solution was stirred under N_{2} atmosphere at $-78^{\circ} \mathrm{C}$ for 30 minutes. Freshly distilled trimethylsilyl chloride ($6.85 \mathrm{~mL}, 53.9 \mathrm{mmol}, 5.0$ equiv) was added dropwise at $-78^{\circ} \mathrm{C}$ where upon it turned colourless. After an additional 10 minutes, a solution of cyclohexanone $9(3.06 \mathrm{~g}, 10.8 \mathrm{mmol})$ in THF (5 mL) was slowly added. The mixture was stirred for a further 1.5 hours before being treated with freshly distilled trimethylamine ($13.7 \mathrm{~mL}, 108 \mathrm{mmol}, 10.0$
equiv) at $-78^{\circ} \mathrm{C}$, followed by a saturated aqueous solution of $\mathrm{NaHCO}_{3}(14 \mathrm{~mL})$ below $-20^{\circ} \mathrm{C}$. The mixture was allowed to reach room temperature. The organic layer was separated, and the aqueous layer was extracted with hexane ($3 \times 40 \mathrm{~mL}$). The combined organic layers were washed with 3 N citric acid and 1 N citric acid (until all the amine byproduct was removed as determined by TLC and ninhydrin stain), and a saturated aqueous solution of NaHCO_{3} and brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the crude product (S)-15 as a pale oil, which was directly used for the next step without purification ($3.85 \mathrm{~g},>99 \%$ conversion).

(S)-4-(((Triisopropylsilyl)oxy)methyl)cyclohex-2-en-1-one ((S)-5)

To a solution of crude TMS-enol ether (\mathbf{S}) $\mathbf{- 1 5}(3.85 \mathrm{~g}, 10.8 \mathrm{mmol}, 1.0$ equiv) in DMSO (150 mL) was added IBX ($15.1 \mathrm{~g}, 54.0 \mathrm{mmol}, 5.0$ equiv). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ under N_{2} atmosphere overnight before being cooled to room temperature. The reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and diluted with hexane $(100 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with hexane ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography (2% EtOAc/hexane) to afford (S)-cyclohexenone (S)-5 as a pale oil (2.93 g , 96% yield over two steps, $80 \% e e$): $\boldsymbol{R}_{f}=0.19$ ($10 \% \mathrm{EtOAc} / \mathrm{hexane}$); $[\alpha]_{\mathrm{D}}{ }^{20}=-78.9$ (c 1.00, CHCl_{3}); IR (ATR) $v_{\max } 2942,2891,2865,1682$ (C=O), 1462, 1111, 1068, 881, 786, $681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.00(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.2,2.6,1.4 \mathrm{~Hz}, \mathrm{H}-3$), $6.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,2.4$ $\mathrm{Hz}, \mathrm{H}-2), 3.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6,6.4 \mathrm{~Hz}, \mathrm{H}-7), 3.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6,6.9 \mathrm{~Hz}, \mathrm{H}-7), 2.62$ (1 H , dddddd, $J=9.9,6.9,6.4,4.6,2.6,2.4 \mathrm{~Hz}, \mathrm{H}-4), 2.54(1 \mathrm{H}, \mathrm{ddd}, J=16.8,4.6,4.6 \mathrm{~Hz}, \mathrm{H}-6), 2.39(1 \mathrm{H}$, ddd, $J=16.8,12.8,5.0 \mathrm{~Hz}, \mathrm{H}-6$), 2.09 (1 H , ddddd, $J=13.2,5.0,4.6,4.6,1.4 \mathrm{~Hz}, \mathrm{H}-5$), 1.79 (1 H , dddd, $J=13.2,12.8,9.9,4.6 \mathrm{~Hz}, \mathrm{H}-5), 1.11-1.01\left(21 \mathrm{H}, \mathrm{m}, \mathrm{OSi}\left(\mathrm{CH}_{(}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 200.1$ (C-1), 152.3 (C-3), 130.1 (C-2), 66.0 (C-7), 39.6 (C-4), 36.9 (C-6), 25.6 (C-5), 18.1 $\left(\mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 12.0\left(\mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm}$; HRMS (ESI) m / z cald for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NaO}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 305.1907, found 305.1903 . The enantiomeric excess ($80 \% \mathrm{ee}$) was determined by HPLC
analysis using a CHIRALCEL ${ }^{\circledR}$ IC column eluting with $1 \% i-\mathrm{PrOH} /$ hexane (flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, temp $=40^{\circ} \mathrm{C}, \lambda=216 \mathrm{~nm}$): retention time $=15.0 \mathrm{~min}$ (major isomer), 16.0 min (minor isomer).

3-Methyl-2-phenylthio-I,3-butadiene (6)

In a pressure vessel were placed $\mathrm{Pd}(\mathrm{OAc})_{2}(69 \mathrm{mg}, 0.31 \mathrm{mmol}, 0.02$ equiv), THF (7.6 mL), 2-methyl-1-buten-3-yne ($1.5 \mathrm{~mL}, 15.7 \mathrm{mmol}$) and finally thiophenol ($1.6 \mathrm{~mL}, 15.7 \mathrm{mmol}, 1.0$ equiv). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 hours. After this period, the mixture was filtered through Celite and washed with EtOAc (50 mL). The filtrate was concentrated in vacuo. The crude product was purified by silica gel flash column chromatography (100\% hexane) to yield diene 6 as a light yellow oil ($2.35 \mathrm{~g}, 85 \%$ yield): $\boldsymbol{R}_{\boldsymbol{f}}=0.26$ (100% hexane); IR (ATR) $v_{\max } 3074,3060,2977,1573,1478,1439,1440,1375,1119,1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 5.52(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 5.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2$ $\mathrm{Hz}, \mathrm{H}-1), 5.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{H}-4), 1.96(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.2$ (C-3), 140.9 (C-2), 134.8 (C-Ar), 131.4 (2CH-Ar), 129.2 (2CH-Ar), 127.1 (CH-Ar), 117.5 (C-1), 116.9 (C-4), 21.4 (C-5) ppm; HRMS (APCI) m / z cald for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 177.0732$, found 177.0735. The characterisation data matched those reported previously. ${ }^{3}$
(4S,4aR,8aR)-7-Methyl-6-(phenylthio)-4-(((triisopropylsilyl)oxy)methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one (4)

