Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Enantioselective de novo synthesis of

14-hydroxy-6-oxomorphinans

Jonathan C. Moore,^{1,2} Louis Modell,³ Jacqueline R. Glenn,^{4,5} Kieran D. Jones,^{1,2} Stephen P. Argent,² J. Robert Lane,^{4,5} Meritxell Canals,^{4,5} and Hon Wai Lam^{1,2,*}

¹ The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom

² School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

³ School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

⁴ Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, United Kingdom

⁵ Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom

Contents

1.	General Information	2			
2.	Final Synthetic Procedures	3			
3.	Optimization of the Epoxidation of Alkene 11	15			
4.	Assessment of the Biological Activity of 4,5-Desoxynaltrexone (8) and 4,5-Desoxynaloxone				
	(10) Towards the Opioid Receptors and Comparison with Known Opioids	16			
5.	NMR Spectra	18			
6.	HPLC Traces	29			
7.	References	30			

1. General Information

Reactions. All air-sensitive reactions were carried out under an inert atmosphere using oven-dried apparatus.

Reagents and Solvents. All commercially available reagents were used as received unless otherwise stated. Petroleum ether refers to Sigma-Aldrich product 24587 (petroleum ether boiling point 40-60 °C).

Chromatography. Thin layer chromatography (TLC) was performed on Merck DF-Alufoilien 60F254 0.2 mm precoated plates. Compounds were visualized by exposure to UV light or by dipping the plates into solutions of potassium permanganate followed by gentle heating. Column chromatography was carried out using a Biotage Isolera 4 fitted with Agela Claricep silica gel disposable flash columns.

Melting Points. Melting points were recorded on a Gallenkamp melting point apparatus and are uncorrected. The solvent of recrystallization is reported in parentheses.

IR Spectra. Infrared (IR) spectra were recorded on Bruker platinum alpha FTIR spectrometer on the neat compound using the attenuated total refraction technique.

NMR Spectra. ¹H and ¹³C NMR spectra were referenced to external tetramethylsilane via the residual protonated solvent (¹H) or the solvent itself (¹³C). All chemical shifts are reported in parts per million (ppm). For CDCl₃, the shifts are referenced to 7.26 ppm for ¹H NMR spectroscopy and 77.16 ppm for ¹³C NMR spectroscopy. For DMSO-D₆, the shifts are referenced to 2.50 ppm for ¹H NMR spectroscopy and 39.52 ppm for ¹³C NMR spectroscopy. For CD₃OD, the the shifts are referenced to 3.31 ppm for ¹H NMR spectroscopy and 49.00 ppm for ¹³C NMR spectroscopy. ¹³C NMR spectroscopy and 135° or using 2D NMR spectroscopy techniques including HSQC and HMBC. Coupling constants (*J*) are quoted to the nearest 0.1 Hz.

Mass Spectra. Electrospray ionisation (ESI) high-resolution mass spectrometry (HRMS) analyses were performed on a Bruker micrOTOFII mass spectrometer (Bruker Daltonik, Bremen, Germany), interfaced to an Agilent 1200 HPLC (Agilent Technologies, Santa Clara, USA). Samples were presented in solution for analysis by Flow Injection, 1 μ L of solution being injected into the ion source of the instrument along with a flow of 0.2 mL min⁻¹ of 70% MeOH/H₂O eluent. The mass spectrometer was operated in electrospray ionisation (ESI) mode at a typical resolving power of 8000. Control of the analysis was performed through Bruker's Compass Open Access QC automated data acquisition and reporting software (v1.3; Bruker Daltonik, Bremen, Germany).

X-ray Crystallography. Single crystal X-ray diffraction data for compounds **10**, **12**, and **22** were collected on an Oxford Diffraction GV1000 (TitanS2 CCD area detector, mirror-monochromated Cu-K α radiation source; $\lambda = 1.54184$ Å, ω scans). Single crystals were selected, mounted using Fomblin® (YR-1800 perfluoropolyether oil) on a polymer-tipped MiTeGen MicroMountTM, and cooled rapidly to 120 K in a stream of cold N₂ using an Oxford Cryosystems open flow cryostat.¹ Cell parameters were refined from the observed positions of all strong reflections and absorption corrections were applied using a Gaussian numerical method with beam profile correction (CrysAlisPro).² Structures were solved within Olex2³ by dual space iterative methods (SHELXT)⁴ and all non-hydrogen atoms refined by full-matrix least-squares on all unique F2 values with anisotropic displacement parameters (SHELXL).⁵ Hydrogen atoms were refined both freely and with constrained riding geometries and thermal parameters linked to Uiso of their parent atoms. Structures were checked with checkCIF (http://checkcif.iucr.org). CCDC 2341582–2341584 contain the supplementary data for these compounds. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

2. Final Synthetic Procedures

1-(2-Bromo-4-methoxybenzyl)-6-methoxy-3,4-dihydroisoquinolin-2-ium chloride (16)

MeO NH O OM

methoxyphenethyl)acetamide (15). 2-(2-Bromo-4methoxyphenyl)acetic acid (14) (8.10 g, 33.1 mmol) and 2-(3-

methoxyphenyl)ethan-1-amine (**13**) (5.3 mL, 36.5 mmol) were combined in a 500 mL roundbottomed flask fitted with a reflux condenser and the mixture was heated at 200 °C under argon, with stirring. Once the reagents had fully melted, heating was continued for 2 h. **Note:** For the telescoped sequence this mixture was used directly for the next step (vide infra). From a previous run, a purified sample of **15** was obtained by column chromatography (0–40% EtOAc in pentane) for analytical purposes. $R_f = 0.21$ (30% EtOAc/petroleum ether); m.p. 73–78 °C (Et₂O); IR (ATR) 3318 (N-H), 3069, 3007, 2936, 2835, 1644 (C=O), 1602, 1542, 1490, 1250 (C-O), 1182, 1038 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.15–7.10 (2H, m, 2 × Ar**H**), 7.07 (1H, d, *J* = 2.6 Hz, Ar**H**), 6.78 (1H, dd, *J* = 8.5, 2.7 Hz, Ar**H**), 6.71 (1H, br ddd, J = 8.2, 2.6, 1.0 Hz, Ar**H**), 6.66–6.61 (2H, m, Ar**H**), 5.57 (1H, br t, J = 5.8 Hz, N**H**), 3.76 (3H, s, C**H**₃), 3.75 (3H, s, C**H**₃), 3.57 (2H, s, O=CC**H**₂), 3.45 (2H, td, J = 6.9, 5.7 Hz, C**H**₂N), 2.71 (2H, t, J = 6.9 Hz, C**H**₂CH₂N); ¹³C NMR (126 MHz, CDCl₃) 169.9 (C), 159.8 (C), 159.4 (C), 140.3 (C), 132.0 (CH), 129.6 (CH), 126.7 (C), 125.2 (C), 121.0 (CH), 118.3 (CH), 114.4 (CH), 114.0 (CH), 111.8 (CH), 55.5 (CH₃), 55.1 (CH₃), 43.1 (CH₂), 40.6 (CH₂), 35.5 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₈H₂₁⁷⁹BrNO₃]⁺ [M+H]⁺: 378.0699, found 378.0700; Exact mass calculated for [C₁₈H₂₁⁸¹BrNO₃]⁺ [M+H]⁺: 380.0679, found 380.0681.

