Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis and catalytic application of donor-free bismuthenium cation

Nilanjana Sen^a, Pallavi Mukherjee^{b#}, Yadram Meena^a, Srinu Tothadi^c Swapan K. Pati^{*b} Shabana Khan^{*a}

Table of Contents

- **S1.** Table for crystal data
- S2. Molecular structure of compound 2
- S3. ¹H, ¹³C and ¹⁹F NMR spectra of compounds 2 and 3
- S4. Photophysical properties and UV-Vis absorption spectra of compounds 2 and 3
- S5. ³¹P NMR spectra of compounds 2 and 3 with OPEt₃ (1:1)
- **S6.** General procedure for cyanosilylation of ketones
- **S7.** Standardization of reaction conditions for cyanosilylation reactions
- **S8.** ¹H and ¹³C NMR spectra of cyanosilylation products of ketones by compound **3**
- **S9.** Spectroscopic data for cyanosilylated products of ketones by compound **3**
- **S10.** Kinetic study
- **S11.** Experimental data and theoretical calculations to propose a mechanistic pathway of cyanosilylation reaction
- **S12.** Computational details
- S13. References

[S1]. Crystal Data and Structure Refinement for 3

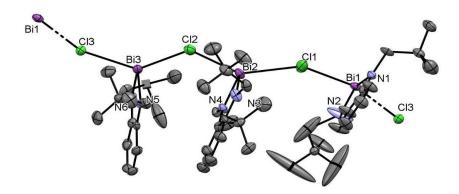
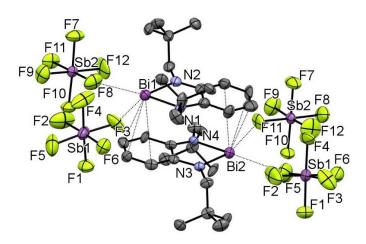

Crystallography reflections were collected on a Bruker Smart Apex Duo diffractometer at 150 K using Mo K α radiation (λ = 0.71073 Å) for **3**. The structures were solved by direct method and refined by full-matrix least-squares methods against F2 (SHELXL-2014/6). Crystallographic data (including structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC no. of compound **3** is 2322619.

Table [S1]. Data collection parameters for compound **3**.


	3		
Chemical formula	$C_{32}H_{52}Bi_2F_{12}N_4Sb_2$		
Formula weight	1382.23g/mol		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 36.971(6) Å		
	b = 11.0199(18) Å		
	c = 21.471(4) Å		
	$\alpha = 90^{\circ}$		
	$\beta = 101.205(5)$ °		
	γ = 90°		
Volume	8581(2) Å ³		
Z	8		
Density (calculated)	2.140 g/cm^3		
Absorption coefficient	9.504 mm ⁻¹		
F(000)	5184		
Theta range for data collection	2.21 to 28.18°		
	-48<=h<=44,		
Index ranges	-14<=k<=14,		
	-27<=1<=27		
Reflections collected	64711		
Independent reflections	9829 [R(int) =0.0766]		
Coverage of independent reflections	99.9%		
Function minimized	Σ w(Fo2 - Fc2)2		
Data / restraints / parameters	9829 / 0 / 483		
Goodness-of-fit on F2	2.557		
Δ/σ max	0.012		

Final R indices	8398 data; [I>2 σ (I)] R1 = 0.1193, wR2
	= 0.3342
	all data, R1 = 0.1317, wR2 =
	0.3399
Largest diff. peak and	0.282 and -0.045
hole	eÅ-3
R.M.S. deviation from mean	0.007eÅ-3

[S2]. Molecular structure of compound 2.

Figure S1a. The molecular structure of **2** with anisotropic displacement parameters is depicted at the 50% probability level. Hydrogen atoms are not shown for clarity.

Figure S1b. Representation of the interactions of the central cationic bismuth with the adjacent fluorine atoms and π -stacking in 3. Hydrogen atoms are not shown for clarity.

It has been observed that **3** exhibits a different pattern of cation-cation interaction in the solid state which is similar to that of the previously reported stibenium cation by Khan and coworkers.¹ The molecular structure reveals that the bismuth center comprises π -stacked dimers which are antiparallel to each other in orientation and the Bi center displays an intermolecular π interaction with the arene ring of the adjacent moiety in η^3 fashion (Bi···C4 is 3.468 Å, Bi···C5 is 3.364 Å, Bi···C6 is 3.540 Å).

Experimental Section

Synthesis of compound 2. Compound **1** (1 gm, 4.11 mmol) was taken in a 100 ml Schlenk flask, and 60 ml Et₂O was added to it at room temperature. Subsequently, the flask was cooled to -70 °C, and nBuLi (3.29 ml of 2.5 M solution) was added slowly. The reaction mixture was slowly allowed to come to room temperature and left on stirring for 6 h. The reaction mixture was cooled again to 0 °C and was transferred to another Schlenk flask containing THF (20 ml) solution of BiCl₃ (1.294 g, 4.11 mmol). The reaction was left on stirring overnight. The solution was filtered and concentrated until it formed crystalline particles on the surface of the flask. The concentrated solution of **2** was stored at 0 °C, which resulted in the formation of violet-red colored crystals of **2**. Yield (%): 61.2% (300mg) 1 H NMR (400 MHz, CDCl₃, 298 K): δ 1.05 (s, 18H, 4 Bu group), 2.86 (s, 4H, -CH₂), 6.69-6.80 (m, 4H, Ph) ppm. 13 C { 1 H} NMR (100.613 MHz, CDCl₃, 298 K): δ 1.1, 27.9, 31.6, 56.5, 112.2, 119.3, 138.4 ppm.

Synthesis of compound 3. To the mixture of compound **2** (403 mg, 1 mmol) and AgSbF₆ (344 mg, 1 mmol) in a 100 ml Schlenk flask, 40 ml DCM was added. The reaction mixture was kept on stirring overnight at room temperature. The solution was then filtered and concentrated to 5 ml, and a few drops of *n*-pentane were added. The solution was stored at 0 °C for crystallization. Yield (%): 66.3% (400mg) ¹H NMR (400 MHz, CDCl₃, 298 K): δ 1.10 (s, 18H, 'Bu group), 3.05 (s, 4H, -CH₂), 6.69-6.80 (m, 4H, Ph) ppm. ¹³C{¹H} NMR (100.613 MHz, CDCl₃, 298 K): δ 1.1, 25.7, 27.3, 31.4, 60.9, 68.1, 120.1, 126.2, 134.8 ppm. ¹⁹F{¹H} (100.613 MHz, CDCl₃, 298 K) δ -169.42 ppm. HRMS: Calcd. for [C₁₆H₂₆BiN₂SbF₆]: *m/z* 690.0842. Found *m/z* 690.5701 [M⁺]

[S3]. ^{1}H , ^{13}C , ^{19}F NMR spectra of compounds 2 and 3.

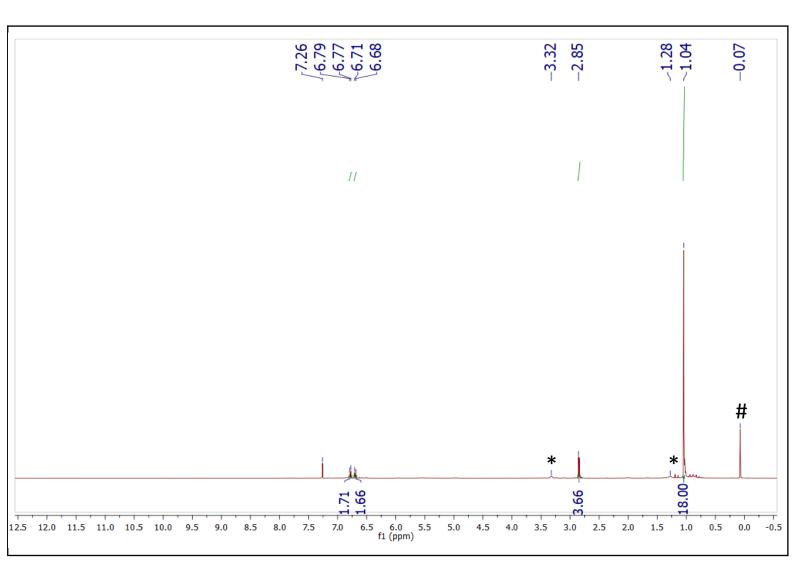


Figure S2. ¹H NMR spectrum of compound 2 in CDCl₃ (* - Diethyl ether, # - Grease).

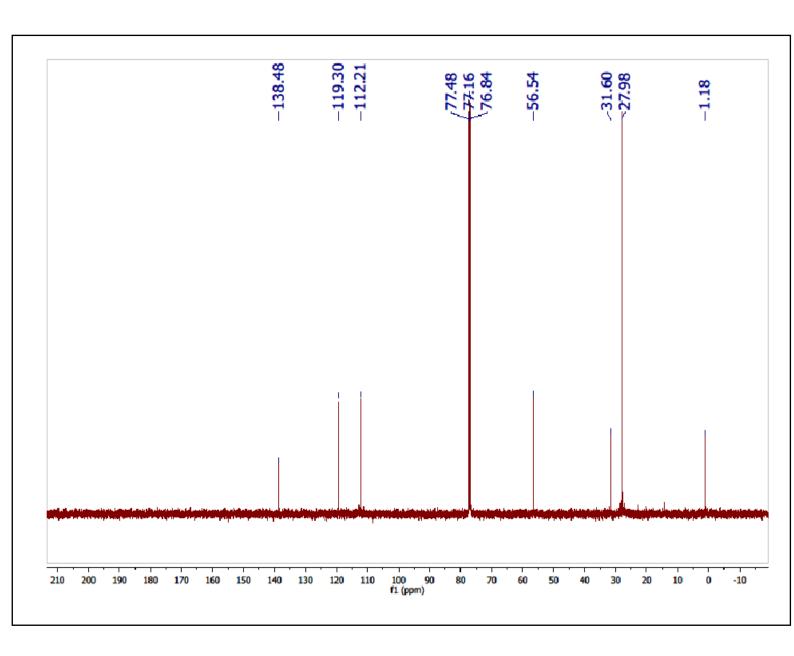


Figure S3. ¹³C NMR spectrum of compound 2 in CDCl₃.

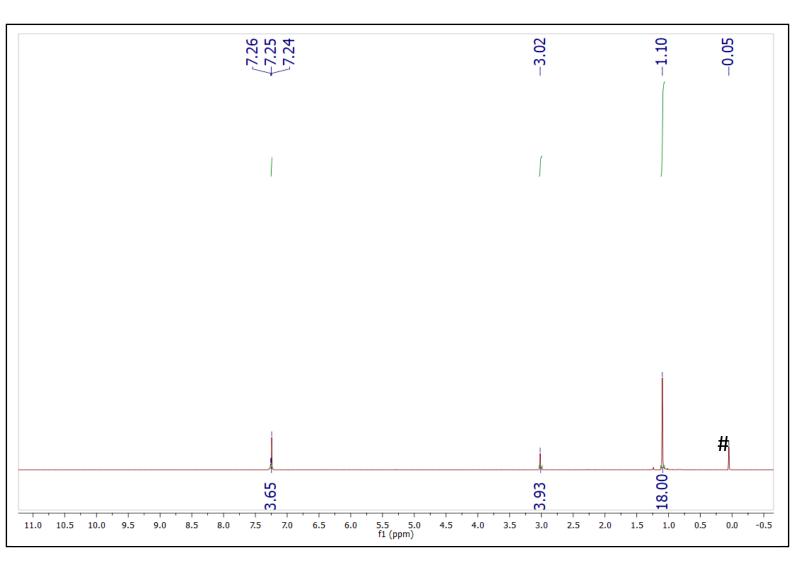


Figure S4. 1H NMR spectrum of compound 3 in CDCl $_3$ (# - Grease).

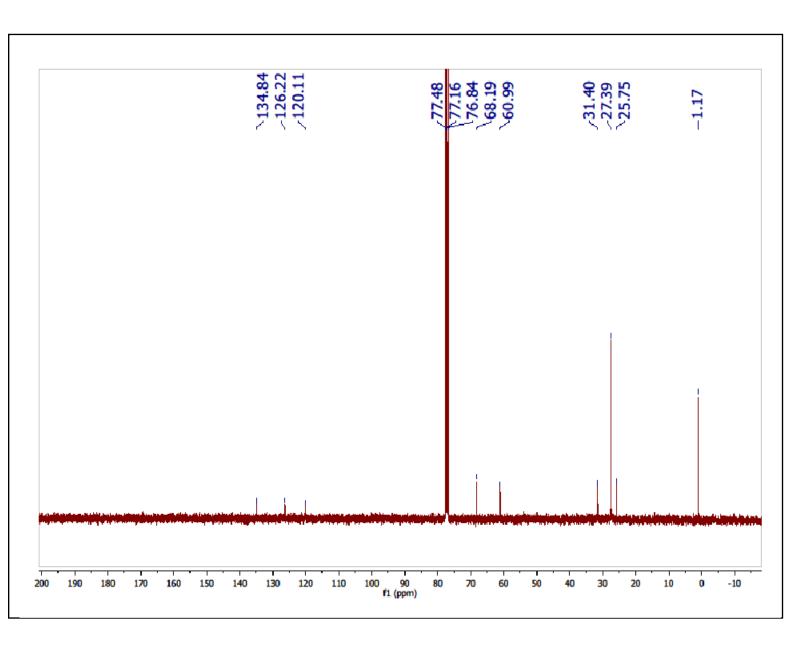


Figure S5. ¹³C NMR spectrum of compound 3 in CDCl₃.

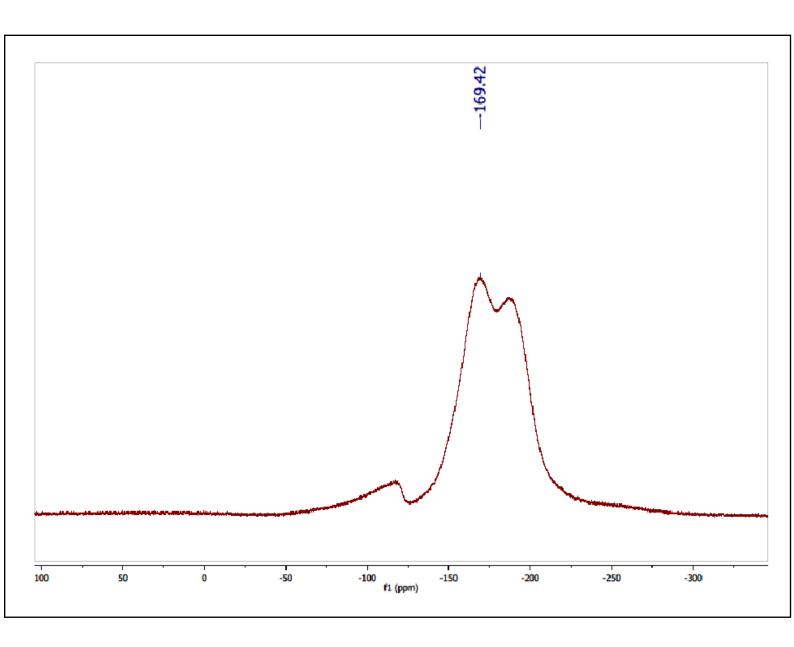
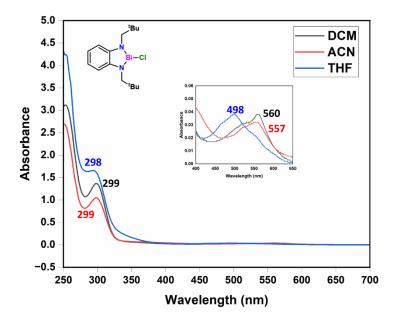


Figure S6. ¹⁹F NMR spectrum of compound 3 in CDCl₃.