To a solution of enone $(S)-5\left(0.38 \mathrm{~g}, 1.4 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ was added a 1.0 M solution of EtAlCl_{2} in hexane ($0.28 \mathrm{~mL}, 0.28 \mathrm{mmol}, 0.2$ equiv) and the mixture was stirred under a N_{2} atmosphere at room temperature for 10 minutes. After this time, a solution of diene $6\left(2.05 \mathrm{~g}, 11.6 \mathrm{mmol}, 10.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.9 \mathrm{~mL})$ was added to the mixture and the reaction mixture was stirred at room temperature for a further 1 hour. The reaction mixture was then quenched with Rochelle's salt 10% aqueous solution (10 mL) and stirred vigorously overnight. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) to yield the title compound 4 as a yellow oil ($488 \mathrm{mg}, 80 \%$ yield): $\boldsymbol{R}_{\boldsymbol{f}}=0.07$ ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+18.6$ (c 0.976, CHCl_{3}); IR (ATR) $v_{\text {max }} 2941,2865$, 1715 (C=O ketone), 1476, 1462, 1108, 1069, 882, 739, $689 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.26-7.22 (2H, m, Ar-H), 7.16-7.10 (3H, m, Ar-H), 3.81 (1H, dd, J = 9.9, 6.0 Hz, H-12), 3.77 (1H, $\mathrm{dd}, J=9.9,6.2 \mathrm{~Hz}, \mathrm{H}-12), 2.89(1 \mathrm{H}, \mathrm{ddd}, J=5.0,5.0,4.0 \mathrm{~Hz}, \mathrm{H}-6), 2.69(1 \mathrm{H}, \mathrm{dd}, J=18.0,4.0 \mathrm{~Hz}$, $\mathrm{H}-7), 2.46(1 \mathrm{H}, \mathrm{dddd}, J=9.3,9.3,5.0,5.0 \mathrm{~Hz}, \mathrm{H}-5), 2.41-2.30(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.20-2.11(3 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-10+\mathrm{H}-7), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 1.97-1.89(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.81-1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.10-0.99(21 \mathrm{H}$, m, OSi $\left.\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.6(\mathrm{C}-1), 140.2$ (C-9), 136.6 (C-Ar), 129.0 (2CH-Ar), 128.0 (2CH-Ar), 125.4 (CH-Ar), 121.2 (C-8), 65.3 (C-12), 45.5 (C-6), 39.0 (C-4), 37.6 (C-5), 37.5 (C-2), 35.2 ($\mathrm{C}-10$), $31.3(\mathrm{C}-7), 25.6(\mathrm{C}-3), 21.4(\mathrm{C}-11), 18.2\left(\mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$, $12.0\left(\mathrm{OSi}\left(\underline{(\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm}$; HRMS (ESI) m / z cald for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{NaO}_{2} \mathrm{SSi}\left(\mathrm{M}+\mathrm{Na}{ }^{+}\right) 481.2567$, found 481.2573.

Figure S1 - nOe correlations for 4

Figure S2. The ${ }^{1} \mathrm{H}$ NMR spectrum of cis-decalin 4 and the nOe analysis of $\mathrm{H}-12$.

Figure S3. The nOe analysis of $\mathrm{H}-7$ and $\mathrm{H}-6$ for decalin 4.
(4S,4aR,8aS)-7-Methyl-6-(phenylthio)-4-(((triisopropylsilyl)oxy)methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one (16)

To a solution of cis-decalin $4\left(1.55 \mathrm{~g}, 3.38 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ was added a 1.0 M solution of EtAlCl_{2} in hexane ($0.845 \mathrm{~mL}, 0.845 \mathrm{mmol}, 0.25$ equiv) and the reaction mixture was stirred under N_{2} atmosphere at room temperature for 3 days. The reaction mixture was then quenched with Rochelle's salt 10% aqueous solution (20 mL) and stirred vigorously overnight. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) to yield the desired trans-decalin 16 as a yellow oil (1.25 $\mathrm{g}, 81 \%$ yield): $\boldsymbol{R}_{\boldsymbol{f}}=0.07$ ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+65.6$ (c 0.231, CHCl_{3}); IR (ATR) $v_{\text {max }} 2941$, 2865, 1713 (C=O ketone), 1476, 1120, 1070, 883, 740, $687 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.26-7.21 (2H, m, Ar-H), 7.18-7.10 (3H, m, Ar-H), 3.64 (1H, dd, J = 9.9, 3.1 Hz, H-12), 3.58 (1H, $\mathrm{dd}, J=9.9,5.0 \mathrm{~Hz}, \mathrm{H}-12$), 2.55-2.40 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2+\mathrm{H}-10+\mathrm{H}-7$), 2.39-2.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6+\mathrm{H}-7$), 2.17-2.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3+\mathrm{H}-10$), $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 1.85-1.70(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3+\mathrm{H}-5), 1.68-1.60(1 \mathrm{H}$, m, $\mathrm{H}-4), 1.00-0.90\left(21 \mathrm{H}, \mathrm{m}, \mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.8(\mathrm{C}-1)$, 140.7 (C-9), 136.2 (C-Ar), 129.0 (2CH-Ar), 128.3 (2CH-Ar), 125.6 (CH-Ar), 121.6 (C-8), 64.2 (C12), 49.1 (C-6), 44.8 (C-4), 41.7 (C-5), 41.3 (C-2), 38.1 (C-10), 32.4 (C-7), 30.0 (C-3), 21.6 (C-11), $18.1\left(\mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 12.0\left(\mathrm{OSi}\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm}$; HRMS (ESI) m / z cald for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{NaO}_{2} \mathrm{SSi}$ requires $\left(\mathrm{M}+\mathrm{Na}^{+}\right) 481.2567$, found 481.2567 .
(4S,4aR,8aS)-7-Methyl-4-(((triisopropylsilyl)oxy)methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one (17)

To a solution of trans-decalin 16 ($0.34 \mathrm{~g}, 0.74 \mathrm{mmol}, 1.0$ equiv) in acetone (74 mL) was added an excess of unwashed Raney Nickel (50% in $\mathrm{H}_{2} \mathrm{O}, 30.0$ equiv) and the reaction mixture was stirred under a H_{2} atmosphere (balloon) at room temperature for 1 hour. After this time, the reaction was filtered through Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography (2% EtOAc/hexane) to deliver the title compound $\mathbf{1 7}$ as a light yellow oil ($224 \mathrm{mg}, 86 \%$ yield): $\boldsymbol{R}_{f}=0.10$ ($2 \% \mathrm{EtOAc} / \mathrm{hexane}$); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+46.1$ (c 1.21, CHCl_{3}); IR (ATR) $\nu_{\max }$ 2941, 2865, 1713 (C=O ketone), 1462, 1118, 1098, 882, 787, $682 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.34-5.28(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 3.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.8,2.4 \mathrm{~Hz}, \mathrm{H}-12), 3.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.8,5.3$ $\mathrm{Hz}, \mathrm{H}-12), 2.50-2.37(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.36-2.11(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6+\mathrm{H}-7+\mathrm{H}-3++\mathrm{H}-10), 2.07-2.02(1 \mathrm{H}$, m, H-7), 1.92-1.81 (1H, m, H-10), 1.67 (3H, s, H-11), 1.65-1.55 (3H, m, H-4 + H-3 + H-5), 1.08$1.02\left(21 \mathrm{H}, \mathrm{m}, \mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.6$ (C-1), 133.1 (C-8), 119.2 (C-9), 64.7 (C-12), 49.4 (C-6), 45.1 (C-4), 41.4 (C-2), 40.2 (C-5), 31.7 (C-10), 30.2 (C-7), 29.7 (C3), $23.6(\mathrm{C}-11), 18.2\left(\mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$, $12.1\left(\mathrm{OSi}\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm}$; HRMS (ESI) m / z cald for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{NaO}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 373.2533$, found 373.2534 .