1-(2-Bromo-4-methoxybenzyl)-6-methoxy-3,4-dihydroisoquinolin-2ium chloride (16). The above reaction mixture was cooled to 110 °C and toluene (100 mL) was added followed by phosphoryl trichloride (6.2 mL, 66.3 mmol). The mixture was heated at 110 °C for 1 h and then concentrated

in vacuo. The residue was dissolved in MeOH (200 mL) at reflux and then allowed to cool to room temperature. Et₂O (80 mL) was added, and the mixture was placed in a -20 °C freezer for 2 days. The resulting crystals were filtered, washed with Et₂O, and dried under reduced pressure to give the title compound **16** as a yellow crystalline solid (11.20 g, 85% over two steps). m.p. 219–227 °C (MeOH/Et₂O); IR (ATR) 2525, 1907, 1660, 1600, 1566, 1491, 1329, 1262, 1238, 1020 cm⁻¹; ¹H NMR (500 MHz, DMSO-D₆) δ 12.98 (1H, br s, NH), 7.86 (1H, d, *J* = 8.9 Hz, ArH), 7.32 (1H, d, *J* = 8.6 Hz, ArH), 7.27 (1H, d, *J* = 2.6 Hz, ArH), 7.11 (1H, d, *J* = 2.6 Hz, ArH), 7.03 (1H, dd, *J* = 8.9, 2.6 Hz, ArH), 6.97 (1H, dd, *J* = 8.6, 2.7 Hz, ArH), 4.59 (2H, s, N=CCH₂), 3.89 (3H, s, CH₃), 3.82 (2H, t, *J* = 7.8 Hz, CH₂N), 3.77 (3H, s, CH₃), 3.11 (2H, t, *J* = 7.8 Hz, CH₂CH₂N); ¹³C NMR (126 MHz, DMSO-D₆) δ 174.4 (C), 165.8 (C), 159.5 (C), 141.6 (C), 132.8 (CH), 132.1 (CH), 125.0 (C), 124.5 (C), 118.2 (CH), 117.6 (C), 114.5 (CH), 114.0 (CH), 113.8 (CH), 56.2 (CH₃), 55.7 (CH₃), 40.9 (CH₂), 37.8 (CH₂), 24.9 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₈H₁₉⁸¹BrNO₂]⁺ [M–Cl]⁺: 362.0573, found 362.0578.

tert-Butyl (R)-1-(2-bromo-4-methoxybenzyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-

carboxylate (18)

MeO

(*R*)-1-(2-Bromo-4-methoxybenzyl)-6-methoxy-1,2,3,4-tetrahydroisoquinoline (S1). To a suspension of the dihydroisoquinolinium chloride 16 (5.00 g, 12.60 mmol) in CH₂Cl₂ (19 mL) ^{OMe} at 0 °C was added HCO₂H (1.4 mL, 37.1 mmol) and then slowly, Et₃N (5.1

mL, 38.1 mmol). The mixture was warmed to warm to room temperature and stirred for 1 h before being warmed to 30 °C. RuCl(*p*-cymene)[(*S*,*S*)-Ts-DPEN] (**17**, 80 mg, 0.13 mmol) was added and the mixture was evacuated and back-filled with argon three times. After 18 h, the mixture was basified by the addition of saturated aqueous Na₂CO₃ solution and then extracted three times with CH₂Cl₂. The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo* to yield the crude title compound **S1**, which was used directly in the next step without further purification.

tert-Butyl (*R*)-1-(2-bromo-4-methoxybenzyl)-6-methoxy-3,4dihydroisoquinoline-2(1*H*)-carboxylate (18). To the above crude mixture was added CH_2Cl_2 (100 mL), Et_3N (5.1 mL, 38.1 mmol), di-*tert*-butyl dicarbonate (4.13 g, 18.9 mmol), and DMAP (154 mg, 1.26 mmol). The

reaction was stirred for 18 h and then separated between saturated aqueous NH₄Cl solution and CH₂Cl₂. The aqueous phase was extracted three times with CH₂Cl₂ and the combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo*. The crude residue was purified by column chromatography (0–20% EtOAc in pentane) to give the title compound **18** as an amorphous white solid (4.11 g, 71% over two steps, 92% ee). **Note**: Peaks in the ¹H and ¹³C NMR spectra are split as a 4:1 mixture due to the presence of rotamers. Data for only the major rotamer are reported. R_f = 0.46 (30% EtOAc/petroleum ether); $[\alpha]_D^{25}$ –40 (c 1.00, CHCl₃); IR (ATR) 2973, 2832, 1674 (C=O), 1602, 1491, 1422, 1235 (C-O), 1164, 1028 (C-N), 854 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (1H, d, *J* = 8.5 Hz, Ar**H**), 7.14 (1H, d, *J* = 2.6 Hz, Ar**H**), 6.97 (1H, d, *J* = 8.4 Hz, Ar**H**), 6.80 (1H, dd, *J* = 8.7, 3.0 Hz, Ar**H**), 6.78 (1H, dd, *J* = 8.5, 2.7 Hz, Ar**H**), 6.67 (1H, d, *J* = 2.7 Hz, Ar**H**), 5.35 (1H, dd, *J* = 10.9, 3.4 Hz, NC**H**), 4.36 (1H, ddd, *J* = 13.4, 6.1, 2.2 Hz, CH_aH_bN), 3.80 (3H, s, CH₃), 3.78 (3H, s, CH₃), 3.27 (1H, ddd, *J* = 13.3, 11.8, 4.0 Hz, CH_aH_bN), 3.19 (1H, dd, *J* = 14.0, 3.4 Hz, CHCH_aH_b),