[S4]. Photophysical properties and UV-Vis absorption spectra of compounds 2 and 3.

Compound	Absorption			
	Wavelength (nm)			
	THF	DCM	ACN	
2 (experimental value)	298, 498	299, 560	299, 557	
2 (computed value)	294, 507.7	293, 506	289, 498.3	
3 (experimental value)	290, 500	299, 496	289, 528	
3 (computed value)	301, 510	300.8, 509.7	299.8, 506	

Table S2. UV-Vis spectroscopic data of compounds 2 and 3.

Our both the compounds being highly colored; hence we were motivated to study the photophysical properties of these compounds. We recorded the UV-Vis absorption in three different solvents THF, DCM, and ACN (300µL of the concentration) (Figure S7). Compound 2 exhibits a dark purple color, and the observed UV-Vis spectrum appears at 299 nm and 560 nm in DCM, 298 nm and 498 nm in THF, 299 nm and 557 nm in ACN. Compound 3 also appeared to be dark violet and from UV-Vis spectrometry study it is observed that two peaks at 290 nm and 500 nm appear in THF, 299 nm and 496 nm in DCM, 289 nm and 528 nm in ACN. We have performed the TD-DFT calculations with B3LYP-D3 exchange-correlation functional and lanl2dz basis set for Bi and 6-311+G(d,p) for lighter atoms. The results reveal that the absorptions are due to the charge transfer from the p-electron density of the aromatic ring to the vacant p orbital of the bismuth atom (Figure S8).

A)

B)

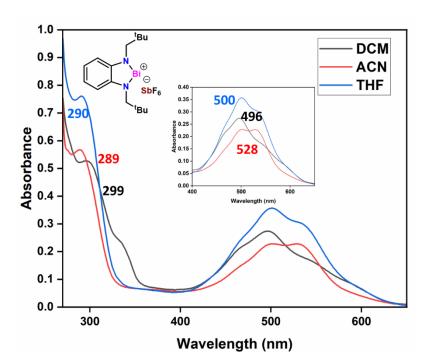


Figure S7a. UV-Vis absorption spectra of compounds A) 2 and B) 3 (300 μ L of the concentration).

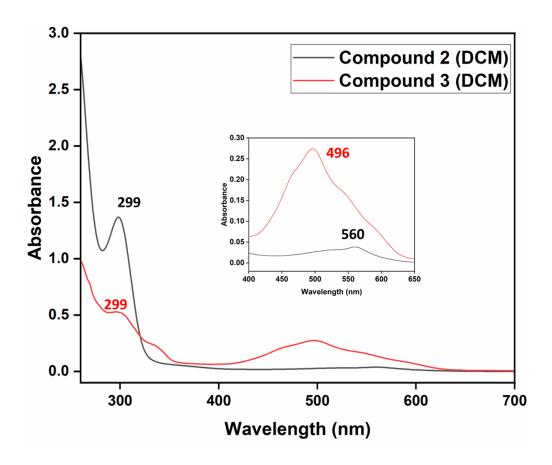


Figure S7b. Combined UV-Vis absorption spectra of compounds 2 and 3 in DCM (300 μ L of the concentration).

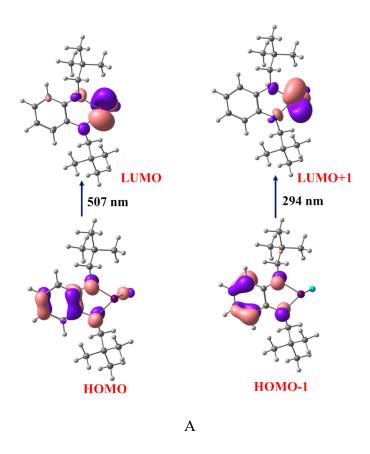


Figure S8. Calculated transitions for the main absorption of a) 2 and b) 3.

[S5]. ³¹P NMR Spectra of compounds 2 and 3 with OPEt₃ (1:1 reaction).



Figure S9. ³¹P NMR spectrum of compound 2 and OPEt₃ in CDCl₃.

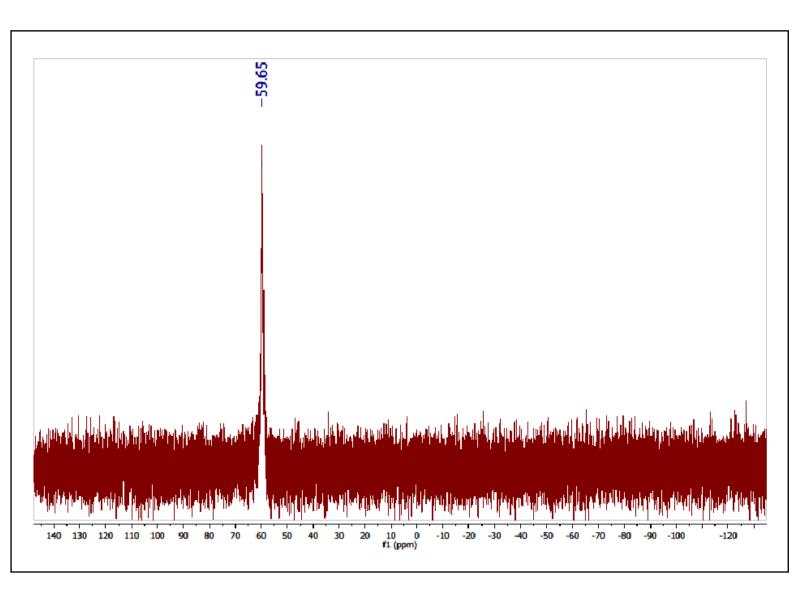


Figure S10. ³¹P NMR spectrum of compound 3 and OPEt₃ in CDCl₃.

[S6]. General procedure for the cyanosilylation of ketones.

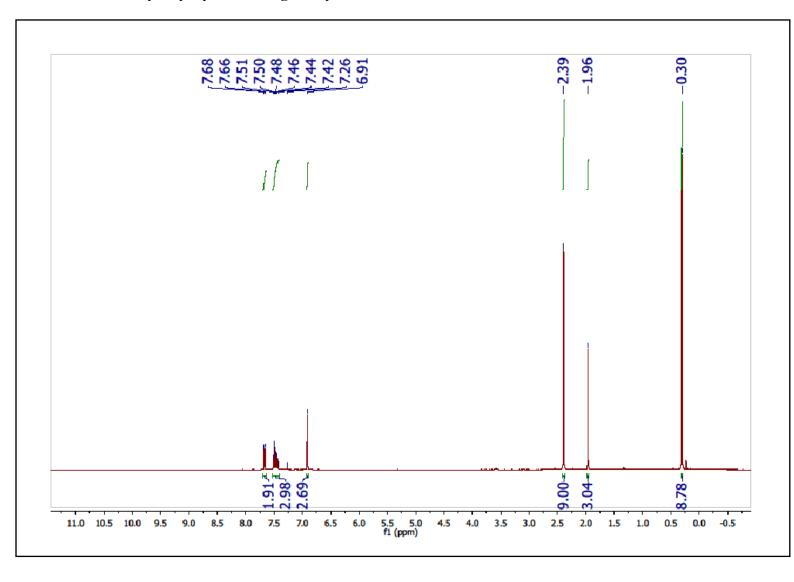
The desired cyanosilylation reaction of differently substituted aromatic/aliphatic ketones was carried out in Schlenk tubes. A similar equivalence of trimethyl silyl cyanide, TMSCN (0.38 mmol), and the desired ketone (0.25 mmol) were poured into a Schlenk tube, and then the exact equivalence of catalyst 3 (0.1 mol%) was added to the same tube and allowed to stir for a 15 mins at room temperature. Later, the reaction mixture was subjected to ¹H and ¹³C NMR experiments using mesitylene as an internal standard to obtain the definite yield of the cyanosilylated product.

Calculation of the stock solution of 10 mol% of 0.25mmol the catalyst in DCM

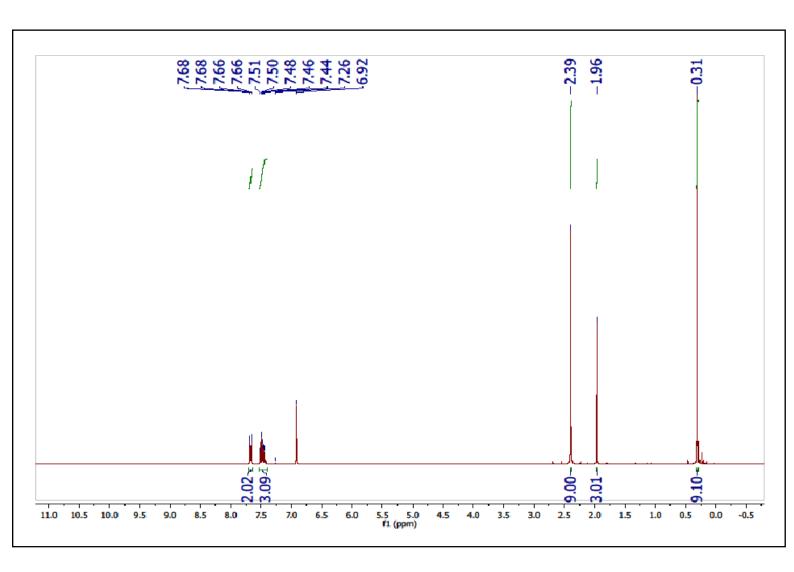
Molecular weight of catalyst = 690g/mol

10 mol% of 0.25 mmol catalyst = 17.25 mg

0.1 mol% of 0.25 mmol catalyst = 0.1725 mg


17.25 mg of the catalyst taken in 10 ml of DCM (Stock solution)

 $0.1725 \text{ mg of catalyst} = (10 \times 0.1725)/17.25 = 0.1 \text{ml or } 100 \mu \text{l}$


Table S3. Optimization table for cyanosilylation of acetophenone by catalyst 3.

Entry	Catalyst	Mol (%)	Time (Mins)	TMSCN (Equiv.)	Temperature	Yield (%)
1	3	0.5	30	1.5	RT	>99
	3	0.5	15	1.5	RT	>99
2	3	0.25	30	1.5	RT	>99
	3	0.25	15	1.5	RT	>99
3	3	0.1	30	1.5	RT	>99
	3	0.1	15	1.5	RT	>99
4	3	0.05	30	1.5	RT	<50
5	2	0.1	15	1.5	RT	Traces
6	-		15	1.5	RT	No conversion
7	AgSbF ₆	0.1	15	1.5	RT	<15%
8	AgSbF ₆	0.5	15	1.5	RT	50%
9	NaBAr ^F	0.1	15	1.5	RT	No conversion

[S7]. Standardization of reaction conditions for cyanosilylation reaction of ketones with trimethyl silyl cyanide using catalyst 3.

Figure S11. ¹H NMR spectrum of cyanosilylation of acetophenone with TMSCN with 0.5 mol% of catalyst loading within 30 mins.

Figure S12. 1 H NMR spectrum of cyanosilylation of acetophenone with TMSCN with 0.5 mol% of catalyst loading within 15 mins.

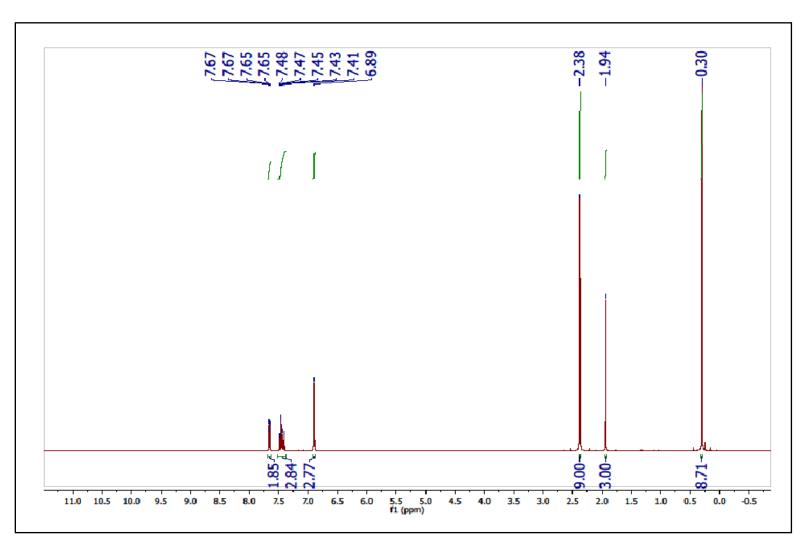
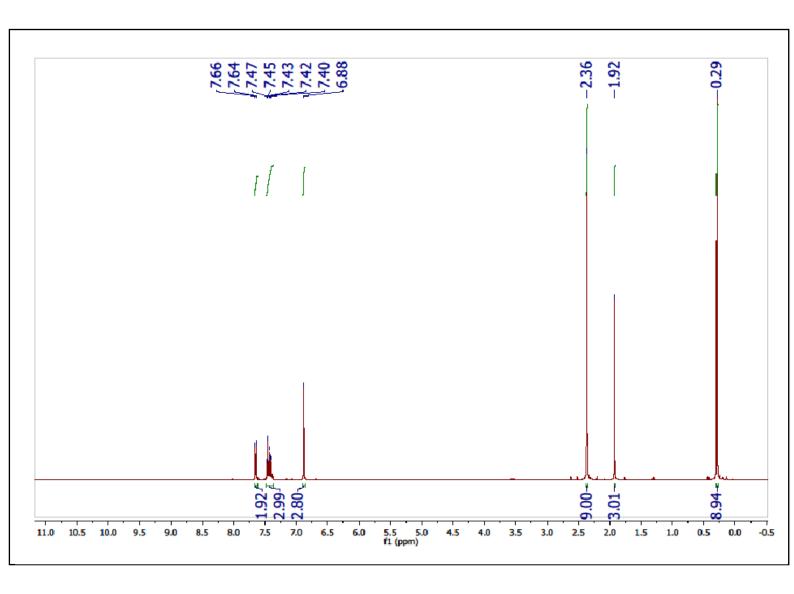
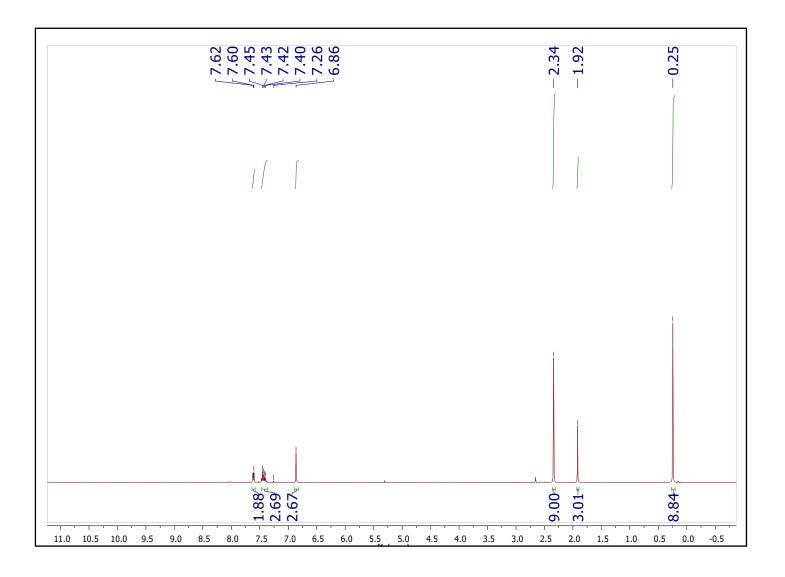




Figure S13. 1 H NMR spectrum of cyanosilylation of acetophenone with TMSCN with 0.25 mol% of catalyst loading within 30 mins.