13-(2,4-Dinitrophenyl)-14-((12S*, 7R*, 6S*)-10-methyl-6-(((triisopropylsilyl)oxy)methyl)-

15,6,7,8,11,12-hexahydronaphthalen-13(2H)-ylidene)hydrazine (19)

To a solution of trans-decalin 17 ($25 \mathrm{mg}, 0.070 \mathrm{mmol}$) and 3 $3 \AA$ molecular sieves in dry methanol $(4.0 \mathrm{~mL}), ~ 2,4$-dinitrophenylhydrazine $18(28 \mathrm{mg}, 0.14 \mathrm{mmol})$ and glacial acetic acid (0.50 mL) were added. The reaction was stirred at $50^{\circ} \mathrm{C}$ for 16 hours. After this time, the reaction was
quenched with saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by silica gel flash column chromatography (5-20\% EtOAc in hexane) to yield the title compound 19 as an orange solid ($26 \mathrm{mg}, 70 \%$ yield). Crystallization method: slow evaporation of solvent from a solution of 19 in a minimum amount of CHCl_{3}. Melting point $=71-73^{\circ} \mathrm{C} . \mathbf{R}_{f}=0.61$ (10\% EtOAc/hexane). IR (ATR): $\boldsymbol{v}_{\max }$ 3006, 2942, 2864, 1617 ($\mathrm{C}=\mathrm{N}$), 1518, 1422, 1333, 1119, $1092 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.29$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{N}-$ H), $9.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.34(1 \mathrm{H}, \mathrm{dd}, J=9.6,2.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{Ar}-$ H), 5.41-5.37 (1H, m, H-9), 3.83 ($1 \mathrm{H}, \mathrm{dd}, J=10.1,2.8 \mathrm{~Hz}, \mathrm{H}-5$), 3.64 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.1,5.5 \mathrm{~Hz}$, $\mathrm{H}-5), 3.01$ ($1 \mathrm{H}, \mathrm{ddd}, J=14.2,3.2,3.2 \mathrm{~Hz}, \mathrm{H}-14$), 2.45-2.30 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-12+\mathrm{H}-11+\mathrm{H}-8$), 2.292.20 (1H, m, H-14), 2.18-2.03 (1H, m, H-15), 1.94-1.82 (1H, m, H-8), 1.78 (3H, s, H-24), 1.571.49 (3H, m, H-6 + H-7 + H-15), 1.09-1.02 ($21 \mathrm{H}, \mathrm{m}, \mathrm{OSiCH}\left(\mathrm{CH}_{3}\right)_{2}$) ppm. ${ }^{13} \mathrm{C}$ NMR (400 MHz , CDCl_{3}): $\delta 162.1$ (C=N), 145.6 (C-10), 137.5 (Ar), 132.9 (Ar), 130.0 (Ar), 128.9 (Ar-H), 123.4 (ArH), 119.2 (C-9), 116.4 (Ar-H), 64.6 (C-5), 45.2 (C-6), 44.0 (C-12), 39.8 (C-7), 31.7 (C-8), 31.5 (C11), 28.6 (C-15), 26.5 (C-14), 23.7 (C-24), $18.0\left(\mathrm{OSiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 11.9\left(\mathrm{OSiCH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} . \mathrm{MS}$ (ESI): m/z $529\left(\mathrm{M}-\mathrm{H}^{+}\right)$; HRMS: found: ($\mathrm{M}-\mathrm{H}^{+}$) 529.2847. $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{5}$ Si requires $\left(\mathrm{M}-\mathrm{H}^{+}\right) 529.2852$.

19

Figure S4. Single crystal X-ray diffraction of hydrazone 19 - CCDC $=2341814$. Single crystal Xray diffraction structure visualised in CrystalMaker v11.0.02: thermal ellipsoids set at 50\% probability level, H -atoms omitted for clarity; oxygen atoms in red, carbon in grey, nitrogen in blue and silicon in light orange. The disorder in the OTIPS group is not shown

Triethyl(((4S,4aR,8aS)-7-methyl-4-(((triisopropylsilyl)oxy)methyl)-3,4,4a,5,8,8a-

hexahydronaphthalen-1-yl)oxy)silane (20)

To a solution of freshly distilled diisopropylamine ($1.27 \mathrm{~mL}, 9.048 \mathrm{mmol}, 1.2$ equiv) in THF (9.1 mL) at $-78{ }^{\circ} \mathrm{C}$ was added n-BuLi (1.6 M solution, $5.71 \mathrm{~mL}, 9.048 \mathrm{mmol}, 1.2$ equiv) dropwise. The solution was stirred under N_{2} atmosphere at $-78^{\circ} \mathrm{C}$ for 45 minutes before a solution of ketone 17 ($2.61 \mathrm{~g}, 7.54 \mathrm{mmol}, 1.0$ equiv) in THF (29 mL) was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and then added freshly distilled triethylsilyl chloride ($1.24 \mathrm{~mL}, 9.80 \mathrm{mmol}$, 1.3 equiv). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for a further 30 minutes before being warmed to room temperature for 30 minutes. The mixture was then quenched with $\mathrm{H}_{2} \mathrm{O}(30$ $\mathrm{mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) to yield title compound $\mathbf{2 0}$ as a yellow oil (3.16 g , 91\% yield): $\boldsymbol{R}_{\boldsymbol{f}}=0.34$ ($2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+73.7$ (c 0.379, CHCl_{3}); IR (ATR) $v_{\max }$ 2951, 2867, 1666, 1462, 1200, 1113, 1013, 882, $729 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.39-5.33$ (1H, m, H-9), 4.83 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=5.7,1.7,1.7 \mathrm{~Hz}, \mathrm{H}-2$), 3.76 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6,3.4 \mathrm{~Hz}, \mathrm{H}-12$), 3.58 (1H, dd, J = 9.6, 6.2 Hz, H-12), 2.28 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.2,4.0 \mathrm{~Hz}, \mathrm{H}-7$), 2.23-1.96 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-10+\mathrm{H}-$ $3+\mathrm{H}-6), 1.80-1.69(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3+\mathrm{H}-7), 1.67(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 1.52-1.39(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4+\mathrm{H}-5), 1.07-$ $1.03\left(21 \mathrm{H}, \mathrm{m}, \mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 0.98\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz},\left(\mathrm{OSi}_{(}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)\right), 0.68(6 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.8 \mathrm{~Hz}$, $\left(\mathrm{OSi}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1(\mathrm{C}-1), 134.2(\mathrm{C}-8), 120.5(\mathrm{C}-9), 102.3$ (C-2), 65.3 (C-12), 41.5 (C-6), 41.3 (C-4), $38 .(\mathrm{C}-5), 34.3$ (C-10), 30.4 (C-7), 27.9 (C-3), 23.8 (C11), $18.2\left(\mathrm{OSi}\left(\mathrm{CH}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{2}\right)_{3}\right), 12.1\left(\mathrm{OSi}\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 7.0\left(\mathrm{OSi}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 5.2\left(\mathrm{OSi}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm}$; HRMS (APCI) m / z cald for $\mathrm{C}_{27} \mathrm{H}_{53} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 465.3579$, found 465.3586.
(4S,4aR,8aS)-7-Methyl-4-(((triisopropylsilyl)oxy)methyl)-4a,5,8,8a-tetrahydronaphthalen-1(4H)-one (21)