3.06–2.88 (2H, m, CHCH_a**H**_b and C**H**_aH_bCH₂N), 2.71 (1H, ddd, J = 16.3, 4.0, 2.2 Hz, CH_a**H**_bCH₂N), 1.13 (9H, s, C(C**H**₃)₃); ¹³C NMR (126 MHz, CDCl₃) 159.1 (C), 158.3 (C), 154.5 (C), 135.9 (C), 132.1 (CH), 130.4 (C), 129.7 (C), 128.2 (CH), 125.5 (C), 118.3 (CH), 113.5 (CH), 113.3 (CH), 112.9 (CH), 79.5 (C), 55.8 (CH₃), 55.5 (CH₃), 54.0 (CH), 42.1 (CH₂), 36.2 (CH₂), 29.1 (CH₂), 28.1 (3 × CH₃); HRMS (ESI) Exact mass calculated for [C₂₃H₂₉⁷⁹BrNO₄]⁺ [M+H]⁺: 462.1275, found 462.1273; Exact mass calculated for [C₂₃H₂₉⁸¹BrNO₄]⁺ [M+H]⁺: 464.1254, found 462.1258 Enantiomeric excess was determined by HPLC using a Chiralcel OD-H column (90:10 isohexane: *i*-PrOH, 1.0 mL/min, 230 nm, 25 °C); t_r (minor) = 5.6 min, t_r (major) = 6.6 min, 92% ee.

An authentic racemic sample of 18 for the HPLC assay was obtained by Boc-protection of racemic **S1**, which was itself obtained by reduction of the corresponding free base of dihydroisoquinolinium hydrochloride 16.

Tetrahydroquinoline **18** (4.11 g, 8.89 mmol), $Pd_2(dba)_3$ (228 mg, 0.249 mmol), *t*-BuXPhos (211 mg, 0.498 mmol), and KOH (1.40 g, 24.9 mmol) were combined in a 250 mL round-bottomed flask fitted with a reflux condenser and evacuated and backfilled with argon three times. 1,4-Dioxane (43 mL) and then H₂O (43 mL, previously been degassed by sonication under high vacuum) were added. The mixture was heated to 100 °C and stirred for 18 h, and then separated between H₂O and CH₂Cl₂. The aqueous phase was extracted three times with CH₂Cl₂ and the combined organic extracts were dried

(Na₂SO₄), and concentrated *in vacuo*. The crude residue was purified by column chromatography (0–20% EtOAc in pentane) to yield the title compound **19** as an amorphous white solid (4.11 g, 71%). **Note**: Peaks in the ¹H and ¹³C NMR spectra are split as a 4:1 mixture due to the presence of rotamers. Data for only the major rotamer are reported. $R_f = 0.43$ (30% EtOAc/petroleum ether); $[\alpha]_D^{25} -28$ (c 1.00, CHCl₃); IR (ATR) 3234 (O-H), 2931, 1646 (C=O), 1598, 1429, 1367, 1289, 1239 (C-O), 1163, 1038 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 7.13 (1H, d, *J* = 8.5 Hz, Ar**H**), 6.82 (1H, d, *J* = 8.2 Hz, Ar**H**), 6.76 (1H, dd, *J* = 8.6, 2.7 Hz, Ar**H**), 6.68 (1H, d, *J* = 2.4 Hz, Ar**H**), 6.39 (1H, dd, *J* = 8.2, 2.5 Hz, Ar**H**), 5.30 (1H, dd, *J* = 10.5, 3.7 Hz, NC**H**), 4.12 (1H, ddd, *J* = 13.5, 6.1, 2.6 Hz, C**H**_aH_b), 3.76 (3H, s, OC**H**₃), 3.72 (3H, s, OC**H**₃), 3.36 (1H, ddd, *J* = 13.5, 11.2, 4.6 Hz, NCH_aH_b), 3.03 (1H, dd, *J* = 13.7, 3.7 Hz, CHCH_aH_b), 2.89–2.66 (3H, m, CHCH_aH_b and C**H**₂CH₂N), 1.16 (9H, s, C(C**H**₃)₃); ¹³C NMR (101 MHz, CD₃OD) δ 161.1 (C), 159.6 (C), 158.0 (C), 156.6 (C), 136.5 (C), 132.6 (CH), 131.3 (C), 129.2 (CH), 119.3 (C), 114.3 (CH), 113.5 (CH), 105.1 (CH), 102.3 (CH), 80.7 (C), 55.8 (CH), 55.6 (2 × CH₃), 37.9 (CH₂), 37.4 (CH₂), 29.8 (CH₂), 28.3 (3 × CH₃); HRMS (ESI) Exact mass calculated for [C₂₃H₃₀NO₅]⁺ [M+H]⁺: 400.2119, found 400.2115.

tert-Butyl (1*R*,8a*R*)-8a-hydroxy-1-(4-methoxy-2-{[(trifluoromethyl)sulfonyl]oxy}benzyl)-6-oxo-3,4,6,7,8,8a-hexahydroisoquinoline-2(1*H*)-carboxylate (22) and *tert*-butyl (1*R*,8a*S*)-8ahydroxy-1-(4-methoxy-2-{[(trifluoromethyl)sulfonyl]oxy}benzyl)-6-oxo-3,4,6,7,8,8ahexahydroisoquinoline-2(1*H*)-carboxylate (12)

tert-Butyl (*R*)-1-(2-hydroxy-4-methoxybenzyl)-6-methoxy-3,4,5,8tetrahydroisoquinoline-2(1*H*)-carboxylate (20). In a 100 mL, twonecked round bottomed flask fitted with a dry ice condenser was added the phenol **19** (1.20 g, 3.00 mmol) followed by THF (15 mL) and *t*-BuOH (15

mL). Dry ice and acetone were placed in the condenser and ammonia (*ca.* 30 mL) was condensed into the solution. The mixture was placed in a –78 °C cooling bath and lithium metal (312 mg, 45.0 mmol) was added portionwise over 30 min. The reaction was stirred at –78 °C for 2.5 h and then concentrated by warming to room temperature and sparging with a stream of nitrogen. The residue was separated between CH₂Cl₂ and H₂O and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic phases were dried (Na₂SO₄) and concentrated *in vacuo* to give the crude 1,4-diene **20**, which was used directly in the next step without further purification. Characteristic spectroscopic data for **20**: ¹H NMR (500 MHz, CDCl₃) δ 6.88 (1H, d, *J* = 8.2 Hz), 6.42 (1H, br s), 6.34 (1H, d, *J* = 8.4 Hz); HRMS (ESI) Exact mass calculated for [C₂₃H₃₁NNaO₅]⁺ [M+Na]⁺: 424.2094, found 424.2106.