Figure S14. ¹H NMR spectrum of cyanosilylation of acetophenone with TMSCN with 0.25 mol% of catalyst loading within 15 mins.

Figure S15. 1 H NMR spectrum of cyanosilylation of acetophenone with TMSCN with 0.1 mol% of catalyst loading within 15 mins.

[S8]. ^{1}H and ^{13}C NMR spectra for cyanosilylation products of ketones by compound 3.

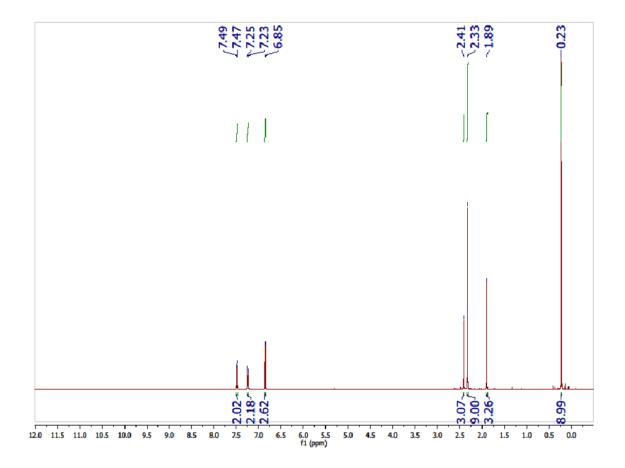


Figure S16. ¹H NMR spectrum of **5b** (Solvent: CDCl₃, IS: Mesitylene).

Figure S17. ¹³C NMR spectrum of **5b** (Solvent: CDCl₃, IS: Mesitylene).

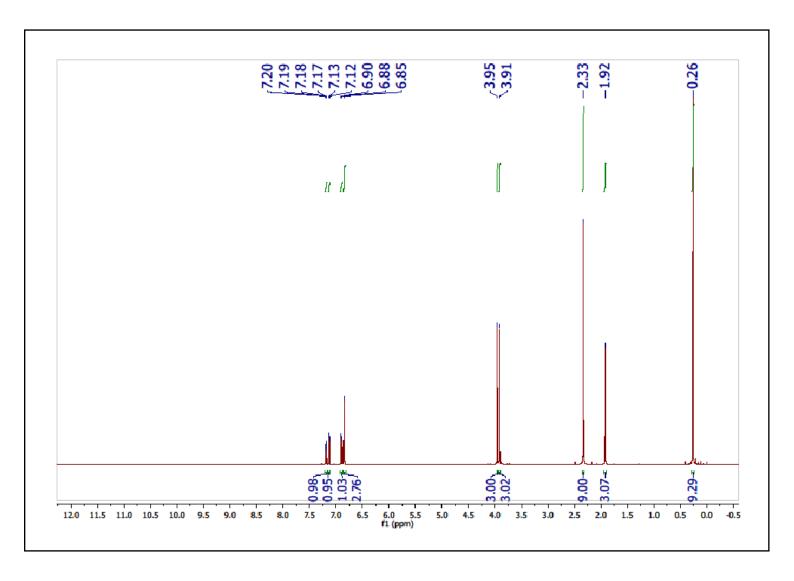


Figure S18. ¹H NMR spectrum of 5c (Solvent: CDCl₃, IS: Mesitylene).

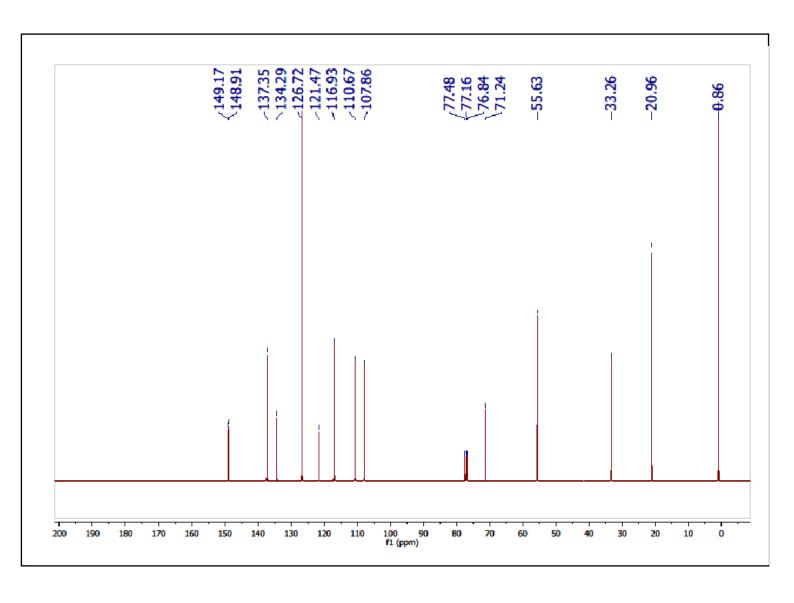


Figure S19. ¹³C NMR spectrum of 5c (Solvent: CDCl₃, IS: Mesitylene).

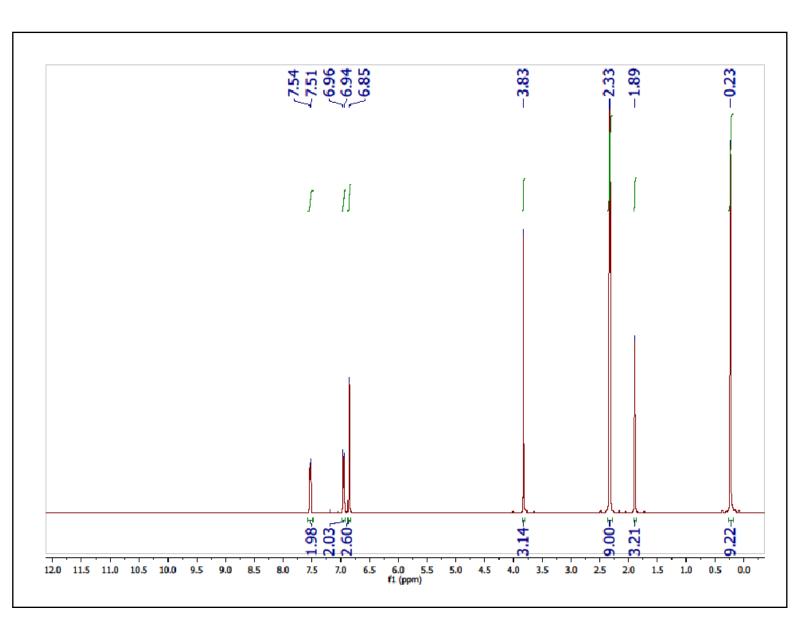


Figure S20. ¹H NMR spectrum of 5d (Solvent: CDCl₃, IS: Mesitylene).

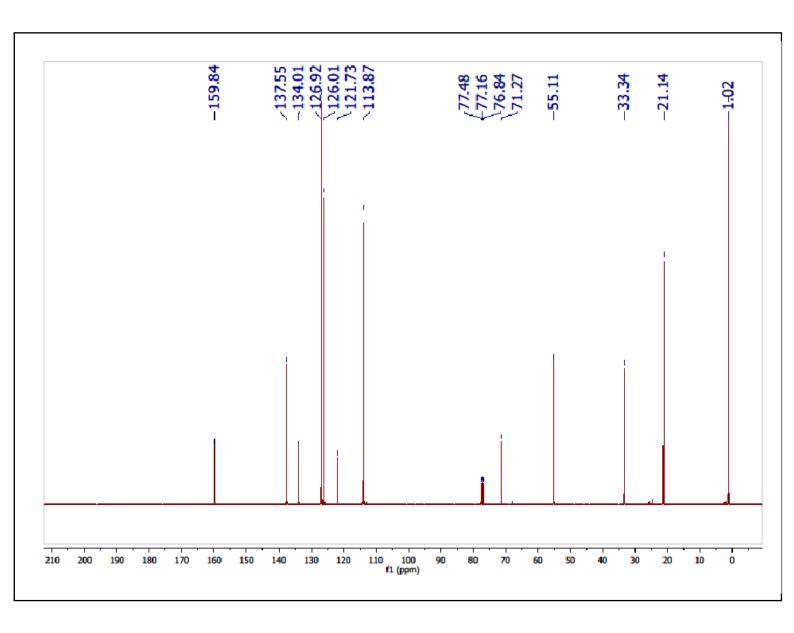


Figure S21. ¹³C NMR spectrum of 5d (Solvent: CDCl₃, IS: Mesitylene).

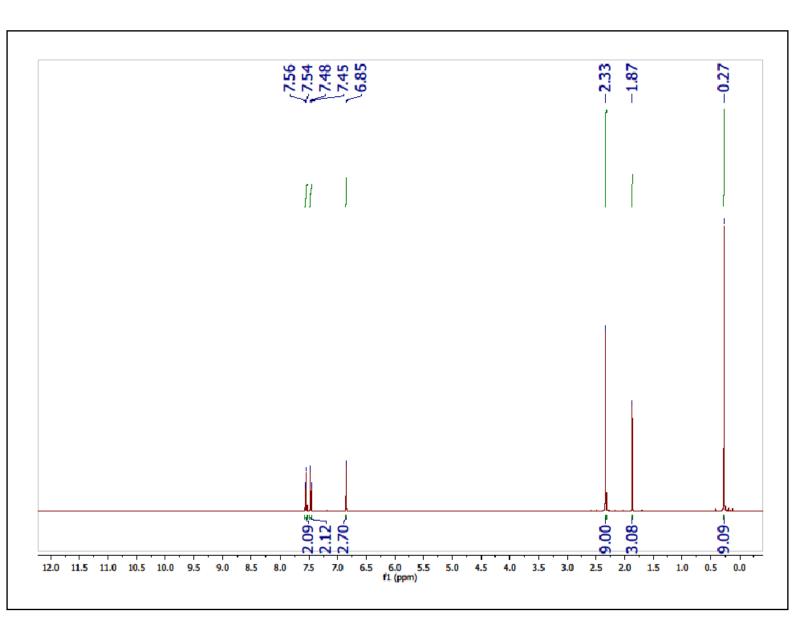


Figure S22. ¹H NMR spectrum of 5e (Solvent: CDCl₃, IS: Mesitylene).

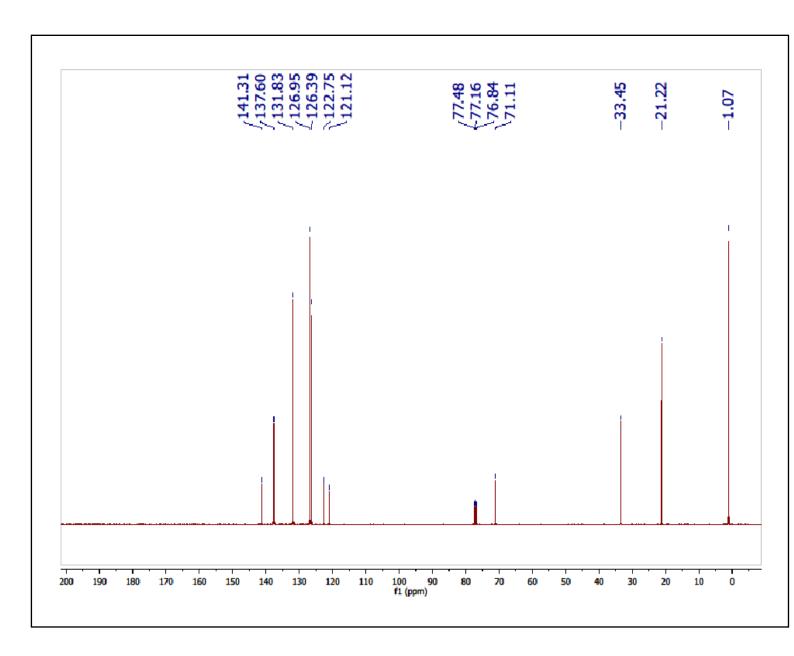
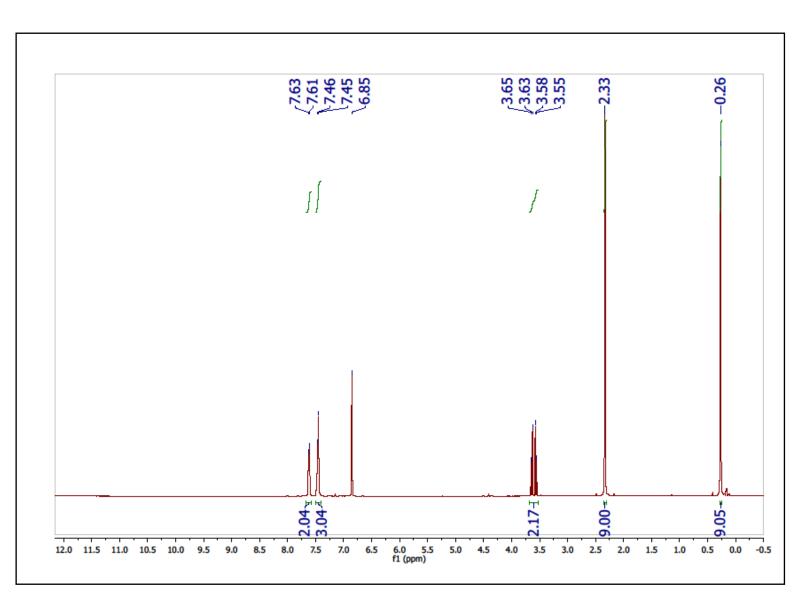



Figure S23. ¹³C NMR spectrum of 5e (Solvent: CDCl₃, IS: Mesitylene).

Figure S24. ¹H NMR spectrum of **5f** (Solvent: CDCl₃, IS: Mesitylene).

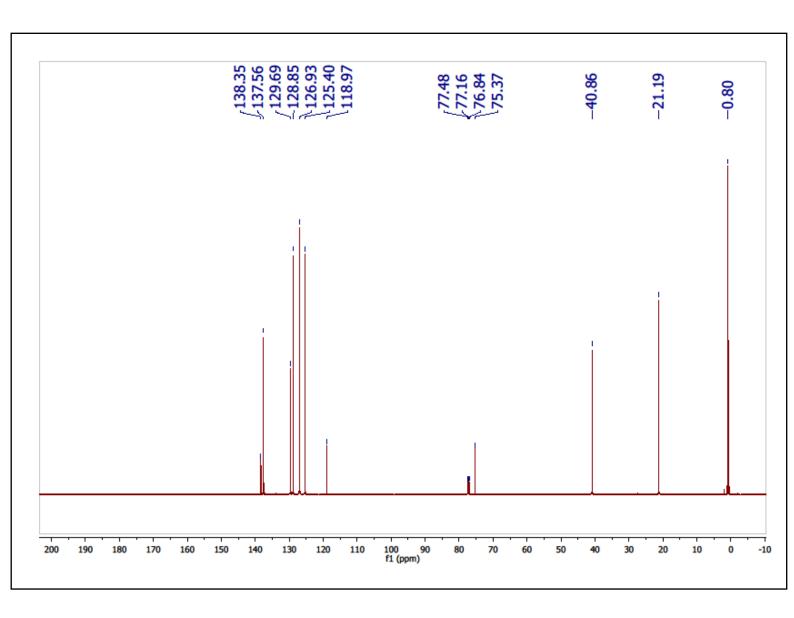


Figure S25. ¹³C NMR spectrum of 5f (Solvent: CDCl₃, IS: Mesitylene).