To a solution of TES-enol ether $\mathbf{2 0}(72 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) in DMSO (1.5 mL) was added IBX ($105 \mathrm{mg}, 0.375 \mathrm{mmol}, 2.5$ equiv). The reaction mixture was stirred under N_{2} atmosphere at $60^{\circ} \mathrm{C}$ for 3 days before being cooled to room temperature. The mixture was quenched with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography (2% $\mathrm{Et}_{2} \mathrm{O} /$ hexane) to produce the enone trans-decalin 5 as a light yellow oil ($32 \mathrm{mg}, 59 \%$ yield): $\boldsymbol{R}_{\boldsymbol{f}}$ $=0.14\left(5 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) ;[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+125.2\left(c 0.328, \mathrm{CHCl}_{3}\right)$; IR (ATR) $v_{\max } 2942,2866,1674$ (C=O ketone), 1463, 1393, 1114, 882, 783, $683 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 10.2, 1.9 Hz, H-3), 6.07 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,2.8 \mathrm{~Hz}, \mathrm{H}-2$), $5.37-5.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 3.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 9.7, 4.2 Hz, H-12), 3.65 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.7,7.2 \mathrm{~Hz}, \mathrm{H}-12$), 2.45-2.26 (4H, m, H-7 + H-4 + H-6), 2.10$1.81(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5+\mathrm{H}-10), 1.69(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 1.10-1.02\left(21 \mathrm{H}, \mathrm{m}, \mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.3$ (C-1), 152.2 (C-3), 133.3 (C-8), 129.2 (C-2), 118.9 (C-9), 63.8 (C-12), 46.1 (C-6), 45.9 (C-4), 36.3 (C-5), 31.2 (C-7), 30.3 ($\mathrm{C}-10$), 23.6 ($\mathrm{C}-11$), $18.1\left(\mathrm{OSi}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$, $12.0\left(\mathrm{OSi}\left(\underline{C H}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \mathrm{ppm}$; HRMS (ESI) m / z cald for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NaO}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 371.2377$, found 371.2370.
(4S,4aR,8aS)-4-(Hydroxymethyl)-7-methyl-4a,5,8,8a-tetrahydronaphthalen-1(4H)-one (22)

To a solution of enone trans-decalin $21(0.29 \mathrm{~g}, 0.83 \mathrm{mmol}, 1.0$ equiv) in THF (8.3 mL) was added a 1.0 M solution of TBAF in THF ($1.66 \mathrm{~mL}, 1.66 \mathrm{mmol}, 2.0$ equiv). The reaction mixture was stirred under N_{2} atmosphere at room temperature for 2 hours. The mixture was then quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and diluted with EtOAc (20 mL). The organic layer was separated,
and the aqueous layer was extracted with $\operatorname{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography ($30-40 \%$ EtOAc/hexane) to afford alcohol 22 as a light orange oil ($157 \mathrm{mg}, 98 \%$ yield): $\boldsymbol{R}_{\boldsymbol{f}}=0.21$ ($40 \% \mathrm{EtOAc} /$ hexane); [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}$ $=+155.8$ ($c 0.451, \mathrm{CHCl}_{3}$); IR (ATR) $v_{\max } 3413$ (O-H), 2915, 2883, 1661 (C=O ketone), 1437, 1394, 1190, 1044, $780 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,2.0 \mathrm{~Hz}, \mathrm{H}-3$), 6.10 (1H, ddd, $J=10.2,1.8,1.8 \mathrm{~Hz}, \mathrm{H}-2), 5.40-5.28$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 3.93 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.6,4.1 \mathrm{~Hz}, \mathrm{H}-$ 12), 3.68 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.6,6.4 \mathrm{~Hz}, \mathrm{H}-12$), 2.49-2.26 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6+\mathrm{H}-4+\mathrm{H}-10$), 2.09-1.88 (3H, $\mathrm{m}, \mathrm{H}-5+\mathrm{H}-7$), 1.69 (3H, s, H-11) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.2$ (C-1), 151.5 (C-3), 133.3 (C-8), 130.0 (C-2), 118.8 (C-9), 63.0 (C-12), 45.9 (C-6), 45.5 (C-4), 36.0 (C-5), 31.1 (C-7), 30.3 (C-10), 23.5 (C-11) ppm; HRMS (ESI) m / z cald for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 215.1043$, found 215.1045.

Ethyl (((1S,4aS,8aR)-6-methyl-4-oxo-1,4,4a,5,8,8a-hexahydronaphthalen-1-yl)methyl) malonate (23)

To a solution of alcohol $22\left(0.18 \mathrm{~g}, 0.93 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.259 \mathrm{~mL}, 1.86 \mathrm{mmol}, 2.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added ethyl malonyl chloride ($0.179 \mathrm{~mL}, 1.40$ mmol, 1.5 equiv). The reaction mixture was stirred under N_{2} atmosphere at $0^{\circ} \mathrm{C}$ initially and allowed to rise to room temperature over 2 hours. The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ and washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL})$ and brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by silica gel flash column chromatography ($20-40 \% \mathrm{EtOAc} / \mathrm{hexane}$) to give malonate $\mathbf{2 3}$ as a light yellow oil ($243 \mathrm{mg}, 85 \%$ yield): $\boldsymbol{R}_{\boldsymbol{f}}=0.49$ ($40 \% \mathrm{EtOAc} / \mathrm{hexane}$); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=$ +127.7 ($c 0.315, \mathrm{CHCl}_{3}$); IR (ATR) $v_{\max } 2920,1734$ (C=O ester), 1673 ($\mathrm{C}=0$ ketone), 1330, 1268, $1149,1033 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85(1 \mathrm{H}, \mathrm{dd}, J=10.2,2.1 \mathrm{~Hz}, \mathrm{H}-3$), $6.09(1 \mathrm{H}$, dd, $J=10.2,2.8 \mathrm{~Hz}, \mathrm{H}-2), 5.40-5.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 4.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2,3.8 \mathrm{~Hz}, \mathrm{H}-12), 4.20(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=11.2,6.6 \mathrm{~Hz}, \mathrm{H}-12), 4.18(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-16), 3.39(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 2.59-2.50(1 \mathrm{H}, \mathrm{m}$, H-4), 2.46-2.32 (3H, m, H-6 + H-10), 2.10-1.85 (3H, m, H-7 + H-5), $1.69(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 1.26(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-17) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.4(\mathrm{C}-1), 166.7(\mathrm{C}-13), 166.4(\mathrm{C}-15)$,
149.6 (C-3), 130.3 (C-8), 130.2 (C-2), 118.6 (C-9), 65.2 (C-12), 61.8 (C-16), 46.0 (C-6), 42.6 (C4), 41.6 (C-14), 36.6 (C-5), 30.9 (C-7), 30.1 (C-10), 23.5 (C-11), 14.2 (C-17) ppm; HRMS (ESI) m / z cald for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NaO}_{5}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 329.1359$, found 329.1360.