tert-Butyl

{[(trifluoromethyl)sulfonyl]oxy}benzyl)-3,4,5,8-

(R)-6-methoxy-1-(4-methoxy-2-

tetrahydroisoquinoline-2(1*H*)-carboxylate (21). To a solution of the crude diene 20 in THF (25 mL) at room temperature was added PhN(Tf)₂ (1.13 g, 3.15 mmol) and then K₂CO₃ (1.24 g, 8.97 mmol). The mixture was heated at 65 °C for 2 h, cooled to room temperature, and filtered through cotton wool. The solids were washed with CH₂Cl₂ and the combined filtrates were concentrated *in vacuo* to give the crude aryl triflate 21 as a 2:1 mixture rotamers, which was used directly in the next step without further purification. Characteristic spectroscopic data for 21: ¹H NMR (500 MHz, CDCl₃) δ 4.73–4.69 (1H, m, major rotamer), 4.69–4.65 (0.5H, m, minor rotamer), 4.55 (0.5H, d, *J* = 10.4 Hz, minor rotamer), 4.40 (1H, d, *J* = 11.0 Hz, major rotamer), 4.23 (1H, dd, *J* = 13.4, 6.4 Hz, major rotamer), 3.97 (0.5H, dd, *J* = 13.6, 6.2 Hz, minor rotamer); HRMS (ESI) Exact mass calculated for [C₂₄H₃₀F₃NNaO₇S]⁺ [M+Na]⁺: 556.1587,

found 556.1589.

tert-Butyl (*R*)-1-(4-methoxy-2-{[(trifluoromethyl)sulfonyl]oxy}benzyl)-6oxo-3,4,5,6,7,8-hexahydroisoquinoline-2(1*H*)-carboxylate (11). To a solution of the crude aryl triflate 11 in CH₂Cl₂ (6.0 mL) was added a solution of oxalic acid (540 mg, 6.00 mmol) in MeOH (2.4 mL), silica gel (166 mg),

and H_2O (118 µL, 3.00 mmol). The reaction was stirred for 1 h and then filtered through cotton wool. The solids were washed with CH_2Cl_2 and the combined filtrates were washed with 5% NaOH solution. The aqueous layer was extracted three times with CH₂Cl₂ and the combined organic phases were dried (Na₂SO₄) and concentrated *in vacuo* to give the crude ketone **11** as a *ca*. 1.7:1 mixture of rotamers, which was used directly in the next step without further purification. Characteristic spectroscopic data for **11**: ¹H NMR (500 MHz, CDCl₃) δ 4.65 (0.6H, d, *J* = 10.1 Hz, minor rotamer), 4.47 (1H, d, *J* = 11.0 Hz, major rotamer), 4.26 (1H, dd, *J* = 13.5, 6.4 Hz, major rotamer), 4.01 (0.6H, dd, *J* = 13.7, 6.3 Hz, minor rotamer); HRMS (ESI) Exact mass calculated for [C₂₃H₂₈F₃NNaO₇S]⁺ [M+Na]⁺: 542.1431, found 542.1429.

tert-Butyl (1*R*,8a*R*)-8a-hydroxy-1-(4-methoxy-2-{[(trifluoromethyl)sulfonyl]oxy}benzyl)-6-oxo-3,4,6,7,8,8a-hexahydroisoquinoline-2(1*H*)carboxylate (22) and *tert*-butyl (1*R*,8a*S*)-8ahydroxy-1-(4-methoxy-2-

{[(trifluoromethyl)sulfonyl]oxy}benzyl)-6-oxo-3,4,6,7,8,8a-hexahydroisoquinoline-2(1H)carboxylate (12). To a solution of the crude ketone 11 in acetone (45 mL) and H_2O (15 mL) at room temperature was added NaHCO₃ (12.0 g, 143 mmol). The mixture was cooled to 0 °C and then a solution of Oxone-free DMDO (4.5 mmol) in acetone:H₂O (2:1, 90 mL) was added over 20 min. (Note: The solution of DMDO used was prepared by adding H₂O to an Oxone-free solution of DMDO in acetone, which was itself prepared according to an existing literature procedure.⁶) The mixture was stirred for 18 h and then partially concentrated to remove most of the acetone. The mixture was extracted seven times with CH₂Cl₂ and the combined organic phases were dried (Na₂SO₄) and concentrated in vacuo to yield 1.34 g of crude material. The remaining aqueous phase was an emulsion, which was left to stand for 2 days before brine was added. This aqueous mixture was extracted three times with EtOAc, dried (Na₂SO₄), and concentrated in vacuo to give a further 293 mg of crude material. Each of the above crude mixtures were separately dissolved in CH₂Cl₂ (10 mL and 5 mL, respectively) and Et₃N (0.5 mL and 0.25 mL, respectively) was added at room temperature. The reaction mixtures were stirred for 45 min and then concentrated in vacuo to yield the crude allyl alcohols 22 and 12 (22:12 = 1:5). The crude mixtures were separately purified by column chromatography (20-80% EtOAc in pentane) to give 22 (172 mg, 11%) followed by 12 (706 mg, 44%) as the combined yields from the two columns, each as off-white amorphous solids.