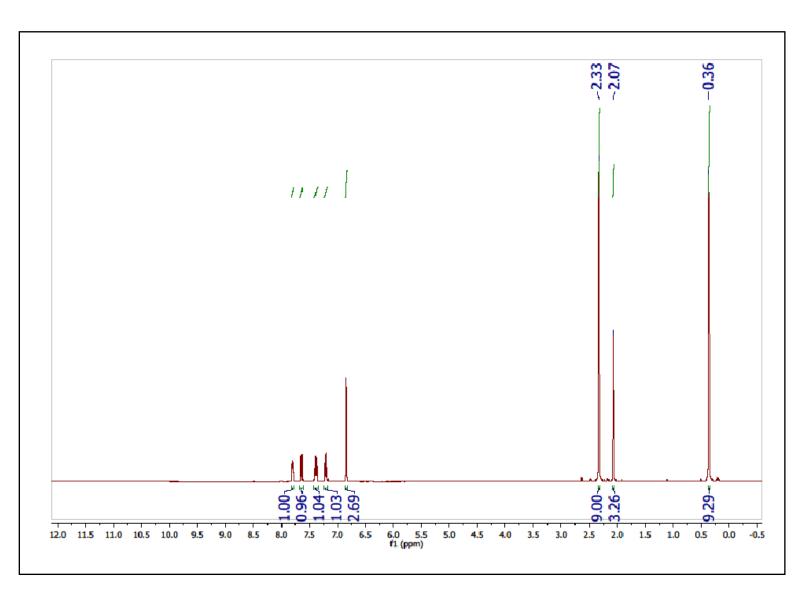


Figure S26. ¹H NMR spectrum of 5g (Solvent: CDCl₃, IS: Mesitylene).

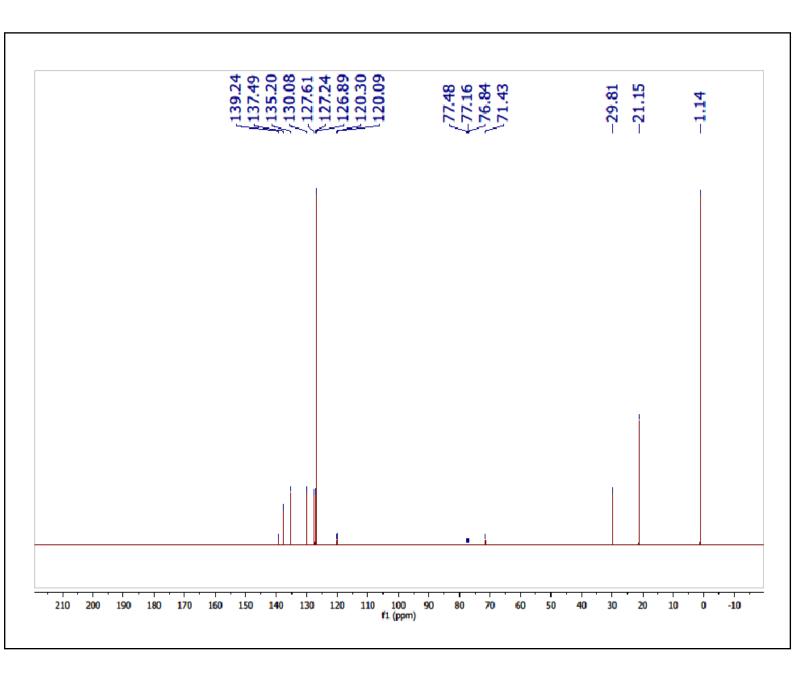


Figure S27. ¹³C NMR spectrum of 5g (Solvent: CDCl₃, IS: Mesitylene).

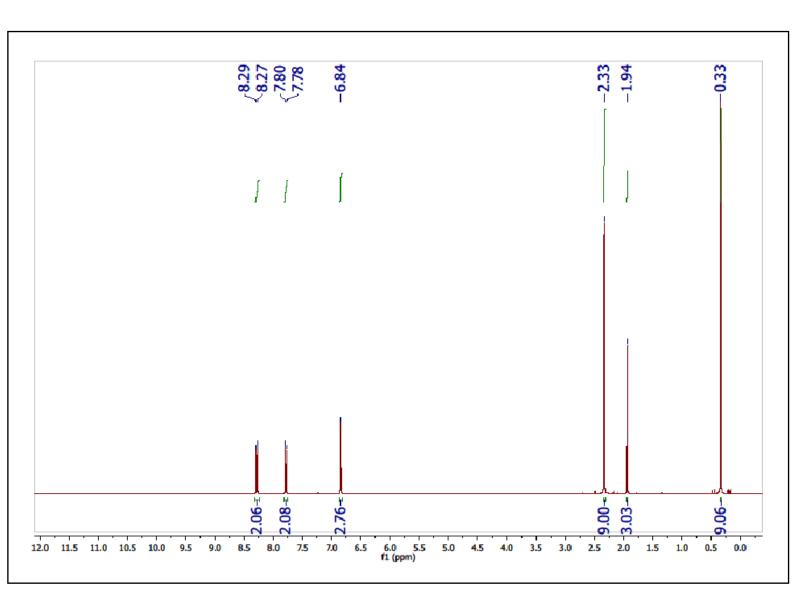


Figure S28. ¹H NMR spectrum of 5h (Solvent: CDCl₃, IS: Mesitylene).

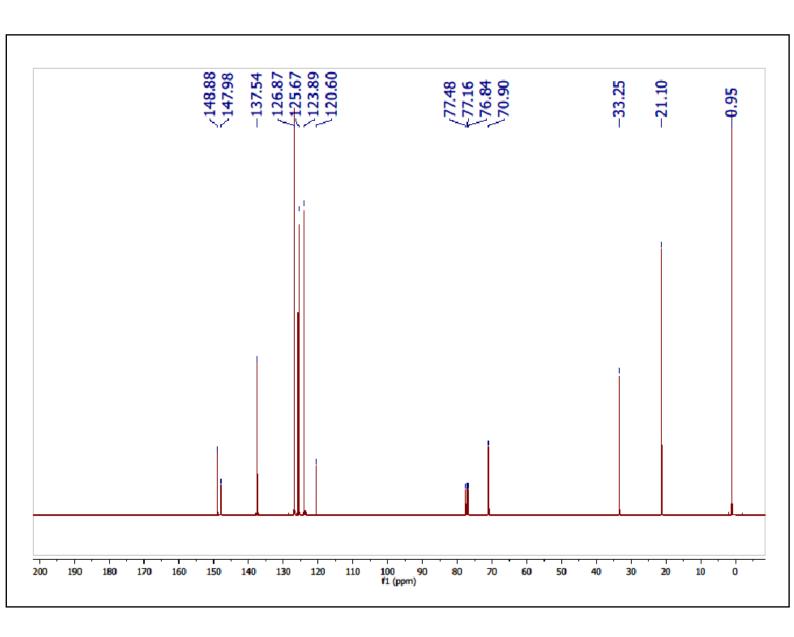


Figure S29. ¹³C NMR spectrum of **5h** (Solvent: CDCl₃, IS: Mesitylene).

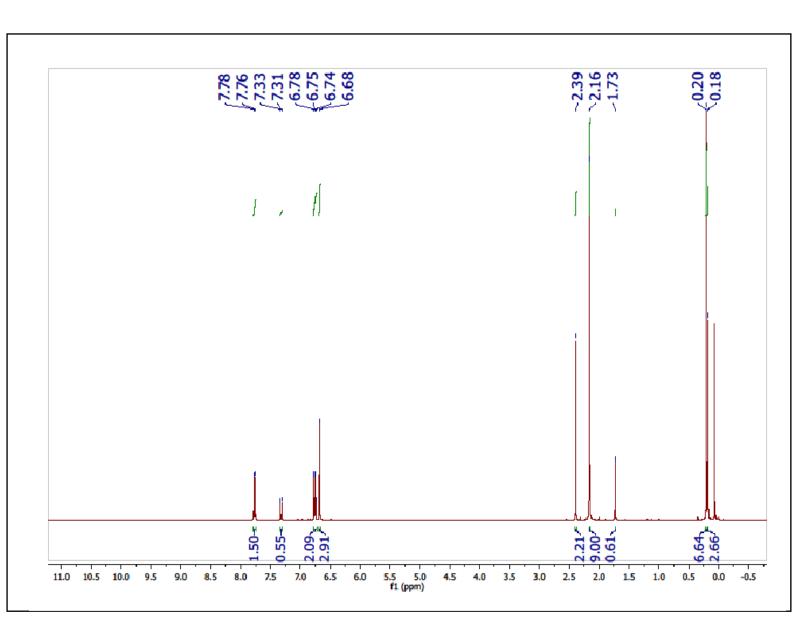


Figure \$30. ¹H NMR spectrum of 5j (Solvent: CDCl₃, IS: Mesitylene).

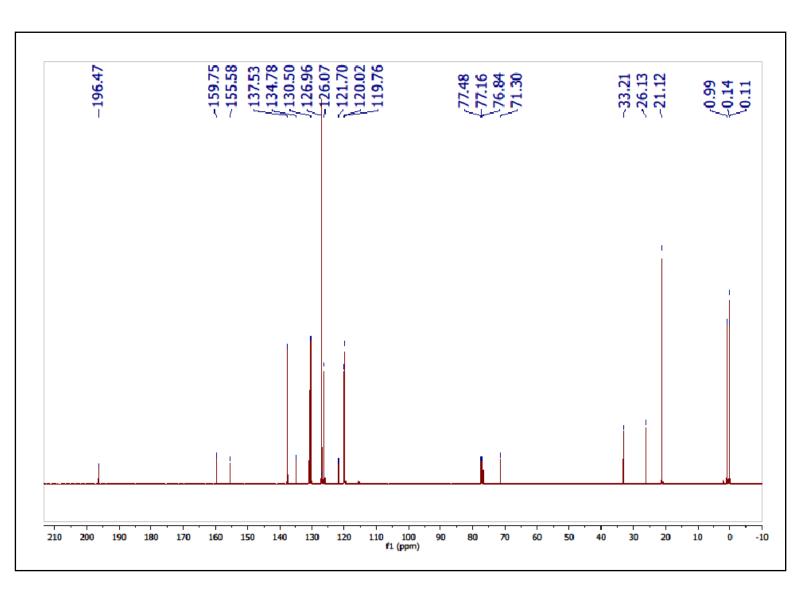


Figure S31. ¹³C NMR spectrum of 5j (Solvent: CDCl₃, IS: Mesitylene).

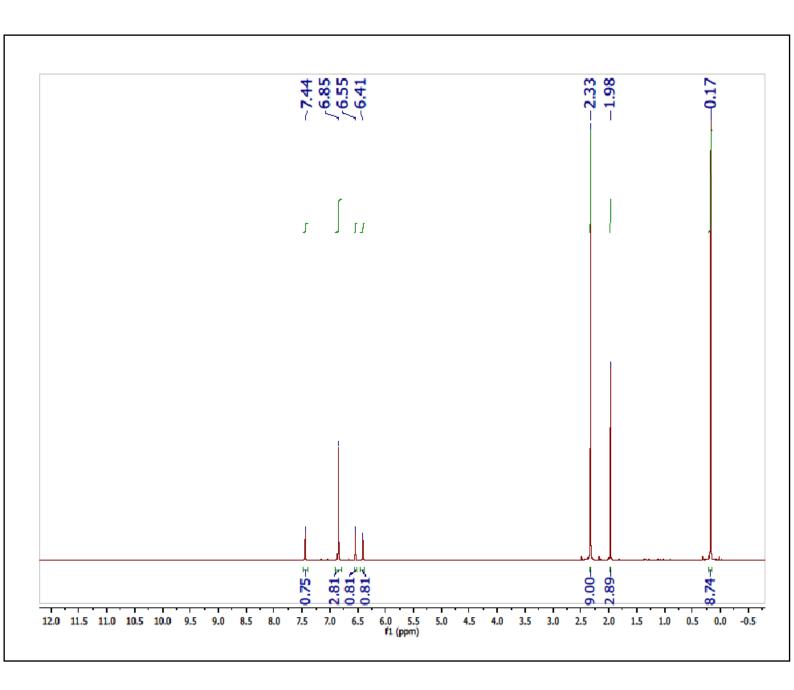


Figure S32. ¹H NMR spectrum of 5k (Solvent: CDCl₃, IS: Mesitylene).

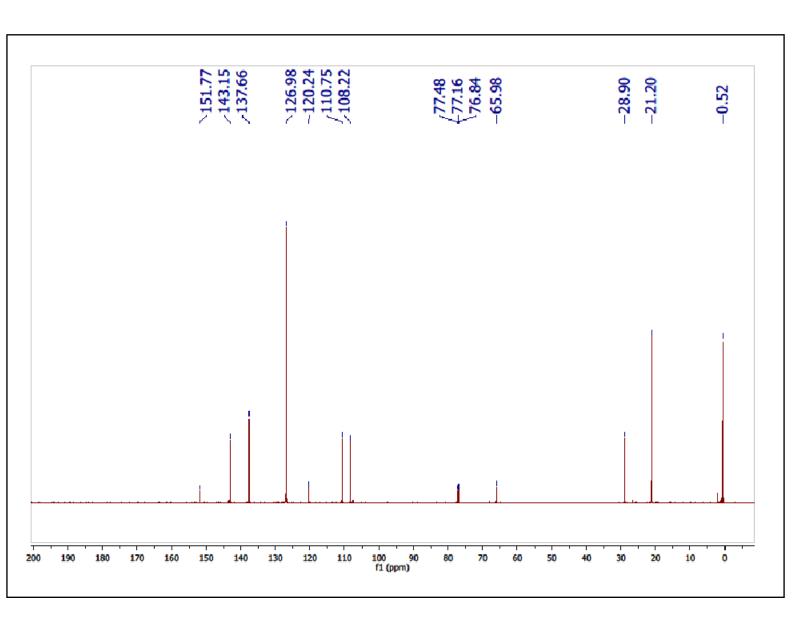


Figure S33. ¹³C NMR spectrum of 5k (Solvent: CDCl₃, IS: Mesitylene).

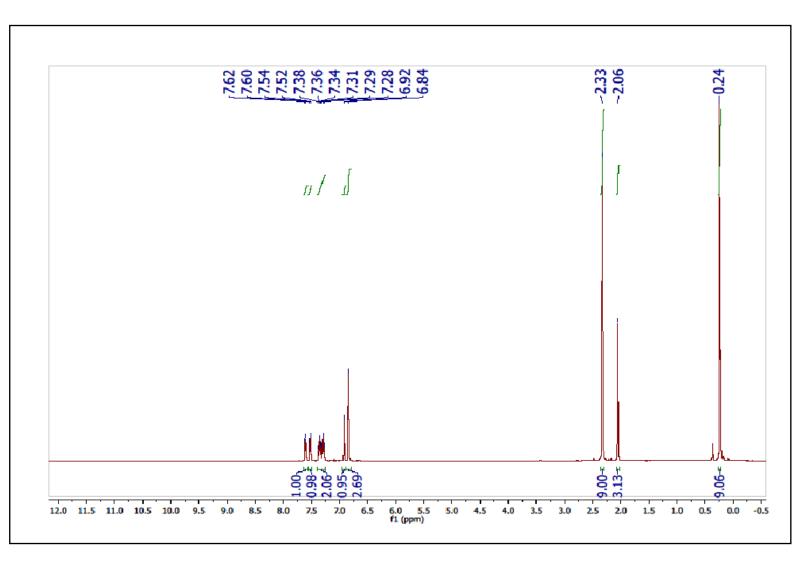


Figure S34. ¹H NMR spectrum of 5l (Solvent: CDCl₃, IS: Mesitylene).