Ethyl (4S,4aS,6aS,10aR,10bR)-8-methyl-3,6-dioxo-3,4,4a,5,6,6a,7,10,10a,10b-decahydro-1H-benzo[h]isochromene-4-carboxylate (24)

To a mixture of malonate $\mathbf{2 3}(46 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{La}(\mathrm{O}-i-\mathrm{Pr})_{3}(53 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv) in THF (1.2 mL), was stirred under N_{2} atmosphere at room temperature for 10 minutes. Freshly distilled $i-\operatorname{Pr}_{2} \mathrm{NEt}$ ($0.052 \mathrm{~mL}, 0.31 \mathrm{mmol}, 2.0$ equiv) was then added. The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for a further 7 hours. The mixture was then cooled to room temperature, quenched with saturated aqueous solution of $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and diluted with EtOAc (3 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc ($5 \times 3 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel flash column chromatography ($\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ hexane $=15: 40: 45$) to the title compound $\mathbf{2 4}(35 \mathrm{mg}, 75 \%$ yield) as a white solid: $\boldsymbol{R}_{\boldsymbol{f}}=0.23$ ($40 \% \mathrm{EtOAc} /$ hexane); $[\boldsymbol{\alpha}]_{D^{20}}=+91.8$ (c 0.257, CHCl_{3}); IR (ATR) $v_{\text {max }}$ 2961, 2916, 1729 ($\mathrm{C}=\mathrm{O}$ ester), 1437, 1235, 1154, $1035 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.39-$ $5.31(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 4.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-12), 4.27(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}=7.2,1.6 \mathrm{~Hz}, \mathrm{H}-16), 3.27(1 \mathrm{H}$, d, $J=11.4 \mathrm{~Hz}, \mathrm{H}-14), 3.10(1 \mathrm{H}, \mathrm{dddd}, J=11.4,5.5,5.5,5.0 \mathrm{~Hz}, \mathrm{H}-3), 2.66$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.6,5.5$ Hz, H-2), 2.44-2.31 (3H, m, H-6 + H-10 + H-2), 2.20-2.10 (3H, m, H-4 + H-7), 1.98-1.85 (1H, m, $\mathrm{H}-10), 1.79(1 \mathrm{H}, \mathrm{dddd}, \mathrm{J}=11.2,11.2,11.2,4.8 \mathrm{~Hz}, \mathrm{H}-5), 1.68(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 1.31(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, \mathrm{H}-17$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.1$ (C-1), 168.3 (C-15), 166.3 (C-13), 133.4 (C8), 118.3 (C-9), 69.1 (C-12), 62.5 (C-16), 50.7 (C-14), 48.8 (C-6), 43.7 (C-2), 38.9 (C-4), 36.5 (C3), 34.4 (C-5), 31.5 (C-10), 29.7 (C-7), 23.4 (C-11), 14.2 (C-17) ppm; HRMS (ESI) m / z cald for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NaO}_{5}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 329.1359$, found 329.1363.

The syn-relationship between $\mathrm{H}-3$ and $\mathrm{H}-4$ required for the natural product core is supported by n.O.E data- (Figures $\mathrm{S} 5-7$). The relationship between $\mathrm{H}-3$ and $\mathrm{H}-14$ was confirmed to be the anti-relationship by the vicinal coupling constant of $11.4 \mathrm{~Hz}\left(J_{\mathrm{axial}}\right)$ as shown in Figure S 5.

Furthermore, the configuration of five stereogenic centres in tricyclic lactone $\mathbf{2 4}$ was further supported by single crystal X-ray diffraction data (Figure S6).

Figure S5: The ${ }^{1} H$ NMR spectrum of tricyclic lactone 24

Figure S6: The nOe analysis of H-3 of tricyclic lactone 24

Figure S7: The nOe analysis of H -14 of tricyclic lactone $\mathbf{2 4}$

Figure S8: The single crystal X-ray diffraction of tricyclic lactone 24. CCDC $=2341815$. Single crystal X-ray diffraction structure visualised in CrystalMaker v11.0.02: thermal ellipsoids set at 50\% probability level, H -atoms omitted for clarity; oxygen atoms in red and carbon in grey.

Ethyl (4R,4aS,6aS,10aR,10bR)-4,8-dimethyl-3,6-dioxo-3,4,4a,5,6,6a,7,10,10a,10b-decahydro-1H-benzo[h]isochromene-4-carboxylate (25)

To a solution of tricyclic lactone $\mathbf{2 4}(14 \mathrm{mg}, 0.045 \mathrm{mmol})$ in THF (1.5 mL) at $0^{\circ} \mathrm{C}$, was added $\mathrm{NaH}(4 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.5$ equiv, 60% in mineral oil) in one portion. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes, and then methyl iodide ($0.01 \mathrm{~mL}, 0.09 \mathrm{mmol}, 2.0$ equiv) was added. The reaction mixture was warmed to room temperature and stirred for 6 hours before being quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and diluted with EtOAc (3 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (3×5 mL). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel flash column chromatography (20-40\% EtOAc/hexane) to deliver the title compound 25 as a yellow oil (10 $\mathrm{mg}, 71 \%$ yield): $\boldsymbol{R}_{\boldsymbol{f}}=0.23$ ($40 \% \mathrm{EtOAc} /$ hexane); $[\alpha]_{\mathrm{D}}{ }^{20}=+94.9$ (c $0.889, \mathrm{CHCl}_{3}$); IR (ATR) $v_{\text {max }}$ 2915, 1730 (C=O ester), 1711 ($\mathrm{C}=\mathrm{O}$ ester), 1675 (C=O ketone), 1448, 1369, 1224, 1113, 1023 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41-5.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 4.40(1 \mathrm{H}, \mathrm{dd}, J=12.0,4.2 \mathrm{~Hz}, \mathrm{H}-12)$, $4.31-4.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12), 4.24(1 \mathrm{H}, \mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, \mathrm{H}-16), 4.08(1 \mathrm{H}, \mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, \mathrm{H}-$ 16), $3.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.0,7.4 \mathrm{~Hz}, \mathrm{H}-2), 2.55-2.40(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2+\mathrm{H}-3), 2.32-2.17(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7+$ H-10), 2.17-2.06 (3H, m, H-6 + H-5 + H-4), 2.06-1.95 (1H, m, H-7), 1.86-1.74 (1H, m, H-10), $1.68(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-17) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 210.9$ (C-1), 171.3 (C-13), 170.7 (C-15), 133.6 (C-8), 118.9 (C-9), 68.4 (C-12), 62.2 (C16), 52.2 (C-14), 48.6 (C-6), 40.5 (C-5), 38.8 (C-2), 38.2 (C-3), 34.0 (C-4), 31.0 (C-7), 30.8 (C-10), 23.5 (C-18), 23.4 (C-11), 13.9 (C-17) ppm; HRMS (ESI) m / z cald for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{5}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 343.1516 , found 343.1510 .
nOe data for tricyclic lactone 25
c8722ljg
Laksamee Jeanmard - UG-5-31-1