Data for **22**: **Note**: Peaks in the ¹H and ¹³C NMR spectra are broad due to the presence of rotamers. $R_f = 0.32$ (50% EtOAc/petroleum ether); m.p. 117–119 °C (EtOAc/pentane); $[\alpha]_D^{25}$ –27 (c 1.00, CHCl₃); IR (ATR) 3393 (O-H), 2925, 1661 (C=O), 1624, 1508, 1413, 1366, 1243 (C-O), 1208 (C-O), 1161, 1138 (C-O) cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 7.28 (1H, d, *J* = 8.6 Hz, Ar**H**), 7.02–6.88 (1H, m, Ar**H**), 6.88–6.73 (1H, m, Ar**H**), 5.85 (1H, d, *J* = 1.9 Hz, O=CC**H**=), 4.51–4.35 (1H, br m, NCH), 3.99–3.73 (1H, br m, CH_aH_bN), 3.81 (3H, s, OCH₃), 3.71–3.57 (1H, br m, CH_aH_bN), 3.12–3.00 (2H, m, CHCH₂), 2.88–2.79 (1H, m, CH_aH_bCH₂N), 2.65–2.51 (2H, m, CH_aH_bCH₂N and O=CCH_aH_b), 2.50–2.26 (2H, m, O=CCH_aH_b and CH_aH_bCOH), 2.15 (1H, ddd, J = 13.7, 10.4, 4.9 Hz, CH_aH_bCOH), 1.29–0.99 (9H, m, C(CH₃)₃); ¹³C NMR (126 MHz, CD₃OD) δ 200.3 (C), 165.9 (C), 161.1 (C), 156.6 (C), 150.4 (C), 134.8 (CH), 128.1 (CH), 125.1 (C), 120.0 (q, J = 319.1 Hz, C), 115.0 (CH), 108.4 (CH), 81.2 (C), 71.3 (C), 61.6 (CH), 56.4 (CH₃), 38.5 (CH₂), 35.3 (2 × CH₂), 31.0 (CH₂), 29.0 (CH₂), 28.2 (3 × CH₃); HRMS (ESI) Exact mass calculated for [C₂₃H₂₈F₃NNaO₈S]⁺ [M+Na]⁺: 558.1380, found 558.1372.

Recrystallization of **22** from EtOAc/pentane using the vapour diffusion method gave crystals that were suitable for X-ray crystallography:

Data for **12**: **Note**: Peaks in the ¹H and ¹³C NMR spectra are split as a 2.3:1 mixture due to the presence of rotamers. Both rotamers are reported for the ¹H NMR data and only the major rotamer is reported for the ¹³C NMR data.

 $R_f = 0.21$ (50% EtOAc/petroleum ether); m.p. 180 °C (decomposed, EtOAc/pentane); $[α]_D^{25}$ –19 (c 1.00, CHCl₃); IR (ATR) 3413 (O-H), 2925, 1667 (C=O), 1624 (C=O), 1509, 1416, 1366, 1317, 1212 (C-O), 1162, 1139, 1068 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 7.34 (0.3H, d, *J* = 8.6 Hz, ArH, minor rotamer), 7.30 (0.7H, d, *J* = 8.6 Hz, ArH, major rotamer), 6.95 (0.7H, dd, *J* = 8.6, 2.5 Hz, ArH, major rotamer), 6.92 (0.3H, dd, *J* = 8.6, 2.6 Hz, ArH, minor rotamer), 6.84 (0.7H, d, *J* = 2.5 Hz, ArH, major rotamer), 6.80 (0.3H, d, *J* = 2.5 Hz, ArH, minor rotamer), 5.95–5.99 (1H, m, O=CCH=, both rotamers), 4.71 (0.3H, dd, *J* = 12.3, 4.3 Hz, NCH, minor rotamer), 4.56 (0.7H, dd, *J* = 12.7, 3.7 Hz, NCH, major rotamer), 4.11 (0.7H, dddd, *J* = 13.5, 6.6, 2.3, 1.1 Hz, CH_aH_bN, major rotamer), 3.98 (0.3H, dddd, *J* = 13.6, 6.6, 2.7, 1.1 Hz, CH_aH_bN, minor rotamer), 3.81 (2.1H, s, OCH₃, major rotamer), 3.79 (0.9H, s, OCH₃, minor rotamer), 3.22–3.04 (2H, m, CH_aH_bN and CHCH_aCH_b, both

rotamers), 2.92–2.79 (1H, m, CH_aH_bCH₂N, both rotamers), 2.78–2.66 (2H, m, CHCH_aCH_b and O=CCH_aCH_b, both rotamers), 2.49–2.29 (3H, m, CH_aH_bCH₂N, O=CCH_aCH_b, and CH_aH_bCOH, both rotamers), 2.14–2.04 (1H, m, CH_aH_bCOH, both rotamers), 1.25 (2.7H, s, C(CH₃)₃, minor rotamer), 1.23 (6.3H, s, C(CH₃)₃, major rotamer); ¹³C NMR (126 MHz, CD₃OD) 200.9 (C), 161.3 (C), 161.1 (C), 157.1 (C), 150.0 (C), 134.0 (CH), 128.2 (CH), 123.7 (C), 120.0 (q, $J_{C-F} = 319.0$ Hz, C), 115.0 (CH), 108.8 (CH), 81.3 (C), 71.3 (C), 63.0 (CH), 56.4 (CH₃), 38.4 (CH₂), 34.9 (CH₂), 33.2 (CH₂), 31.0 (CH₂), 29.1 (CH₂), 28.3 (3 × CH₃); HRMS (ESI) Exact mass calculated for [C₂₃H₂₈F₃NNaO₈S]⁺ [M+Na]⁺: 558.1380, found 558.1370.

Recrystallization of **12** from EtOAc/pentane using the vapour diffusion method gave crystals that were suitable for X-ray crystallography:

tert-Butyl (4b*R*,8a*S*,9*R*)-8a-hydroxy-3-methoxy-6-oxo-6,7,8,8a,9,10-hexahydro-5*H*-9,4b-(epiminoethano)phenanthrene-11-carboxylate (23)

PdCl₂(PPh₃)₂ (6.5 mg, 9.3 µmol) and dppp (3.9 mg, 9.5 µmol) were combined in a microwave vial, which was evacuated and backfilled with argon three times. DMF (3.7 mL) was added, and the mixture was stirred for 5 min. The aryl triflate **12** (100 mg, 0.187 mmol) was added followed by Et₃N (125 µL, 0.933 mmol). The vessel was resealed, and the reaction mixture was placed on a 125 °C heating block and stirred for 48 h, cooled to room temperature, and concentrated *in vacuo*. The crude mixture was purified by column chromatography (0–40% EtOAc in cyclohexane) to give the title compound **23** (47 mg, 65%) as an off-white amorphous solid. $R_f = 0.28$ (50% EtOAc/petroleum ether); $[\alpha]_D^{25}$ –136.0 (c 1.00, CHCl₃); IR (ATR) 3426 (O-H), 2971, 2921, 1686 (C=O), 1664 (C=O),