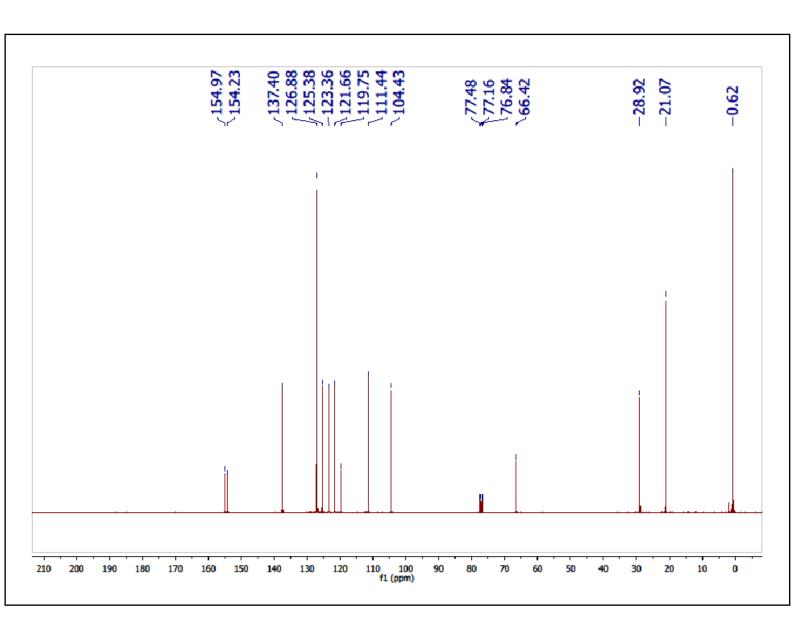


Figure S35. ¹³C NMR spectrum of 5l (Solvent: CDCl₃, IS: Mesitylene).

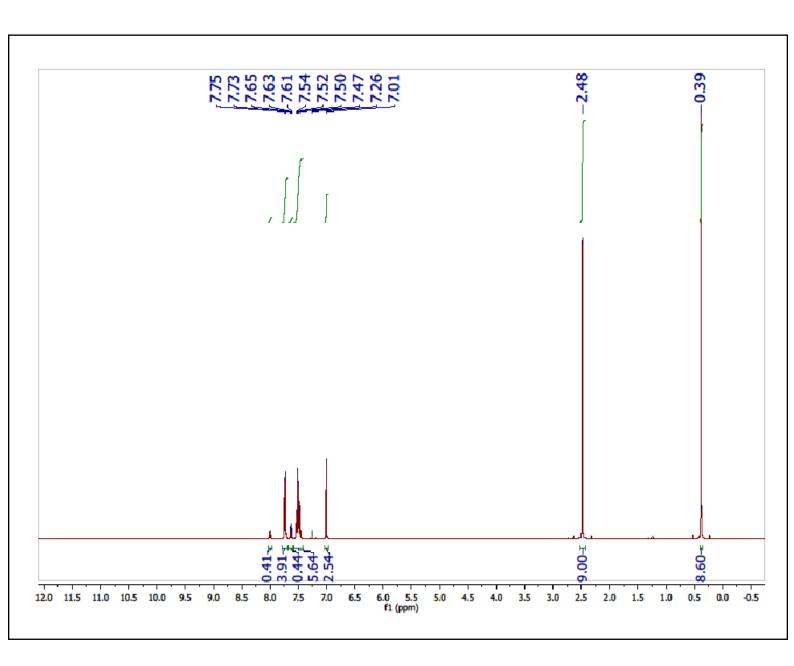


Figure S36. ¹H NMR spectrum of 5m (Solvent: CDCl₃, IS: Mesitylene).

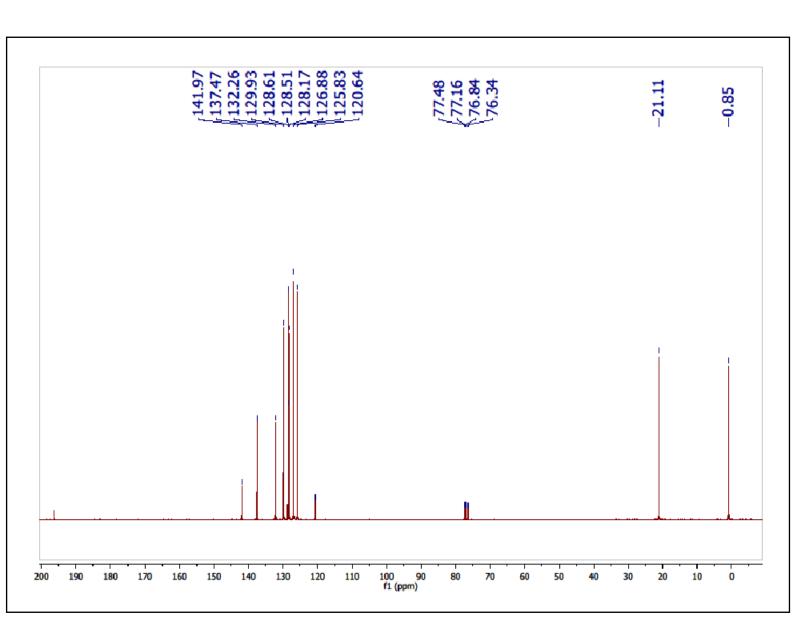


Figure S37. ¹³C NMR spectrum of 5m (Solvent: CDCl₃, IS: Mesitylene).

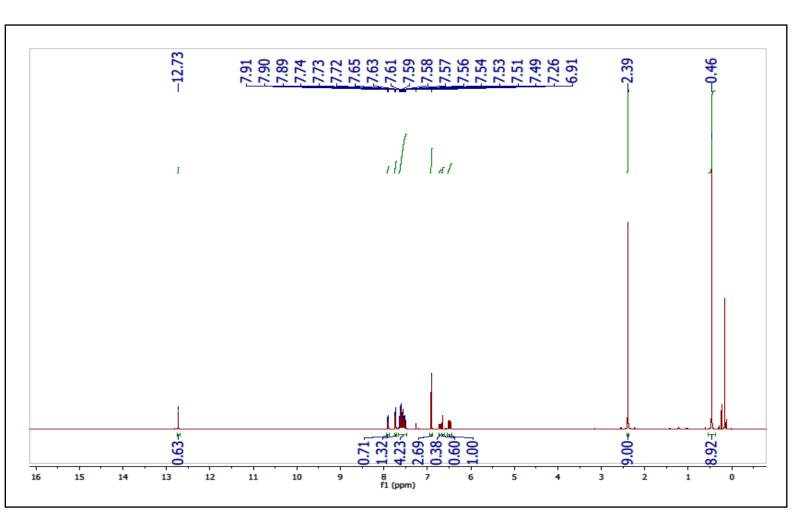


Figure S38. ¹H NMR spectrum of 5n (Solvent: CDCl₃, IS: Mesitylene).

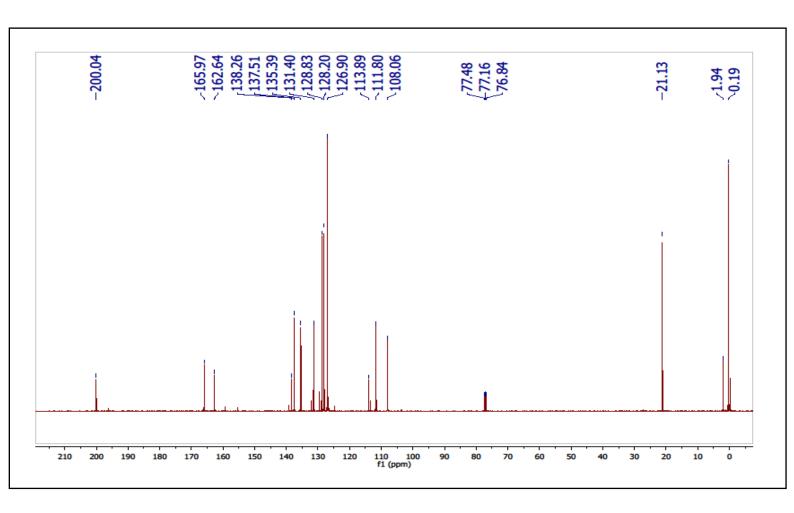


Figure S39. ¹³C NMR spectrum of 5n (Solvent: CDCl₃, IS: Mesitylene).

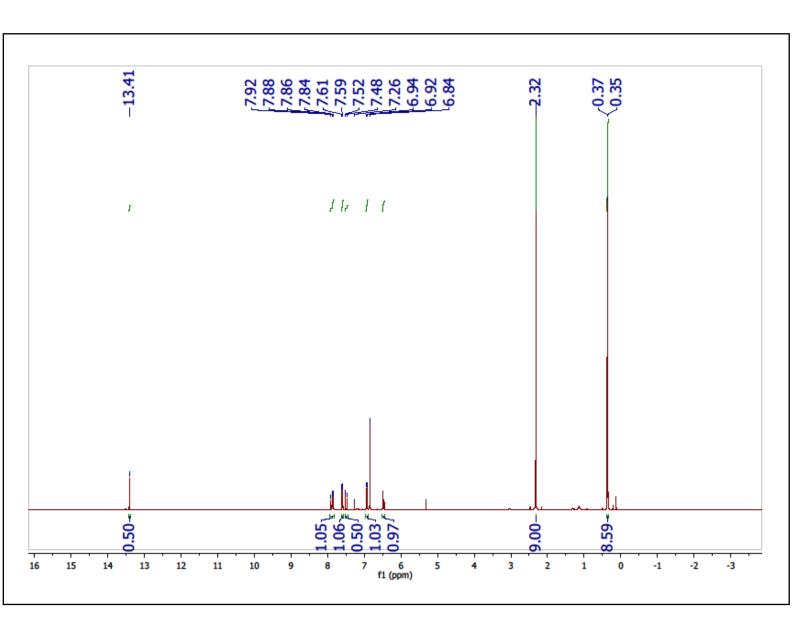


Figure S40. ¹H NMR spectrum of 50 (Solvent: CDCl₃, IS: Mesitylene).

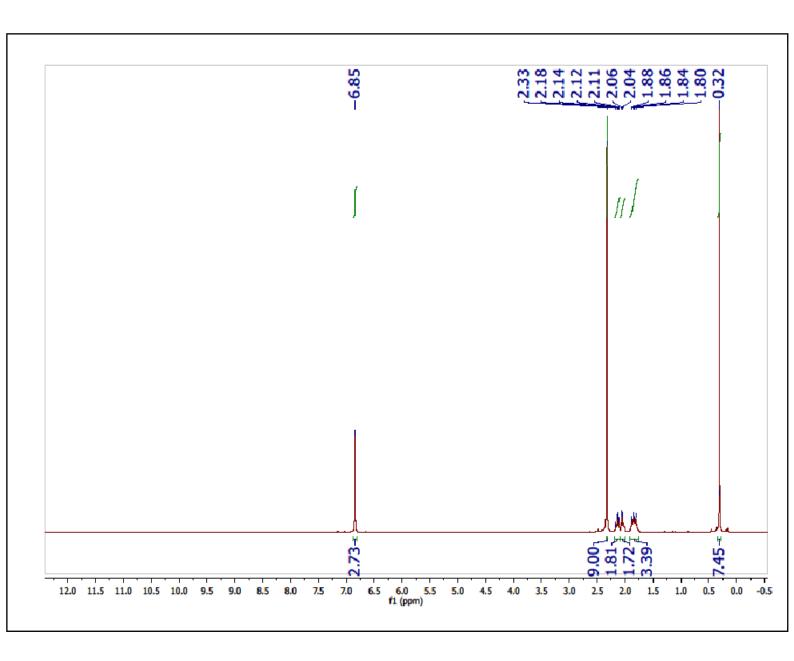


Figure S41. ¹H NMR spectrum of **5p** (Solvent: CDCl₃, IS: Mesitylene).

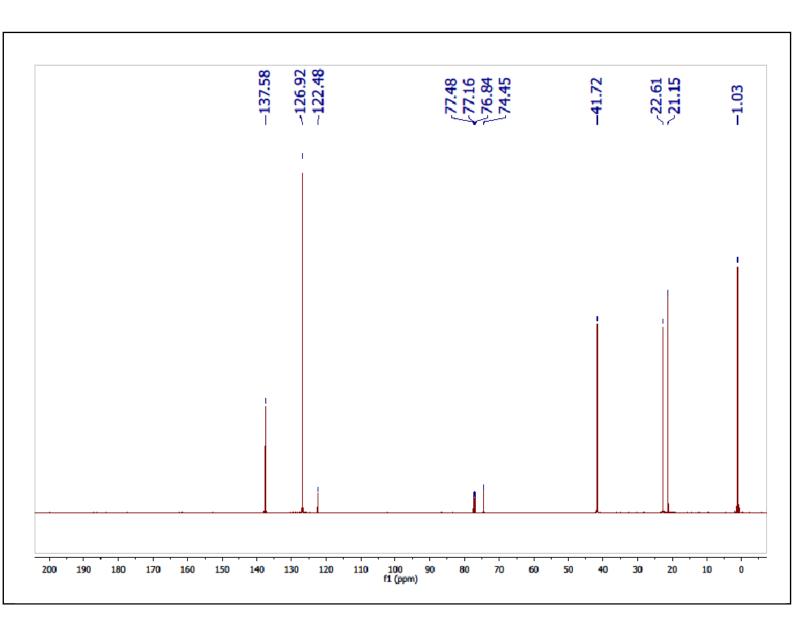


Figure S42. ¹³C NMR spectrum of **5p** (Solvent: CDCl₃, IS: Mesitylene).

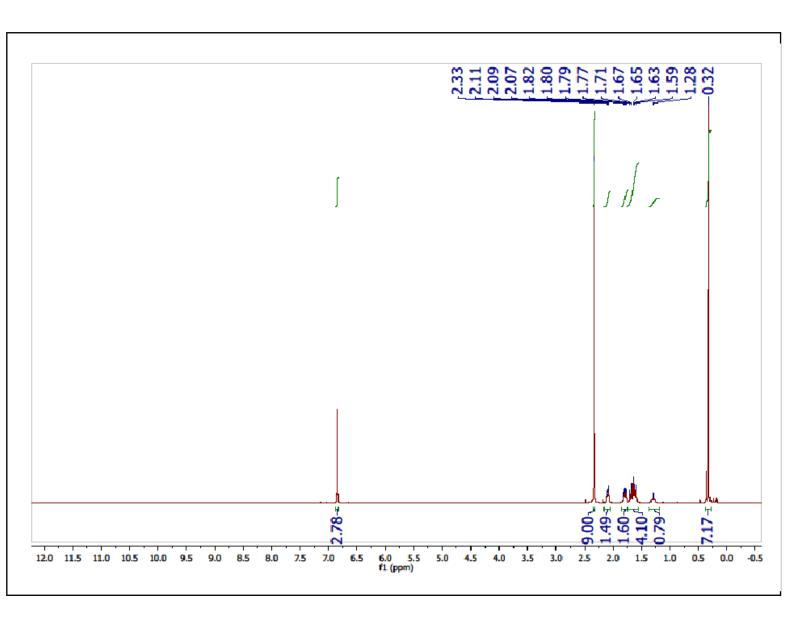


Figure S43. ¹H NMR spectrum of 5q (Solvent: CDCl₃, IS: Mesitylene).