Figure S9: The ${ }^{1} H$ NMR spectrum of tricyclic lactone $\mathbf{2 5}$

Figure S10: The nOe analysis of $\mathrm{H}-3$ in tricyclic lactone $\mathbf{2 5}$

Figure S11: The nOe analysis of H-4 in tricyclic lactone $\mathbf{2 5}$

Figure S12: The nOe analysis of H-18 in tricyclic lactone 25

Ethyl (4R,4aR,6aS,10aR,10bR)-4,8-dimethyl-3-oxo-6-(((trifluoromethyl)sulfonyl)oxy)-3,4,4a,6a,7,10,10a,10b-octahydro-1H-benzo[h]isochromene-4-carboxylate (26)

To a solution of freshly distilled diisopropylamine ($0.2 \mathrm{~mL}, 1.43 \mathrm{mmol}$, 1.5 equiv) in THF (1.5 mL), was cooled to $-78^{\circ} \mathrm{C}$ and added n-BuLi (0.6 mL of a 2.5 M solution in hexane, 1.5 mmol , 1.5 equiv) dropwise. The stock solution of LDA was stirred at $-78^{\circ} \mathrm{C}$ for 45 minutes before adding dropwise into a solution of ketone $25(32 \mathrm{mg}, 0.099 \mathrm{mmol})$ in THF (0.29 mL). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 hours before adding a solution of N -(5-chloro-2pyridyl)triflimide ($61 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in THF (0.1 mL). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 minutes and allowed to warm up to room temperature. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel flash column chromatography (10-30\% EtOAc/hexane) to afford the title compound 26 as a light yellow oil ($28 \mathrm{mg}, 62 \%$ yield): $\boldsymbol{R}_{\boldsymbol{f}}=0.29$ (30% EtOAc/hexane); $[\alpha]_{D}^{20}=+42.6$ (c 0.996, CHCl_{3}); IR (ATR) $v_{\max } 2924,2854,1737$ ($\mathrm{C}=\mathrm{O}$ ester), $1418,1214,1143,920 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.89-5.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.3,2.2 \mathrm{~Hz}, \mathrm{H}-$ 2), $5.42-5.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 4.50(1 \mathrm{H}, \mathrm{dd}, J=12.3,7.1 \mathrm{~Hz}, \mathrm{H}-12), 4.20(2 \mathrm{H}, \mathrm{qd}, J=7.0,1.2 \mathrm{~Hz}, \mathrm{H}-$ 16), 4.09 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.3,9.2 \mathrm{~Hz}, \mathrm{H}-12$), 2.76-2.68 (1H, m, H-3), 2.49-2.37 (1H, m, H-6), 2.32$2.23(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.23-2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.15-2.05(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.02-1.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7)$, 1.81-1.73 (1H, m, H-5), 1.71 (3H, s, H-11), 1.64 (3H, s, H-18), 1.33-1.15 (3H, m, H-17) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1$ (C-13), 170.4 (C-15), 152.2 (C-1), 133.0 (C-8), 119.6 (C-9), 115.8 (C-2), 68.0 (C-12), 62.4 (C-16), 53.0 (C-14), 40.7 (C-3), 38.4 (C-6), 35.9 (C-5), 35.4 (C-4), 32.5 (C-10), 30.4 (C-7), 23.5 (C-11), 22.3 (C-18), 14.1 (C-17) ppm; HRMS (ESI) m / z cald for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NaO}_{7} \mathrm{~S}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 475.1009$, found 475.1010 .

Ethyl (4R,4aS,6aR,10aS,10bR)-4,8-dimethyl-3-oxo-3,4,4a,6a,7,10,10a,10b-octahydro-1H-benzo[h]isochromene-4-carboxylate (27)

To a solution of vinyl triflate $26(24 \mathrm{mg}, 0.052 \mathrm{mmol})$ in DMF (3.2 mL) were added tributylamine ($0.045 \mathrm{~mL}, 0.18 \mathrm{mmol}, 3.5$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(4 \mathrm{mg}, 0.049 \mathrm{mmol}, 0.095$ equiv), followed by formic acid ($0.006 \mathrm{~mL}, 0.13 \mathrm{mmol}, 2.5$ equiv). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2.5 hours. After this time, the reaction mixture was cooled to room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and diluted with isopropyl ether (5 mL). The organic layer was separated, and the aqueous layer was extracted with isopropyl ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel flash column chromatography ($10-15 \%$ EtOAc/hexane) to give the title compound 27 as a yellow oil (12 mg , 75% yield): $\boldsymbol{R}_{f}=0.23\left(20 \%\right.$ EtOAc/hexane); $[\alpha]_{\mathrm{D}}{ }^{20}=+50.3\left(c 0.885, \mathrm{CHCl}_{3}\right)$; IR (ATR) $v_{\text {max }}$ 2913, 1737 ($\mathrm{C}=\mathrm{O}$ ester), $1447,1378,1228,1109,1025 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.84-5.72$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1+\mathrm{H}-2), 5.39-5.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 4.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.2,7.2 \mathrm{~Hz}, \mathrm{H}-12), 4.23-4.06(3 \mathrm{H}$, m, H-12 + H-16), 2.50-2.41 (1H, m, H-3), 2.19-2.12 (1H, m, H-4), 2.12-1.96 (3H, m, H-6 + H10), 1.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), $1.63(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 1.43-1.36(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.36-1.31(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.27-$ $1.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.24(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-17) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5(\mathrm{C}-15)$, 171.0 (C-13), 134.2 (C-8), 133.6 (C-2), 123.1 (C-1), 119.9 (C-9), 68.7 (C-12), 61.9 (C-16), 53.4 (C-14), 41.2 (C-3), 36.8 (C-10), 36.7 (C-4), 36.1 (C-6), 34.6 (C-5), 30.1 (C-7), 23.5 (C-11), 22.4 (C18), 14.1 ($\mathrm{C}-17$) ppm; HRMS (ESI) m / z cald for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 327.1567$, found 327.1571 .

To a solution of ester $27(15 \mathrm{mg}, 0.048 \mathrm{mmol})$ in 0.5 mL of THF: $\mathrm{H}_{2} \mathrm{O}(4: 1)$, were added $\mathrm{H}_{2} \mathrm{O}_{2}$ ($0.022 \mathrm{~mL}, 0.19 \mathrm{mmol}, 4.0$ equiv), followed by LiOH ($2 \mathrm{mg}, 0.09 \mathrm{mmol}, 2.0$ equiv). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 5 hours before being added another portion of LiOH (2 mg , $0.09 \mathrm{mmol}, 2.0$ equiv). The reaction mixture was stirred for a further 1.5 hours and allowed to cool to room temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and washed with aqueous solution of 5% metasodium bisulfite (5 mL) and brine (5 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel flash column chromatography (10-20\% EtOAc/hexane) to deliver tricyclic lactone $\mathbf{2}$ ($5 \mathrm{mg}, 40 \%$ yield) and tricyclic lactone 28 ($2 \mathrm{mg}, 20 \%$ yield).