1611, 1417, 1365, 1256 (C-O), 1160 (C-O) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.99 (1H, d, J = 8.4 Hz, Ar**H**), 6.81 (1H, d, J = 2.6 Hz, Ar**H**), 6.72 (1H, dd, J = 8.4, 2.6 Hz, Ar**H**), 4.60–4.19 (1H, br m, C**H**N), 3.90–3.74 (1H, br m, C**H**_aH_bN), 3.76 (3H, s, OC**H**₃), 3.21 (1H, dd, J = 18.4, 6.5 Hz, C**H**_aH_bCHN), 3.00 (1H, d, J = 14.3 Hz, O=CC**H**_aH_bC, 2.89 (1H, d, J = 18.3 Hz, CH_aH_bCHN), 2.82 (1H, d, J = 14.3 Hz, O=CCH_aH_bC), 2.78 (1H, ddd, J = 14.5, 13.0, 7.4 Hz, O=CCH_aH_bCH₂), 2.67 (1H, s, O**H**), 2.71-2.53 (1H, br m, CH_aH_bN), 2.22–2.08 (1H, m, CH_aH_bCH₂N), 2.13 (1H, ddt, J = 14.5, 4.7, 2.1 Hz, O=CCH_aH_bCH₂), 1.90 (1H, td, J = 12.4, 11.5, 4.2 Hz, O=CCH₂CH_aH_b), 1.87–1.82 (1H, m, O=CCH₂CH_aH_b), 1.48 (9H, s, C(CH₃)₃), 1.22–1.06 (1H, br m, CH_aH_bCH₂N); ¹³C NMR (126 MHz, CDCl₃) δ 209.4 (C), 158.8 (C), 156.7 (C), 139.6 (C), 129.0 (CH), 126.2 (C), 113.1 (CH), 111.5 (CH), 80.7 (C), 69.7 (C), 55.4 (CH₃), 54.0 (CH), 46.1 (CH₂), 45.5 (C), 37.5 (2 x CH₂), 35.5 (CH₂), 32.8 (CH₂), 32.4 (CH₂), 28.5 (3 × CH₃); HRMS (ESI) Exact mass calculated for [C₂₂H₂₉NNaO₅]⁺ [M+Na]⁺: 410.1938, found 410.1934.

Desoxynaltrexone

(4b*R*,8a*S*,9*R*)-11-(Cyclopropylmethyl)-3,8a-dihydroxy-8,8a,9,10-tetrahydro-5H-9,4b-(epiminoethano)phenanthren-6(7*H*)-one (8)

To a solution of **23** (82 mg, 0.21 mmol) in CH_2Cl_2 (2.1 mL) at 0 °C was added BBr₃ (0.06 mL, 0.63 mmol). The mixture was warmed to room temperature, stirred for 1.5 h, and cooled to 0 °C. The reaction was basified with aqueous NH₄OH solution (30–33% NH₃ in H₂O). The mixture was extracted with three times with CHCl₃ and the combined organic phases were dried (Na₂SO₄), filtered, and concentrated *in vacuo* to leave 4,5-desoxynoroxymorphone, which was used directly in the next step without further purification.

To a solution of 4,5-desoxynoroxymorphone in NMP/H₂O (10:1, 0.39 mL) at room temperature was added was (bromomethyl)cyclopropane (27 μ L, 0.28 mmol) followed by Et₃N (0.04 mL, 0.30 mmol). The reaction vessel was purged with argon and then placed on a 70 °C heating block for 3 h. Following a further addition of Et₃N (0.04 mL, 0.30 mmol), the mixture was stirred at 70 °C for an additional 17 h. The reaction was cooled to room temperature, diluted with toluene and washed three times with a saturated aqueous NaHCO₃ solution. The aqueous phase was extracted with toluene and the combined organic phases were dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The crude residue was purified by column chromatography [0–4% of *solution A* in CH₂Cl₂, where *solution A* was made up by adding MeOH to aqueous NH₃ solution (30%) give a 2 M solution of NH₃] to yield 4,5-

desoxynaltrexone (8) as an amorphous white solid (18 mg, 26% over two steps). $R_f = 0.16$ (5% MeOH/CH₂Cl₂); $[\alpha]_D^{25}$ -140.0 (c 1.00, CHCl₃); IR (ATR) 3377 (O-H), 2922, 2832, 1703 (C=O), 1612, 1506, 1447, 1310, 1280, 1232 (C-O) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.94 (1H, d, J = 8.2 Hz, Ar**H**), 6.79 (1H, d, J = 2.6 Hz, Ar**H**), 6.65 (1H, dd, J = 8.3, 2.6 Hz, Ar**H**), 3.14 (1H, d, J = 6.4 Hz, C**H**N), 3.07 (1H, d, J = 14.1 Hz, O=CCH_aH_bC), 3.05 (1H, d, J = 18.4 Hz, CH_aH_bCHN), 2.88-2.70 (3H, m, CH_aH_bCHN, O=CCH_aH_bC and O=CCH₂CH_aH_b), 2.63-2.56 (1H, m, CH₂CH_aH_bN), 2.43-2.38 (2H, m, NCH₂CH), 2.20-2.08 (3H, m, CH_aH_bCH₂N), CH₂CH_aH_bN and O=CCH₂CH_aH_b), 1.91-1.77 (2H, m, O=CCH₂CH₂), 1.21-1.16 (1H, m, CH_aH_bCH₂N), 0.92-0.82 (1H, m, NCH₂CH), 0.59-0.50 (2H, m, cyclopropyl CH_aH_bCH_aH_b), 0.17-0.10 (2H, m, cyclopropyl CH_aH_bCH_aH_b); ¹³C NMR (126 MHz, CDCl₃) δ 211.5 (C), 154.8 (C), 140.7 (C), 128.9 (CH), 126.9 (C), 114.3 (CH), 112.7 (CH), 69.1 (C), 59.9 (CH), 59.5 (CH₂), 46.6 (CH₂), 45.8 (C), 43.5 (CH₂), 37.7 (CH₂), 37.0 (CH₂), 32.0 (CH₂), 24.6 (CH₂), 9.6 (CH), 4.1 (CH₂), 4.0 (CH₂); HRMS (ESI) Exact mass calculated for [C₂₀H₂₆NO₃]⁺ [M+H]⁺: 328.1907, found 328.1908.