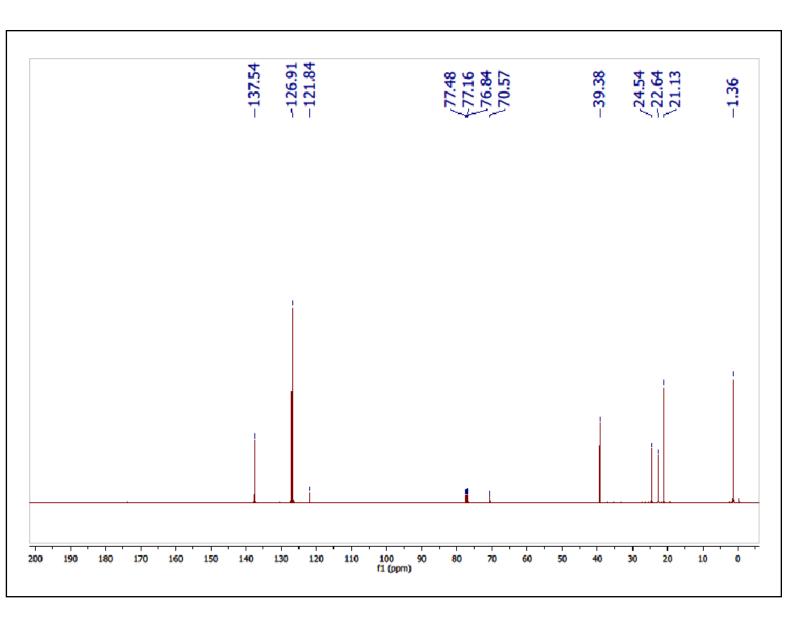


Figure S44. ¹³C NMR spectrum of 5q (Solvent: CDCl₃, IS: Mesitylene).

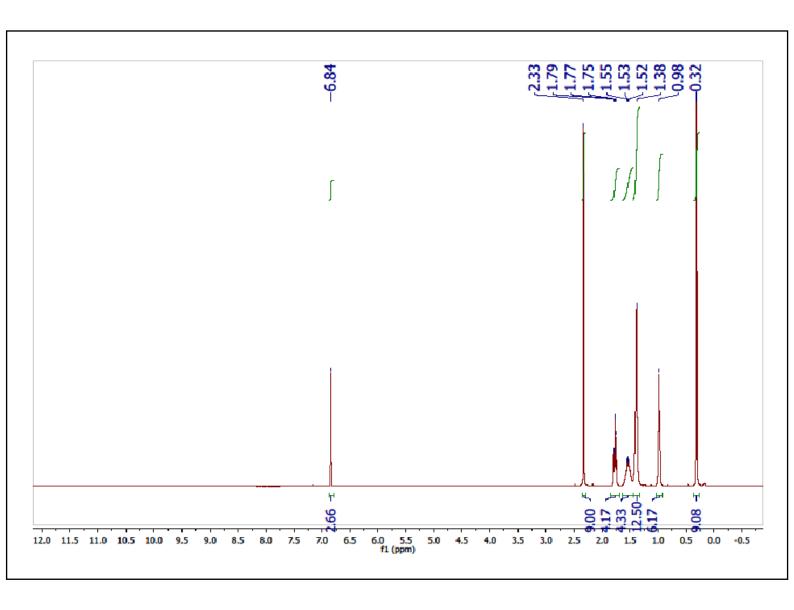


Figure S45. ¹H NMR spectrum of 5r (Solvent: CDCl₃, IS: Mesitylene).

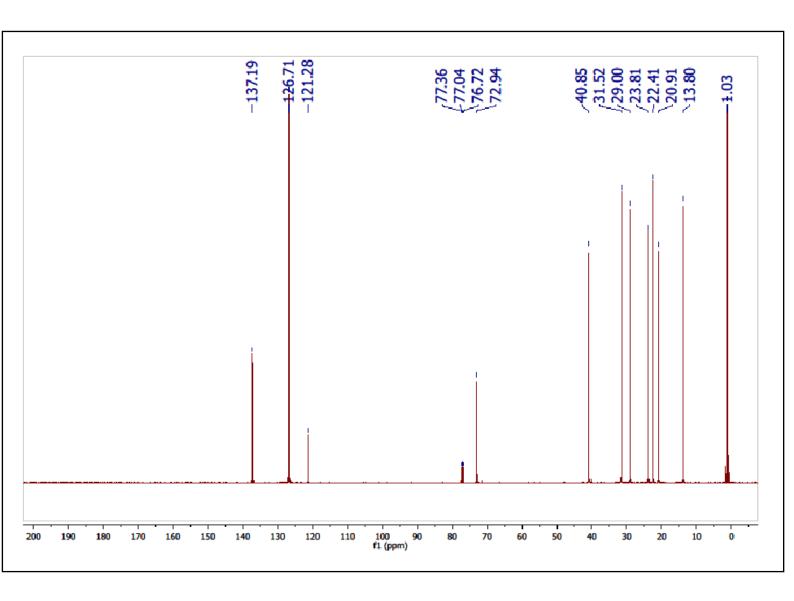


Figure S46. ¹³C NMR spectrum of 5r (Solvent: CDCl₃, IS: Mesitylene).

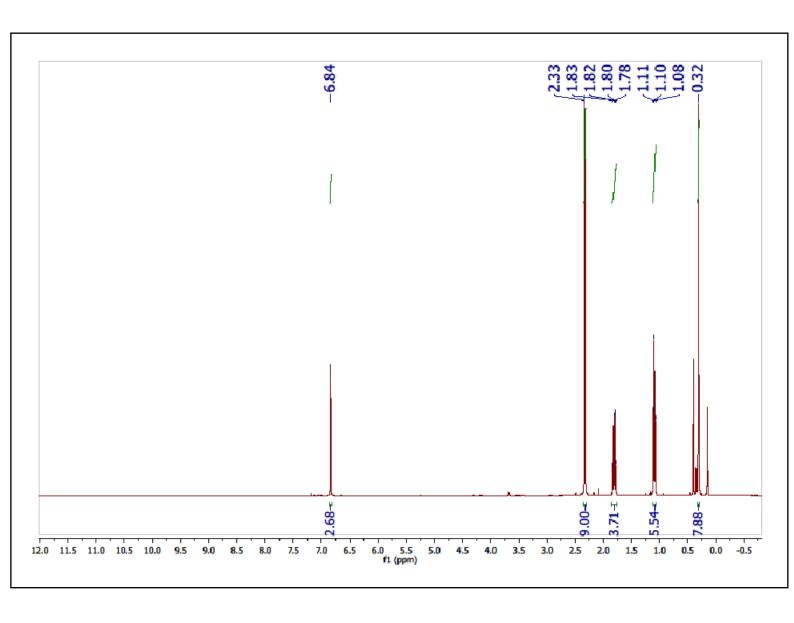


Figure S47. ¹H NMR spectrum of 5s (Solvent: CDCl₃, IS: Mesitylene)

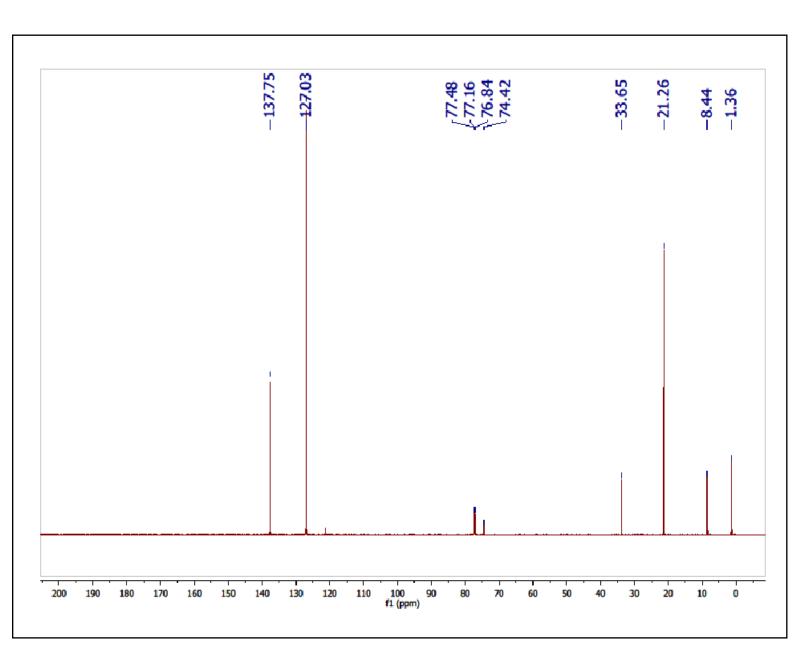


Figure S48. ¹³C NMR spectrum of 5s (Solvent: CDCl₃, IS: Mesitylene).

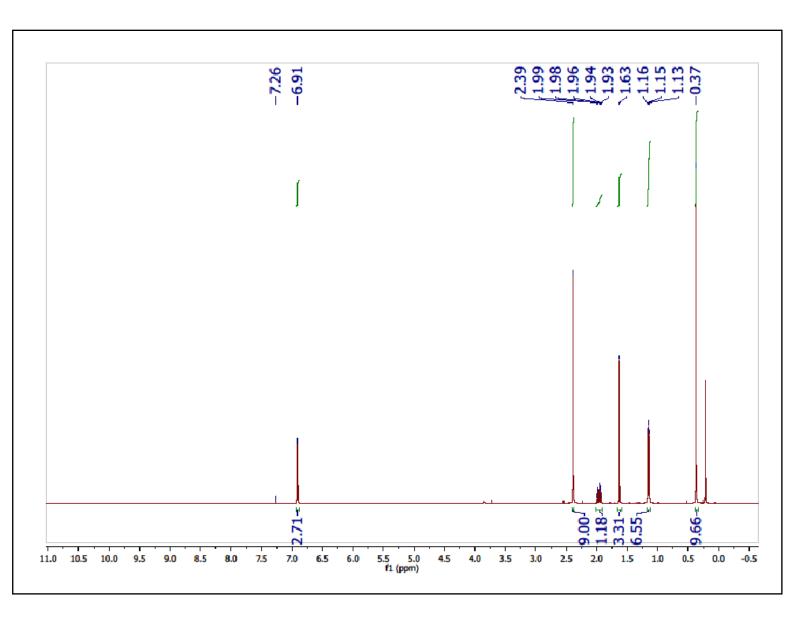


Figure S49. ¹H NMR spectrum of 5t (Solvent: CDCl₃, IS: Mesitylene)

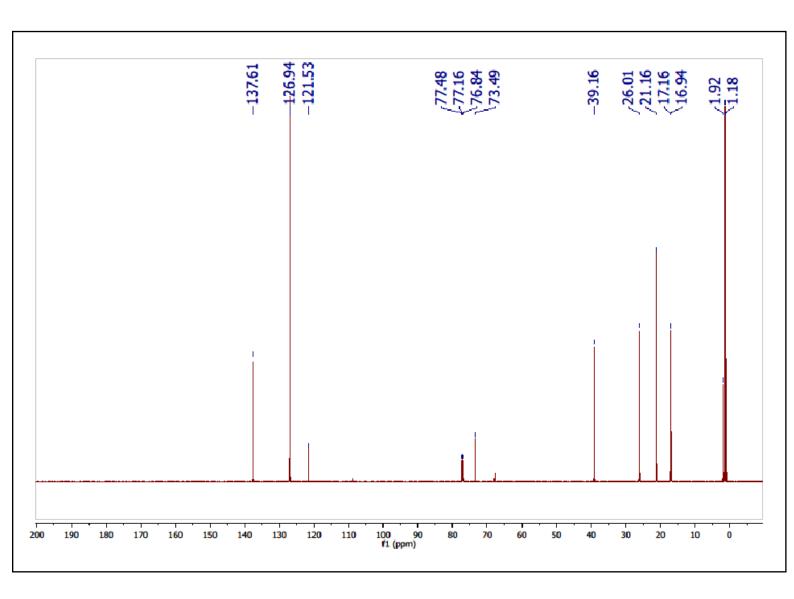


Figure S50. ¹³C NMR spectrum of 5t (Solvent: CDCl₃, IS: Mesitylene).

[S9]. NMR data for cyanosilylated products of ketones by catalyst 3.

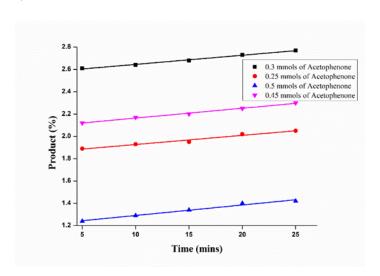
- (i) PhCCH₃CNOSi(CH₃)₃ (5a) ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.51 (m, 4H, *Ph*), 1.91(s, 3H, TMSO-C*H*₃CN), 0.24(s, 9H, Si(*CH*₃)₃), 2.33 (s, 9H, Ph(*CH*₃)₃), 6.86 (s, 3H C₆*H*₃(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 1.01(s, Si(*C*H₃)₃), 21.15(s, Ph(*C*H₃)₃), 33.53(s, PhCCH₃CNOSi(CH₃)₃), 71.59(s, *C*CH₃(CN)OSi(CH₃)₃), 121.60(s, CCH₃(*C*N)OSi(CH₃)₃), 124.58, 126.87, 128.60, 137.65, 141.12, 141.98 (represents carbon atom of the aromatic phenyl ring)
- (ii) 4-CH₃PhCCH₃CNOSi(CH₃)₃ (5b) ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.49(m, 4H, *Ph*), 1.89(s, 3H, TMSO-C*H*₃CN), 0.23(s, 9H, Si(*CH*₃)₃), 2.41(s, 3H, 4-C*H*₃PhCHCNOSi(CH₃)₃) 2.33 (s, 9H, Ph(C*H*₃)₃), 6.85 (s, 3H C₆*H*₃(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 1.17 (s, Si(*C*H₃)₃), 21.15(s, 4-*C*H₃PhCCH₃CNOSi(CH₃)₃), 33.63(s, Ph(*C*H₃)₃), 71.63(s, *C*CH₃(CN)OSi(CH₃)₃), 121.73(s, CCH₃(CN)OSi(CH₃)₃), 124.70, 127.02, 129.38, 137.79 (represents carbon atom of the aromatic phenyl ring) HRMS: Calcd for 4-CH₃PhCCH₃CNOSi(CH₃)₃ *m/z* 233.12. Found: *m/z* 235.1684 [M+2H⁺]
- (iii) 3,4-(CH₃)₂PhCCH₃CNOSi(CH₃)₃ (5C) ¹H NMR (400 MHz, CDCl₃) δ 6.88-7.20 (m, 3H, Ph), $3.55-1.92(s, 3H, TMSO-CH_3CN)$, $0.26(s, 9H, Si(CH_3)_3)$, 3.91, 3.95 (s, 2H, $Ph(CH_3)_2CCH_3CNOSiMe_3)$ 2.33 (s, 9H, $Ph(CH_3)_3$), 6.85 (s, 3H $C_6H_3(CH_3)_3$); ¹³C NMR (101) MHz, CDCl₃) δ 0.86(s, $Si(CH_3)_3),$ 20.96(s, 33.26 $Ph(CH_3)_3$, 3,4-55.63 (CH₃)₂PhCCH₃CNOSiMe₃), (s, PhCCH₂CNOSi(CH₃)₃), 71.24(s, CCH₃(CN)OSi(CH₃)₃), 118.97(s, CCH₃(CN)OSi(CH₃)₃), 107.86, 110.67, 116.93, 121.47, 126.72, 134.29, 137.35, 148.91(represents carbon atom of the aromatic phenyl ring)
- (iv) 4-OCH₃PhCCH₃CNOSi(CH₃)₃ (5d) ¹H NMR (400 MHz, CDCl₃) δ 6.94-7.54 (m, 4H, Ph), 1.89(s,3H, TMSO- CH_3CN), 0.23(s,9H, $Si(CH_3)_3)$, 3H, 3.83(s,OCH₃PhCHCNOSi(CH₃)₃ 2.33 (s, 9H, Ph(CH₃)₃), 6.85 (s, 3H C₆H₃(CH₃)₃); ¹³C NMR (101 MHz, 1.02 (s, $Si(CH_3)_3),$ CDCl₃) 21.14(s, $Ph(CH_3)_3$, 33.34(s, 4-OCH₃PhCCH₃CNOSi(CH₃)₃), OCH₃PhCCH₃CNOSi(CH₃)₃), 55.11(s, 71.27(s, $CCH_3(CN)OSi(CH_3)_3$, 121.73(s, $CCH_3(CN)OSi(CH_3)_3$), 113.83, 126.01, 126.92, 134.01,