(4R,4aS,6aR,10aS,10bR)-4,8-Dimethyl-1,4,4a,6a,7,10,10a,10b-octahydro-3H-

benzo[h]isochromen-3-one (2)

Data for 2 (a light yellow oil): $\boldsymbol{R}_{\boldsymbol{f}}=0.40$ ($30 \% \mathrm{EtOAc} /$ hexane); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+81.2$ (c $0.222, \mathrm{CHCl}_{3}$); IR (ATR) $v_{\max } 2960,2920,1744$ (C=O ester), 1440, 1261, 1176, 1103, $790 \mathrm{~cm}^{-1}$; $^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.72(1 \mathrm{H}, \mathrm{ddd}, J=10.0,2.1,2.1 \mathrm{~Hz}, \mathrm{H}-1), 5.57(1 \mathrm{H}, \mathrm{ddd}, J=10.0,3.1,3.1 \mathrm{~Hz}, \mathrm{H}-2)$, 5.41-5.34 (1H, m, H-9), 4.39 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6,3.4 \mathrm{~Hz}, \mathrm{H}-12$), 4.33 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6,3.0 \mathrm{~Hz}, \mathrm{H}-$ 12), 2.95 (1 H, dddd, $J=10.1,8.9,3.1,2.1 \mathrm{~Hz}, \mathrm{H}-3$), $2.84(1 \mathrm{H}, \mathrm{dq}, J=10.1,7.0 \mathrm{~Hz}, \mathrm{H}-14), 2.35-$ 2.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 2.09-1.91 (5H, m, H-4 + H-5 + H-6 + H-10), $1.65(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 1.23(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=7.0 \mathrm{~Hz}, \mathrm{H}-15) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.1$ (C-13), $134.8(\mathrm{C}-1), 133.9(\mathrm{C}-8), 124.1$ (C-2), 120.1 (C-9), 67.3 (C-12), 38.7 (C-4), 37.3 (C-14), 37.1 (C-10), 35.5 (C-3), 33.3 (C-5), 30.5 (C-6), 30.2 (C-7), 23.5 (C-11), 12.6 (C-15) ppm; HRMS (ESI) m / z cald for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right.$) 255.1356, found 255.1362 .

(4S,4aS,6aR,10aS,10bR)-4,8-Dimethyl-1,4,4a,6a,7,10,10a,10b-octahydro-3H-

benzo[h]isochromen-3-one (28)

Data for 28 (a light yellow oil): $\boldsymbol{R}_{\boldsymbol{f}}=0.48$ ($30 \% \mathrm{EtOAc} /$ hexane); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+37.7$ (c 0.079, CHCl_{3}); IR (ATR) $v_{\max }$ 2923, 2849, 1751 (C=O ester), 1454, 1278, 1181, 1107, $787 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.76-5.66(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1+\mathrm{H}-2), 5.41-5.36(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 4.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.8,6.4$ $\mathrm{Hz}, \mathrm{H}-12), 4.07(1 \mathrm{H}, \mathrm{dd}, J=11.8,8.0 \mathrm{~Hz}, \mathrm{H}-12), 2.42(1 \mathrm{H}, \mathrm{dq}, J=11.6,6.8 \mathrm{~Hz}, \mathrm{H}-14), 2.27-2.19$ (1H, m, H-3), 2.15-1.98 (4H, m, H-4, H-5, H-6, H-10), 1.81-1.48 (3H, m, H-7 + H-10), 1.67 (3H, $\mathrm{s}, \mathrm{H}-11), 1.31(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-15) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3(\mathrm{C}-13), 134.2$ (C-8), 133.5 (C-1), 125.8 (C-2), 120.1 (C-9), $69.0(\mathrm{C}-12), 38.7$ (C-14), 38.2 (C-3), 37.0, 36.9, 36.3, 35.1, 29.9, 23.5 (C-11), 14.0 (C-15) ppm; HRMS (ESI) m / z cald for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 255.1356, found 255.1360.
nOe data for tricyclic lactone 2

Figure S13: The ${ }^{1} \mathrm{H}$ NMR spectrum of tricyclic lactone 2.

Figure S14: The nOe analysis of $\mathrm{H}-3$ in tricyclic lactone 2

Figure S15: The nOe analysis of H-4 in tricyclic lactone 2

Figure S16: The nOe analysis of $\mathrm{H}-15$ in tricyclic lactone 2
nOe data for tricyclic lactone 28

Figure S17: The ${ }^{1} \mathrm{H}$ NMR spectrum of tricyclic lactone 28.

Figure S18: The nOe analysis of H-3 in tricyclic lactone 28

Figure S19: The nOe analysis of H-4 in tricyclic lactone $\mathbf{2 8}$

Figure S20: The nOe analysis of H-14 in tricyclic lactone 28

Figure S21: The nOe analysis of H-15 in tricyclic lactone 28

3) Additional optimisation tables

entry Solvent Temp Time Conversion
$\left({ }^{\circ} \mathrm{C}\right)$
(h.)

$\mathbf{1}$	AcOH	rt	96	5
$\mathbf{2}$	AcOH	80	16	trace
$\mathbf{3}$	AcOH	rt	16	trace
$\mathbf{4}$	AcOH	80	16	trace
$\mathbf{5}$	EtOAc	rt	16	trace
$\mathbf{6}$	AcOH	80	16	trace
$\mathbf{7}$	EtOAc	rt	16	trace

Table S1. Attempted desaturation of ketone 9.

entry	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Additive (2 eq.)	Conversion (\%)
1	60	-	-
2	60	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-
3	rt	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-
4	60	NEt_{3}	-

Table S2. Additive screening to in the attempted desaturation of ketone 9.

$$
\begin{aligned}
\mathrm{Pd}(\mathrm{X})_{2}= & \mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{DMSO})_{2} \\
& \mathrm{Pd}(\mathrm{OAc})_{2}
\end{aligned}
$$

entry	Catalyst	Ligand (mol\%)	Conversion (\%)
$\mathbf{1}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{DMSO})_{2}$	$\mathbf{A (1 0)}$	19
$\mathbf{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{DMSO})_{2}$	$\mathbf{B}(10)$	-
$\mathbf{3}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{DMSO})_{2}$	$\mathbf{C}(5)$	-
$\mathbf{4}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{DMSO})_{2}$	$\mathbf{D}(5)$	17
$\mathbf{5}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathbf{A}(10)$	18
$\mathbf{6}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathbf{B}(10)$	-
$\mathbf{7}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathbf{C}(5)$	-
$\mathbf{8}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathbf{D}(5)$	58
$\mathbf{9}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathbf{E ~ (5)}$	$\mathbf{7 6}$

Table S3. Pyridyl and bipyridyl ligand screening to improve the desaturation of ketone $\mathbf{9}$.

Table S4. Screening conditions for the intramolecular Michael addition of malonate $23^{\text {a }}$ Crude ratio was determined by integration of peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture.

4) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(((Triisopropylsilyl)oxy)methyl)cyclohexan-1-ol (8)($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(((Triisopropylsilyl)oxy)methyl)cyclohexan-1-ol (8) (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(((Triisopropylsilyl)oxy)methyl)cyclohexan-1-ol (8) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(((Triisopropylsilyl)oxy)methyl)cyclohexan-1-ol (8) (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(((Triisopropylsilyl)oxy)methyl)cyclohexan-1-one (9) (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(((Triisopropylsilyl)oxy)methyl)cyclohexan-1-one (9) (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(Hydroxymethyl)cyclohex-2-en-1-one (14) (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(Hydroxymethyl)cyclohex-2-en-1-one (14) (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of (S)-4-(((Triisopropylsilyl)oxy)methyl)cyclohex-2-en-1-one ((S)-5) (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of (S)-4-(((Triisopropylsilyl)oxy)methyl)cyclohex-2-en-1-one ((S)-5) (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR spectrum of (4S,4aR,8aR)-7-Methyl-6-(phenylthio)-4-(((triisopropylsilyl)oxy) methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one (4) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of (4S,4aR,8aR)-7-Methyl-6-(phenylthio)-4-(((triisopropylsilyl)oxy) methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one (4) (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of (4S,4aR,8aS)-7-Methyl-6-(phenylthio)-4-(((triisopropylsilyl)oxy) methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one (16) (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of (4S,4aR,8aS)-7-Methyl-6-(phenylthio)-4-(((triisopropylsilyl)oxy) methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one (16) (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of (4S,4aR,8aS)-7-Methyl-4-(((triisopropylsilyl)oxy)methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one (17) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of (4S,4aR,8aS)-7-Methyl-4-(((triisopropylsilyl)oxy)methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one (17) (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of Triethyl(((4S,4aR,8aS)-7-methyl-4-(((triisopropylsilyl)oxy)methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1-yl)oxy)silane (20) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of Triethyl(((4S,4aR,8aS)-7-methyl-4-(((triisopropylsilyl)oxy)methyl)-3,4,4a,5,8,8a-hexahydronaphthalen-1-yl)oxy)silane (20) (100 MHz, CDCl ${ }_{3}$)

${ }^{1} \mathrm{H}$ NMR spectrum of (4S,4aR,8aS)-7-Methyl-4-(((triisopropylsilyl)oxy)methyl)-4a,5,8,8a-tetrahydronaphthalen-1(4H)-one (21) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of (4S,4aR,8aS)-7-Methyl-4-(((triisopropylsilyl)oxy)methyl)-4a,5,8,8a-tetrahydronaphthalen-1(4H)-one (21) (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of ($4 S, 4 \mathrm{aR}, 8 \mathrm{aS}$)-4-(Hydroxymethyl)-7-methyl-4a,5,8,8a-tetrahydronaphthalen-1(4H)-one (22) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of (4S,4aR,8aS)-4-(Hydroxymethyl)-7-methyl-4a,5,8,8a-tetrahydronaphthalen-1(4H)-one (22) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR spectrum of Ethyl ($(1 S, 4 a S, 8 a R)-6$-methyl-4-oxo-1,4,4a,5,8,8a-hexahydronaphthalen-1-yl)methyl) malonate (23) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of Ethyl (($(1 S, 4 \mathrm{aS}, 8 \mathrm{a} R)-6$-methyl-4-oxo-1,4,4a,5,8,8a-hexahydronaphthalen-1-yl)methyl) malonate (23) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR spectrum of Ethyl (4S,4aS,6aS,10aR,10bR)-8-methyl-3,6-dioxo-3,4,4a,5,6,6a, 7,10,10a,10b-decahydro-1H-benzo[h]isochromene-4-carboxylate (24) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of Ethyl ($4 S, 4 \mathrm{aS}, 6 \mathrm{aS}, 10 \mathrm{aR}, 10 \mathrm{~b} R$)-8-methyl-3,6-dioxo-3,4,4a,5,6,6a, 7,10,10a,10b-decahydro-1H-benzo[h]isochromene-4-carboxylate (24) (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of Ethyl ($4 R, 4 \mathrm{aS}, 6 \mathrm{aS}, 10 \mathrm{aR}, 10 \mathrm{~b} R$)-4,8-dimethyl-3,6-dioxo-3,4,4a,5,6,6a, 7,10,10a,10b-decahydro-1H-benzo[h]isochromene-4-carboxylate (25) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of Ethyl ($4 R, 4 \mathrm{aS}, 6 \mathrm{aS}, 10 \mathrm{aR}, \mathbf{1 0 b R}$)-4,8-dimethyl-3,6-dioxo-3,4,4a,5,6,6a, 7,10,10a,10b-decahydro-1H-benzo[h]isochromene-4-carboxylate (25) (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of Ethyl (4R,4aR,6aS,10aR,10bR)-4,8-dimethyl-3-oxo-6-(()trifluoro methyl)sulfonyl)oxy)-3,4,4a,6a,7,10,10a,10b-octahydro-1H-benzo[h]isochromene-4carboxylate (26) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of Ethyl ($4 R, 4 \mathrm{aR}, 6 \mathrm{aS}, \mathbf{1 0 a R}, \mathbf{1 0 b}$)-4,8-dimethyl-3-oxo-6-(()trifluoro methyl)sulfonyl)oxy)-3,4,4a,6a,7,10,10a,10b-octahydro-1H-benzo[h]isochromene-4carboxylate (26) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR spectrum of Ethyl (4R,4aS,6aR,10aS,10bR)-4,8-dimethyl-3-oxo-3,4,4a,6a, 7,10,10a,10b-octahydro-1H-benzo[h]isochromene-4-carboxylate (27) (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of Ethyl ($4 R, 4 \mathrm{aS}, 6 \mathrm{aR}, 10 \mathrm{aS}, 10 \mathrm{bR}$)-4,8-dimethyl-3-oxo-3,4,4a,6a, 7,10,10a,10b-octahydro-1H-benzo[h]isochromene-4-carboxylate (27) (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of (4R,4aS,6aR,10aS,10bR)-4,8-Dimethyl-1,4,4a,6a,7,10,10a,10b-octahydro-3H-benzo[\boldsymbol{h}]isochromen-3-one (2) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of (4R,4aS,6aR,10aS,10bR)-4,8-Dimethyl-1,4,4a,6a,7,10,10a,10b-octahydro-3H-benzo[h]isochromen-3-one (2) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR spectrum of (4S,4aS,6aR,10aS,10bR)-4,8-Dimethyl-1,4,4a,6a,7,10,10a,10b-octahydro-3H-benzo[h]isochromen-3-one (28) (400 MHz, CDCl ${ }_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of (4S,4aS,6aR,10aS,10bR)-4,8-Dimethyl-1,4,4a,6a,7,10,10a,10b-octahydro-3H-benzo[\boldsymbol{h}]isochromen-3-one (28) (100 MHz, CDCl_{3})

5) References

1) Y. Cui, H. Jiang, Z. Li, N. Wu, Z. Yang and J. Quan, Org. Lett., 2009, 11, 4628-4631.
2) J. M. Kelly and F. J. Leeper, Tetrahedron Letters, 2012, 53, 819-821.
3) J.-E. Baeckvall and A. Ericsson, J. Org. Chem., 1994, 59, 5850-5851