These data are consistent with those reported previously.⁷

4,5-Desoxynaloxone

(4bR,8aS,9R)-11-Allyl-3,8a-dihydroxy-8,8a,9,10-tetrahydro-5H-9,4b-

(epiminoethano)phenanthren-6(7*H*)-one (10)

To a solution of **23** (47 mg, 0.12 mmol) in CH₂Cl₂ (1.2 mL) at 0 °C was added BBr₃ (0.06 mL, 0.63 mmol). The mixture was warmed to room temperature, stirred for 1.5 h, and cooled to 0 °C. The reaction was basified with aqueous NH₄OH solution (30–33% NH₃ in H₂O). The mixture was extracted with three times with CHCl₃ and the combined organic phases were dried (Na₂SO₄), filtered, and concentrated *in vacuo* to leave 4,5-desoxynoroxymorphone, which was used directly in the next step without further purification.

To a solution of 4,5-desoxynoroxymorphone in NMP/H₂O (10:1, 0.39 mL) at room temperature was added was allyl bromide (10.7 μ L, 0.124 mmol) followed by Et₃N (0.03 mL, 0.22 mmol). The reaction vessel was purged with argon and then placed on a 70 °C heating block for 2 h. Following a further addition of Et₃N (0.03 mL, 0.22 mmol), the mixture was stirred at 70 °C for an additional 3 h. The reaction was cooled to room temperature, diluted with CH₂Cl₂ and washed three times with a saturated aqueous NaHCO₃ solution. The aqueous phase was extracted with CH₂Cl₂ and the combined

organic phases were dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude residue was purified by column chromatography (0–8% of solution A in CH₂Cl₂, where solution A was made up by adding MeOH to aqueous NH₃ solution (30%) give a 2 M solution of NH₃) to yield 4,5desoxynaloxone (10) as a white solid (14 mg, 48% over two steps). $R_f = 0.19$ (5% MeOH/CH₂Cl₂); m.p. 222-225 °C (decomposed, EtOAc/pentane); [α]_D²⁵-128.0 (c 1.00, CHCl₃); IR (ATR) 3385 (O-H), 2924, 2843, 1701 (C=O), 1612, 1503, 1446, 1309, 1280, 1229 (C-O) cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 6.96 (1H, d, J = 8.3 Hz, Ar**H**), 6.69 (1H, d, J = 2.5 Hz, Ar**H**), 6.59 (1H, dd, J = 8.3, 2.5Hz, Ar**H**), 5.89 (1H, ddt, J = 16.7, 10.2, 6.4 Hz, C**H**=CH₂), 5.24 (1H, app dq, J = 17.2, 1.7 Hz, $=CH_{a}H_{b}$), 5.16 (1H, app dq, J = 10.2, 1.3 Hz, $=CH_{a}H_{b}$), 3.22 (1H, ddt, J = 13.6, 6.5, 1.4 Hz, $CH_{a}H_{b}CH=CH_{2}$), 3.17 (1H, ddt, J = 13.6, 6.3, 1.4 Hz, $CH_{a}H_{b}CH=CH_{2}$), 3.13 (1H, d, J = 18.6 Hz, CH_aH_bCHN), 3.02 (1H, d, J = 14.1 Hz, O=CCH_aH_bC), 2.99 (1H, d, J = 6.4 Hz, CHN), 2.81-2.70 (3H, m, CH_aH_bCHN , $O=CCH_aH_bC$, and $O=CCH_2CH_aH_b$), 2.54-2.48 (1H, m, $CH_2CH_aH_bN$), 2.21-2.08 $(2H, m, CH_aH_bCH_2N \text{ and } CH_2CH_aH_bN), 2.05 (1H, ddt, J = 14.6, 5.3, 2.0 Hz, O=CCH_2CH_aH_b), 1.87$ $(1H, td, J = 13.5, 5.3 Hz, O=CCH_aH_bCH_2), 1.77 (1H, ddd, J = 13.5, 7.2, 1.9 Hz, O=CCH_aH_bCH_2),$ 1.14 (1H, dt, J = 11.4, 2.2 Hz, CH_aH_bCH₂N); ¹³C NMR (126 MHz, CD₃OD) δ 213.1 (C), 157.1 (C), 141.6 (C), 137.0 (CH), 129.7 (CH), 127.4 (C), 118.1 (CH₂), 115.1 (CH), 113.2 (CH), 70.4 (C), 61.2 (CH), 58.7 (CH₂), 47.1 (CH₂), 46.6 (C), 44.3 (CH₂), 38.3 (CH₂), 37.9 (CH₂), 33.0 (CH₂), 25.4 (CH₂); HRMS (ESI) Exact mass calculated for $[C_{19}H_{24}NO_3]^+$ $[M+H]^+$: 314.1751, found 314.1752. Recrystallization of 10 from EtOAc/pentane using the vapour diffusion method gave crystals that

were suitable for X-ray crystallography:

4,5-desoxynaloxone (10) CCDC 2341584 Flack parameter –0.05(3)

Note: There are two crystallography independent molecules in the asymmetric unit. In one of these molecules, there is disorder associated with the allyl group. A residual electron density peak with height 0.67 e Å⁻³ is observed in the electron density map 1.01 and 1.41 Å from oxygen atom O18B and carbon atom C17B respectively. The atom can be modelled as an oxygen atom with a partial occupancy fraction of 0.08; however, no sensible disorder model in agreement with the bulk analysis data for this compound could be developed.