- 137.55, 159.84 (represents carbon atom of the aromatic phenyl ring) HRMS: Calcd m/z 249.11. Found m/z 249.1580 [M⁺].
- (v) 4-BrPhCCH₃CNOSi(CH₃)₃ (5e) ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.56 (m, 4H, *Ph*), 1.87(s, 3H, TMSO-C*H*₃CN), 0.27(s, 9H, Si(*CH*₃)₃), 2.33 (s, 9H, Ph(*CH*₃)₃), 6.85 (s, 3H C₆*H*₃(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 1.07(s, Si(*C*H₃)₃), 21.22(s, Ph(*C*H₃)₃), 33.45(s, 4-BrPhC*C*H₃CNOSi(CH₃)₃), 71.11(s, *C*CH₃(CN)OSi(CH₃)₃), 121.12(s, CCH₃(*C*N)OSi(CH₃)₃), 122.39, 126.95, 131.83, 137.60, 141.31 (represents carbon atom of the aromatic phenyl ring) HRMS: Calcd *m/z* 297.0185. Found *m/z* 299.1817 [M+2H⁺].
- (vi) 2-BrPhCCH₃CNOSi(CH₃)₃ (5f) ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.80(m, 4H, *Ph*), 2.07(s, 3H, TMSO-C*H*₃CN), 0.36(s, 9H, Si(*CH*₃)₃), 2.33 (s, 9H, Ph(C*H*₃)₃), 6.86 (s, 3H C₆*H*₃(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 1.14(s, Si(*C*H₃)₃), 21.15(s, Ph(*C*H₃)₃), 29.81(s, 2-BrPhC*C*H₃CNOSi(CH₃)₃), 71.43(s, *C*CH₃(CN)OSi(CH₃)₃), 126.89(s, CCH₃(*C*N)OSi(CH₃)₃), 127.24, 127.61, 130.08, 135.20, 137.49, 139.24 (represents carbon atom of the aromatic phenyl ring) HRMS: Calcd *m/z* 297.0185. Found *m/z* 299.1817 [M+2H⁺].
- vii) PhCCH₂BrCNOSi(CH₃)₃ (5g) ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.63 (m, 4H, *Ph*), 3.55-3.65(dd, 2H, TMSO-C*H*₃CN), 0.26(s, 9H, Si(*CH*₃)₃), 2.33 (s, 9H, Ph(*CH*₃)₃), 6.85 (s, 3H C₆*H*₃(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 0.80(s, Si(*C*H₃)₃), 21.19(s, Ph(*C*H₃)₃), 40.86(s, PhC*C*H₂BrCNOSi(CH₃)₃), 75.37(s, *C*CH₃(CN)OSi(CH₃)₃), 118.97(s, CCH₃(*C*N)OSi(CH₃)₃), 125.40, 126.93, 128.85, 129.69, 137.56, 138.35 (represents carbon atom of the aromatic phenyl ring) HRMS: Calcd HRMS: Calcd *m/z* 297.0185. Found *m/z* 299.1786 [M+2H⁺].
- (viii) 4-NO₂PhCCH₃CNOSi(CH₃)₃ (5h) ¹H NMR (400 MHz, CDCl₃) δ 7.78-8.29 (m, 4H, Ph), 1.94(s, 3H, TMSO-C H_3 CN), 0.33(s, 9H, Si(CH_3)₃), 2.33 (s, 9H, Ph(CH_3)₃), 6.84 (s, 3H C₆ H_3 (CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 0.95(s, Si(CH_3)₃), 21.10(s, Ph(CH_3)₃), 33.25(s, 4-NO₂PhC CH_3 CNOSi(CH₃)₃), 70.90(s, CCH_3 (CN)OSi(CH₃)₃), 120.60(s, CCH₃(CN)OSi(CH₃)₃), 123.89, 125.67, 126.87, 137.54, 147.98, 148.88 (represents carbon atom of the aromatic phenyl ring) HRMS: Calcd m/z 262.1012. Found m/z 261.2281 [M⁺].
- (ix) **4-NO₂PhCCH₃CNOSi(CH₃)₃ (5i)** ¹H NMR (400 MHz, CDCl₃) δ 6.65-6.73 and 7.82-7.84 (m, 4H, Ph), 2.52 (s, 3H, TMSO-C H_3 CN), 0.37 (d, 9H, Si(CH_3)₃), 4.23-4.42 (br, -N H_2), 2.33 (s, 9H, Ph(CH_3)₃)

- (x) 4-OHPhCCH₃CNOSi(CH₃)₃ (5j) ¹H NMR (400 MHz, CDCl₃) δ 6.74-7.78 (m, 4H, *Ph*), 2.39(s, 3H, TMSO-C*H*₃CN), 0.20(s, 9H, Si(*CH*₃)₃), 2.16 (s, 9H, Ph(*CH*₃)₃), 6.68 (s, 3H C₆*H*₃(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 0.14(s, Si(*C*H₃)₃), 21.12(s, Ph(*C*H₃)₃), 33.21(s, 4-OHPhC*C*H₃CNOSi(CH₃)₃), 71.30(s, *C*CH₃(CN)OSi(CH₃)₃), 119.76(s, CCH₃(CN)OSi(CH₃)₃), 120.02, 126.96, 130.50, 137.53, 159.75 (represents carbon atom of the aromatic phenyl ring) HRMS: Calcd *m/z* 235.1029. Found *m/z* 235.9781 [M⁺].
- (xi) C₄H₃CCH₃CNOSi(CH₃)₃ (5k) ¹H NMR (400 MHz, CDCl₃) δ 6.41(s, 1H Ar*H*), 6.55 (s, 1H, Ar*H*), 7.44 (s, 1H, Ar*H*), 1.98(s, 3H, -C*H*₃CCNOSiMe₃), 0.17 (s, 9H, -Si(C*H*₃)₃), 2.33 (s, 9H, Ph(C*H*₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 0.52(s, Si(CH₃)₃), 28.90(s, CH₃CCNOSiMe₃), 65.98(s, CH₃CCNOSiMe₃), 120.24(s, CH₃CCNOSiMe₃) 108.22, 110.75, 143.15, 151.77 (s, Ar*H*), 21.20, 126.98, 137.66 (s, Mesitylene). ESI-MS: Calcd for C₄H₃CCH₃CNOSi(CH₃)₃ *m/z* 209.09. Found: *m/z* 209.0616 [M⁺]
- (xii) PhC₃HCCH₃CNOSi(CH₃)₃ (5I)- ¹H NMR (400 MHz, CDCl₃) δ 6.92-7.62 (m, 5H, Ar*H*), 2.06 (s, 3H, -C*H*₃CCNOSiMe₃), 0.24 (s, 9H, -Si(C*H*₃)₃)); ¹³C NMR (101 MHz, CDCl₃) δ 0.62 (s, -Si(*C*H₃)₃), 21.07(s, C₆H₃(*C*H₃), 28.92 (s, C₆H₄C₃HOCCNOCH₃), 66.42 (s, C₆H₄C₃HOCCNOCH₃), 104.43, 111.44, 121.66, 123.36, 125.38, 154.23, 154.97 (s, represents carbon atom of the aromatic phenyl ring), 126.88, 137.40 (s, Mesitylene).
- (xiii) Ph₂CCNOSi(CH₃)₃ (5m)- ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.75 (m, 4H, *Ph*), 0.39(s,9H, Si(*CH*₃)₃), 2.48 (s, 9H, Ph(*CH*₃)₃), 7.01 (s, 3H C₆*H*₃(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 0.85(s, Si(*CH*₃)₃), 21.11(s, Ph(*CH*₃)₃), 76.34(s, *C*Ph₂(CN)OSi(CH₃)₃), 125.83, 126.88, 128.17-129.93, 137.47, 141.97(represents carbon atom of the aromatic phenyl ring) HRMS: Calcd *m/z* 281.1236. Found *m/z* 282.1304 [M⁺].
- (xiv) Ph₂(OH)₂CCNOSi(CH₃)₃ (5n)- ¹H NMR (400 MHz, CDCl₃) δ 6.46-7.91 (m, 8H, Ar*H*), 0.47 (s, 9H, -Si(C*H*₃)₃), 12.73 (s, 1H, -O*H*), 2.39 (s, 9H, C₆H₃(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 0.19 (s, -Si(CH₃)₃), 108.06, 111.80, 113.89, 128.20, 128.83, 131.40, 135.39, 138.26, 162.64, 165.97, 200.04. ESI-MS: Calcd for Ph₂(OH)₂CCNOSi(CH₃)₃ *m/z* 313.11. Found: *m/z* 313.0223 [M⁺]
- (xv) $Ph_2(OH)_2(CH)_2(CCNOSi(CH_3)_3)$ (50)- ¹H NMR (400 MHz, CDCl₃) δ 6.84-7.92 (m, 5H, Ar*H*), 0.35-0.37 (d, *J*=7.7Hz, 9H, --Si(C*H*₃)₃), 13.41 (s, 1H, -OH). ESI-MS: Calcd for $Ph_2(OH)_2(CH)_2(CH)_3(CH_3)_3$ *m/z* 339.13. Found: *m/z* 341.2754 [M+2H+]

- (xvi) $C_5H_8CNOSi(CH_3)_3$ (5p) ¹H NMR (400 MHz, CDCl₃) δ 1.80-2.18 (m, 8H, Cp), 0.32(s,9H, Si(CH_3)₃), 2.33 (s, 9H, Ph(CH_3)₃), 6.85 (s, 3H $C_6H_3(CH_3)_3$); ¹³C NMR (101 MHz, CDCl₃) δ 1.03(s, Si(CH_3)₃), 21.15 22.61(s, Ph(CH_3)₃), 41.65(s, C_4H_8), 74.45(s, $CC_4H_8(CN)OSi(CH_3)_3$), 126.92(s, $C_5H_8(CN)OSi(CH_3)_3$), HRMS: Calcd m/z 225.1549. Found m/z 224.1255 [M⁺]
- (xvii) $C_6H_{10}CNOSi(CH_3)_3$ (5q) ¹H NMR (400 MHz, CDCl₃) δ 1.28-2.11 (m, 9H, $C_5H_{10}CCNOSiMe_3$), 0.32(s, 7H, $OSi(CH_3)_3$); ¹³C NMR (101 MHz, CDCl₃) δ 1.36 (s, $Si(CH_3)_3$), 22.64, 24.54, 39.38 (s, $C_5H_{10}CCNOSiMe_3$), 70.57 (s, $C_5H_{10}CCNOSiMe_3$), 121.84 (s $C_5H_{10}CCNOSiMe_3$), 21.13, 126.91, 137.54 (s, Mesitylene). HRMS: Calcd m/z 297.0185. Found m/z 299.1786 [M+2H⁺].
- (xviii) (CH₃(CH₂)₅)₂CCNOSi(CH₃)₃ (5r) ¹H NMR (400 MHz, CDCl₃) δ 0.32 (s, 9H, -Si(CH₃)₃), 0.98, 1.38, 1.52, 1.53, 1.55, 1.75, 1.77, 1.79 (26H, -(CH₂)₅CH₃), 2.33, 6.84 (Mesitylene); ¹³C NMR (101 MHz, CDCl₃) δ 1.03 (s, -OSi(CH₃)₃), 13.80, 22.41, 23.81, 29.00, 31.52, 40.85 (s, -(CH₂)₅CH₃), 72.94 (s, (CH₃(CH₂)₅)₂CCNOSiMe₃), 121.28 (s, (CH₃(CH₂)₅)₂CCNOSiMe₃), 20.91, 126.71, 137.19 (s, Mesitylene). ESI-MS: Calcd for (CH₃(CH₂)₅)₂CCNOSi(CH₃)₃ m/z 297.25. Found: m/z 297.2372 [M⁺].
- (xix) (CH₃CH₂)₂CCNOSi(CH₃)₃ (5s) ¹H NMR (400 MHz, CDCl₃) δ 1.08-1.11 (m, 6H, -CH₃), 1.78-1.83 (m, 4H, -CH₂), 0.32 (s, 8H, -Si(CH₃)₃), 2.33, 6.84 (Mesitylene); ¹³C NMR (101 MHz, CDCl₃) δ 1.36 (s, -Si(CH₃)₃), 8.44 (s, -CH₂CH₃), 33.65 (s, -CH₂CH₃), 74.42 (s, (CH₂CH₃)CCNOSiMe₃), 121.1 (s, (CH₂CH₃)CCNOSiMe₃), 21.26, 127.03, 137.75 (s, Mesitylene). ESI-MS: Calcd for (CH₃CH₂)₂CCNOSi(CH₃)₃ m/z 185.12. Found: m/z 186.9572 [M+H⁺].
- (xx) (CH₃)₂CCH₃CCNOSi(CH₃)₃(5t) ¹H NMR (400 MHz, CDCl₃) δ 0.37 (s, 9H, -Si(CH₃)₃), 1.13-1.16 (m, 6H, -CH(CH₃)₃), 1.63 (s, 3H, CH₃CNCOSiMe₃), 1.93-1.99 (m, 1H, -CH(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 1.18 (s, -Si(CH₃)₃), 21.16 (s, Ph(CH₃)₃), 73.49 (s, (CCH₃)CCNOSiMe₃), 1.92, 16.94, 17.16, 26.01, 39.16 (s, aliphatic carbon atoms), 126.94, 137.61 (s, aromatic phenyl ring carbon atoms of Mesitylene).

[S10]. Kinetic study


Representative procedure for reaction rate determination: The order of the cyanosilylation reaction of ketones catalyzed by catalyst 3 has been determined by using the initial rates method. The rate of the reaction k_{obs} is mainly calculated from the slope of the graph, plotted as the concentration of the product formation versus time. Here the concentration of one of the substrates is varied while the other and the catalyst are kept constant. Mesitylene was used as the internal standard in each experiment. The rate k_{obs} has been determined from the ¹H NMR of each experiment. ¹H NMR spectra were collected every 5 mins starting from t=5 to t=25 mins. The value of the slope of each linear best-fit plot of [Product] vs Time is the value of k_{obs} . The reaction order concerning acetophenone is determined from the plot of k_{obs} vs. acetophenone concentration.

Initially, the catalyst (0.0025 mmoles) was taken in an NMR tube inside the glove box followed by the addition of TMSCN (0.25 mmoles) along with mesitylene and then acetophenone (in different mmoles) and CDCl₃ (0.5 ml) were added under argon. ^{1}H NMR spectra were recorded for each setup at various time intervals. All the concentrations of acetophenone and the concentration of catalyst and TMSCN are provided in the table below (Table S4). From the k_{obs} and concentration of acetophenone plot it is observed that with the increase in concentration of acetophenone, it follows the linear correlation with k_{obs} .