3. Optimization of the Epoxidation of Alkene 11

Epoxidation of **11** with *m*-CPBA in toluene and β -elimination/epoxide ring-opening with Et₃N gave the desired 14-hydroxyenone in good yield but as a 1:3 mixture of diastereomers in favor of the undesired isomer 22 (Table S1). Increasing the polarity of the solvent in the epoxidation step by changing from toluene to CH₂Cl₂ and then to MeCN led to more of the desired isomer 12 being formed. In MeCN, the ratio of 12:22 was 1.3:1. Changing the oxidant to dimethyldioxirane (DMDO), which was generated *in situ* by the reaction of acetone with Oxone in the presence of NaHCO₃, increased the diastereoselectivity to 5:1 in favor of 12. However, this reaction stalled at around 50% conversion. Despite efforts to push the reaction to completion by increasing the reaction time, increasing the equivalents of oxidant and base, or with slower addition of Oxone, considerable quantities of starting material 11 always remained. It is known that DMDO can be decomposed by its reaction with Oxone⁸ and it seemed plausible that this side-reaction was consuming the DMDO before full consumption of the alkene 11 occurred. Accordingly, conducting the epoxidation in CH₂Cl₂/acetone (1:4) with a preformed solution of DMDO in acetone (in the absence of Oxone) led to full consumption of **11**. In this case, however, the diastereoselectivity dropped to 2:1. However, by repeating this reaction but changing the solvent system back to acetone/H₂O (2:1), which was saturated with NaHCO₃, full consumption of **11** was achieved, and after β-elimination/epoxide ringopening with Et_3N , **12** was obtained with 5:1 dr (see page 9 for the detailed experimental procedure).

4. Assessment of the Biological Activity of 4,5-Desoxynaltrexone (8) and 4,5-Desoxynaloxone (10) Towards the Opioid Receptors and Comparison with Known Opioids

The activity of 4.5-desoxynaltrexone (8) and 4.5-desoxynaloxone (10) at opioid receptors was tested using a Bioluminescence Resonance Energy Transfer (BRET) assay that monitors G protein dissociation upon receptor activation. For comparison, the activity of naloxone (3) and naltrexone (4) were also measured in parallel using the same assay. Unless otherwise stated, reagents were purchased from Sigma Aldrich-Merck. Experiments were performed in transiently transfected human embryonic kidney 293T (HEK 293T) cells as described previously.⁹ Briefly, cells were cultured at 37 °C, 5 % CO₂ in Dulbecco's modified eagle medium (DMEM) supplemented with 10 % (v/v) fetal bovine serum (FBS). Cells were seeded in 10 cm Petri dishes (3 x 10⁶ cells per dish) and allowed to grow overnight in full media at 37 °C, 5% CO₂. Cells were transiently transfected the next day, in media supplemented with antibiotics (100 U/mL penicillin and 100 µg/mL streptomycin, Gibco) using a 1:6 total DNA to PEI (PolySciences Inc) ratio. Transfected constructs were as follows: 1 µg of opioid receptor (MOR, DOR, KOR or NOP), 2 μg of WT-Gα_{i2}, 1 μg of Gβ1-Venus(156-239), 1 μg of Gγ2-Venus(1-155), 1 μg of masGRK3ct-Rluc8. The following day, cells were plated in Greiner poly-D-lysine-coated, white bottom 96-well plates (SLS) in full media. On the day of the assay (48h post-transfection), cells were washed once with D-PBS (Lonza, SLS) and incubated in D-PBS for 30 min at 37 °C. The Rluc substrate coelenterazine h (NanoLight) was added to each well (final concentration of 5 µM) and ligands (final concentration from 10 µM to 0.01 nM in D-PBS) were added to the wells before reading the plate at 37 °C in a PHERAstar FSX microplate reader (Venus and Rluc emission signals at 535 and 475 nm, respectively, BMG Labtech) every minute for 10 min. The ratio between Venus fluorescence and Rluc luminescence (BRET ratio) was used to quantify the BRET signal in each well. Data were normalized to maximal and minimal response of the corresponding reference agonist (DAMGO for MOR, SNC-80 for DOR, U-50488 for KOR and nociceptin for NOP). All data points represent the mean of at least three independent experiments performed in duplicate. Data were fitted using the built-in log(agonist) vs. response (three parameters) model in Prism 9.0 (GraphPad software Inc., San Diego, CA) to obtain values of potency (pEC₅₀) and maximal effect (Emax).

3	8.69 ± 0.33 (2.0)	13 ± 2	7.25 ± 0.40 (56)	13 ± 2	7.94 ± 0.14 (12)	64 ± 4	n/a	n/a			
4	8.86 ± 0.35 (1.4)	24 ± 4	7.66 ± 0.18 (22)	$\textbf{36}\pm\textbf{3}$	8.58 ± 0.13 (2.7)	82 ± 4	n/a	n/a			
morphine (1)	7.89 ± 0.07 (13)	106 ± 4									
fentanyl	8.9 ± 0.11 (1.3)	103 ± 7									

[a] Potency (pEC_{50}) and maximal effect (Emax) were measured using a G-protein dissociation assay in HEK293 cells expressing human MOR, DOR, KOR, or NOP. EC_{50} is expressed in nM and Emax as the % of the response elicited by a maximal concentration of reference compounds (DAMGO for MOR, SNC-80 for DOR, U-50488 for KOR, and nociceptin for NOP). The data show mean \pm SEM of at least 3 independent experiments performed in duplicate.

5. NMR Spectra

6. HPLC Traces

7. References

- 1. J. Cosier, A. M. Glazer, J. Appl. Crystallogr. 1986, 19, 105-107.
- Rigaku Oxford Diffraction, (2018), CrysAlisPro Software system, version 1.171.40.45a, Rigaku Corporation, Oxford, UK.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
- 4. G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3-8.
- 5. G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3-8.
- H. Mikula, D. Svatunek, D. Lumpi, F. Glöcklhofer, C. Hametner, J. Fröhlich, *Org. Process Res.* Dev. 2013, 17, 313-316.
- B. R. Selfridge, X. Wang, Y. Zhang, H. Yin, P. M. Grace, L. R. Watkins, A. E. Jacobson, K. C. Rice, J. Med. Chem. 2015, 58, 5038-5052.
- 8 (a) T. H. El-Assaad, J. Zhu, A. Sebastian, D. V. McGrath, I. Neogi, K. N. Parida, Org. Chem. Front. 2022, 9, 5675-5725. (b) J. O. Edwards, R. H. Pater, R. Curclf, F. D. Furia, Photochem. Photobiol. 1979, 30, 63-70.
- A. Bonifazi, F. O. Battiti, J. Sanchez, S. A. Zaidi, E. Bow, M. Makarova, J. Cao, A. B. Shaik, A. Sulima, K. C. Rice, V. Katritch, M. Canals, J. R. Lane, A. H. Newman, *J. Med. Chem.* 2021, 64, 7778-7808.