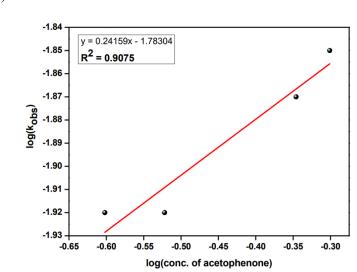
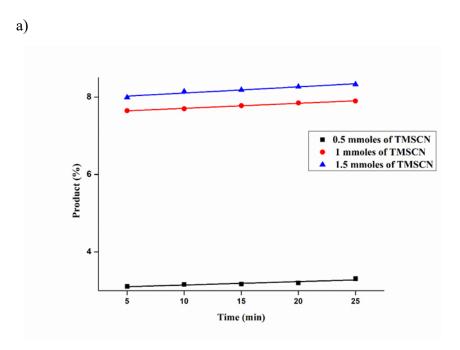
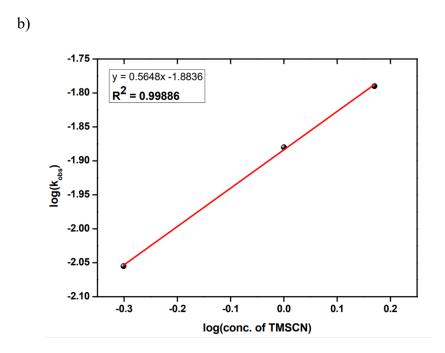

SI. NO.	Catalyst	Acetophenone	TMSCN	k _{obs} values (10 ⁻²)
	(mmoles)	(mmoles)	(mmoles)	
1	0.0025	0.25	0.25	1.25
2	0.0025	0.30	0.25	1.25
3	0.0025	0.45	0.25	1.33
4	0.0025	0.50	0.25	1.42

Table [S4]. Initial rates (k_{obs}) for the cyanosilylation of ketone with TMSCN catalyzed by catalyst **3**, carried out under varying concentrations of acetophenone.

a)

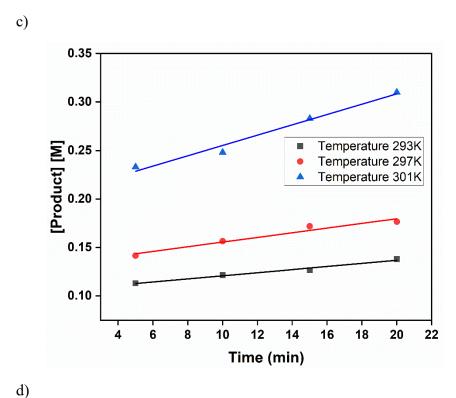

Figure S51. (a) The plot of Product (%) vs Time for the determination of the initial rate (k_{obs}) values.

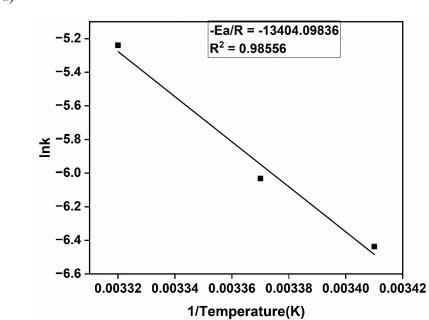

(b) Plot of $logk_{obs}$ vs log(conc. of acetophenone) for the determination of the order of the reaction.

The same experiment was done by varying the concentration of TMSCN and keeping the concentration of catalyst and acetophenone constant. Here also the catalyst (0.0025 mmoles) was taken in the NMR tube in the glove box and TMSCN (in different concentrations like 0.5 mmol, 1 mmol, 1.5 mmol), acetophenone (0.25 mmoles), mesitylene (0.25 mmoles) CDCl₃ (0.5 ml) were added to that NMR tube under argon atmosphere. 1H NMR spectra were recorded after 5 mins intervals for each setup starting from t=5 to t=25 mins. In Table (S5) the varying concentrations of acetophenone and the concentration of catalyst and TMSCN as well as the value of k_{obs} are given. The plot of k_{obs} vs concentration of acetophenone indicates a linear correlation between the rate and the increase in acetophenone concentration.

SI. NO.	Catalyst (mmoles)	Acetophenone (mmoles)	TMSCN (mmoles)	k _{obs} value (10 ⁻³)
1	0.0025	0.25	0.5	8.8
2	0.0025	0.25	1.0	13
3	0.0025	0.25	1.5	16

Table [S5]. Initial rates (k_{obs}) for the cyanosilylation of acetophenone with TMSCN catalyzed by catalyst 3, carried out under varying concentrations of TMSCN


Figure S52. (a) The plot of Product (%) vs Time for the determination of the initial rate (k_{obs}) values.


(b) Plot of $logk_{obs}$ vs log(conc. of TMSCN) for the determination of the order of the reaction.

The same experiment was done by varying the temperature and keeping the concentration of catalyst, acetophenone and TMSCN constant. Here the catalyst (0.00025 mmoles) was taken in the NMR tube in the glove box and TMSCN (0.25 mmol), acetophenone (0.25 mmoles), mesitylene (0.25 mmoles) and CDCl₃ (0.5 ml) were added to that NMR tube under argon atmosphere. ¹H NMR spectra were recorded after 5 mins intervals for each setup starting from t=5 to t=30 mins. Three sets of same experiments were performed at different temperature. In **Table (S6)** k was determined from plot of concentration of product vas time at all the three different temperatures. The plot of lnk vs 1/Temperature indicates a linear dependence between lnk and 1/Temperature (**Figure S52d**). Hence, the rate of the reaction follows Arrhenius behavior with temperature. We have calculated the activation energy (Ea) value from the slope of the lnk vs 1/Temperature curve which is 26.54 Kcal/mol. Theoretical calculations shows the activation energy is 31.3 Kcal/mol which is close to our experimental observation.

SI. NO.	Catalyst (mmoles)	Acetophenone (mmoles)	TMSCN (mmoles)	Temperature (K)	k value (10 ⁻³)
1	0.00025	0.25	0.25	293	1.6
2	0.00025	0.25	0.25	297	2.4
3	0.00025	0.25	0.25	301	5.3

Table [S6]. Initial rates (k) for the cyanosilylation of acetophenone with TMSCN catalyzed by catalyst 3, carried out under varying temperatures.

Figure S52. (c) The plot of Product [M] vs Time at different temperature for the determination of the initial rate (k_{obs}) values.

(d) Arrhenius Plot (lnk vs 1/Temperature) for the determination of the activation energy of the reaction.

[S11]. Experimental data and theoretical calculations to propose mechanistic pathway of cyanosilylation reaction.

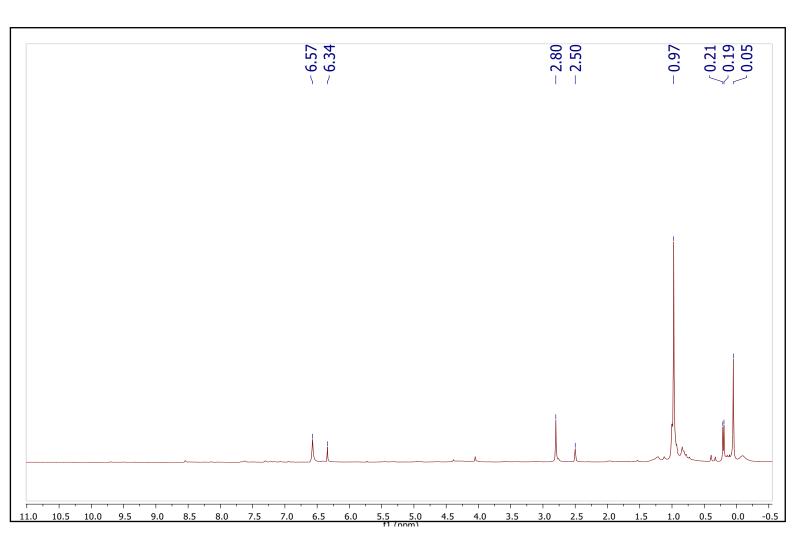


Figure S53. ¹H NMR spectrum of 1:1 reaction of catalyst and TMSCN

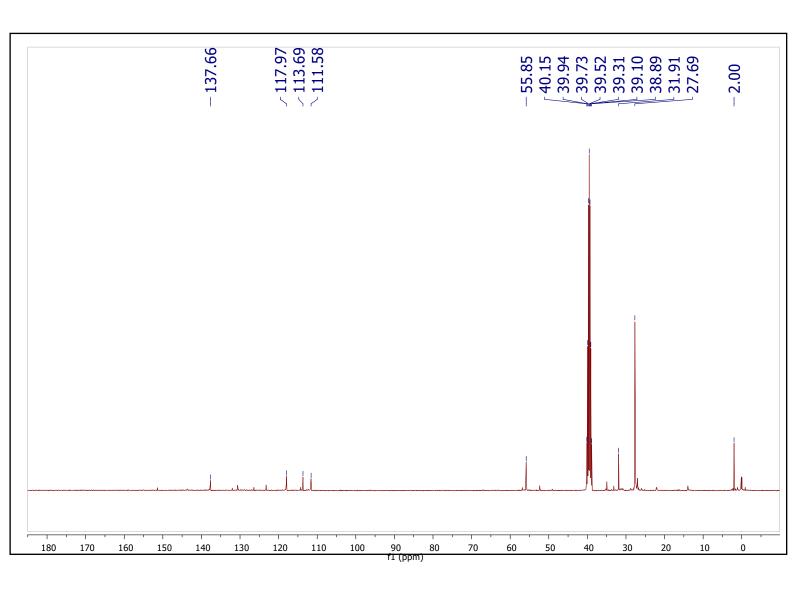


Figure S54. ¹³C NMR spectrum of 1:1 reaction of catalyst and TMSCN

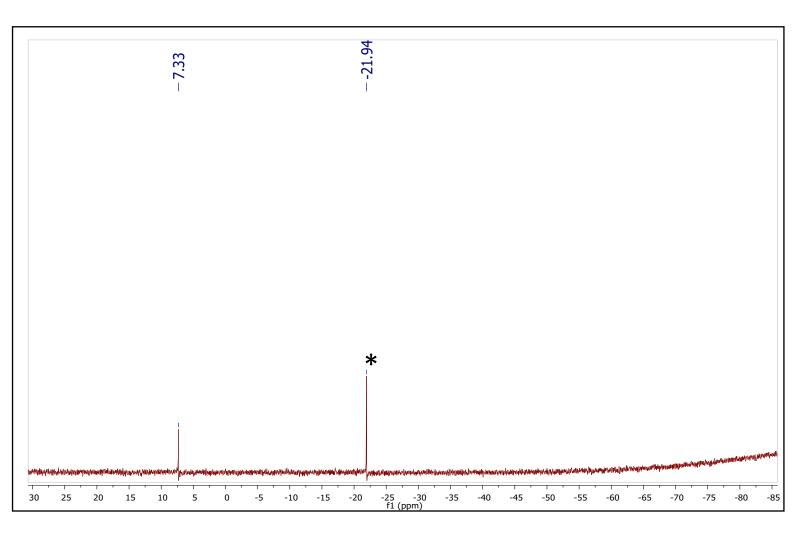


Figure S55. ²⁹Si NMR spectrum of 1:1 reaction of catalyst and TMSCN

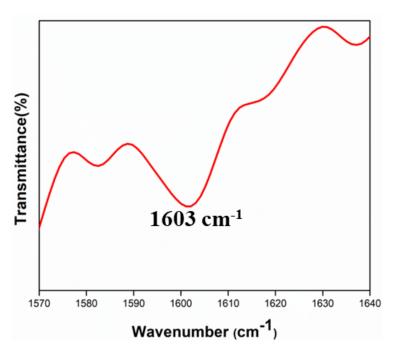


Figure S56. IR spectrum of 1:1 reaction of catalyst and TMSCN

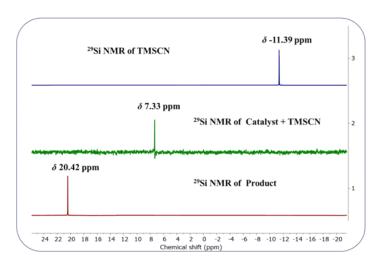


Figure S57. Stacked ²⁹Si NMR of TMSN, intermediate and the cyanosilylated product.

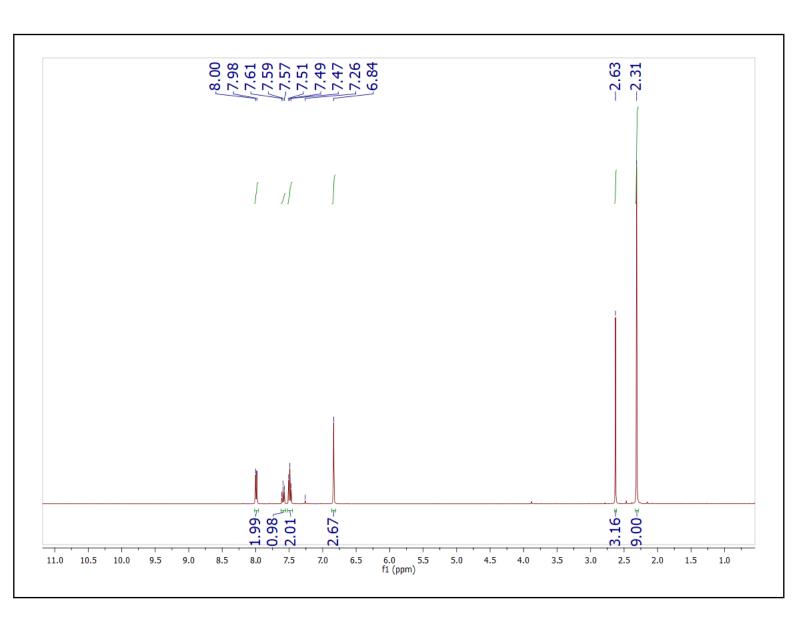


Figure S58. Cyanosilylation of acetophenone without using the catalyst.

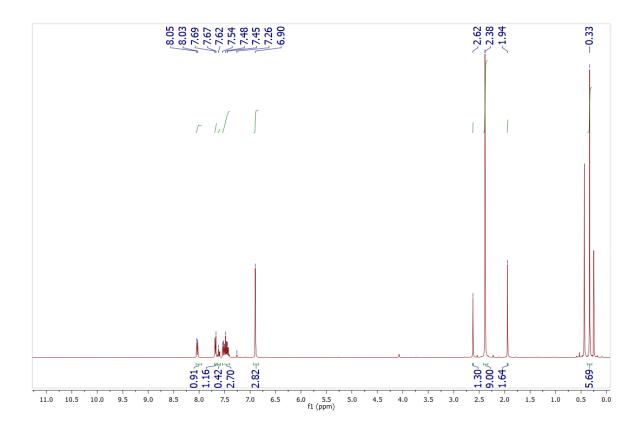
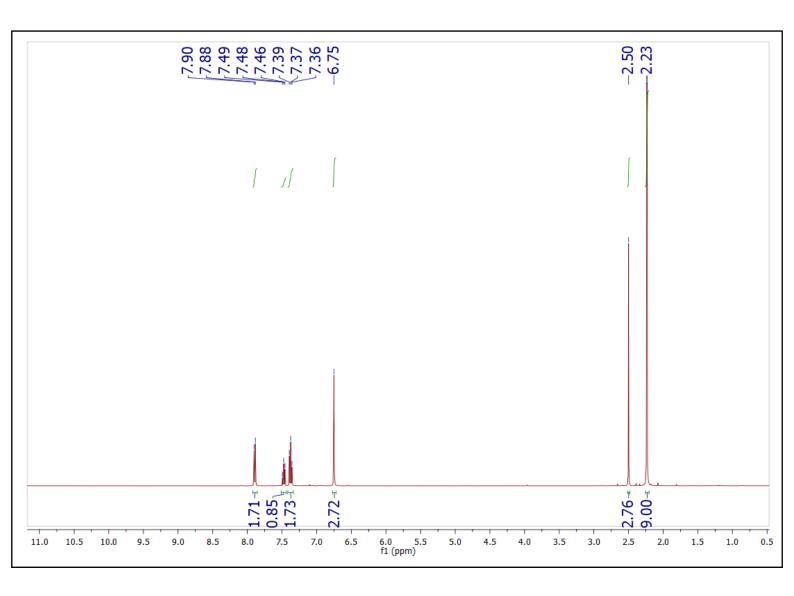
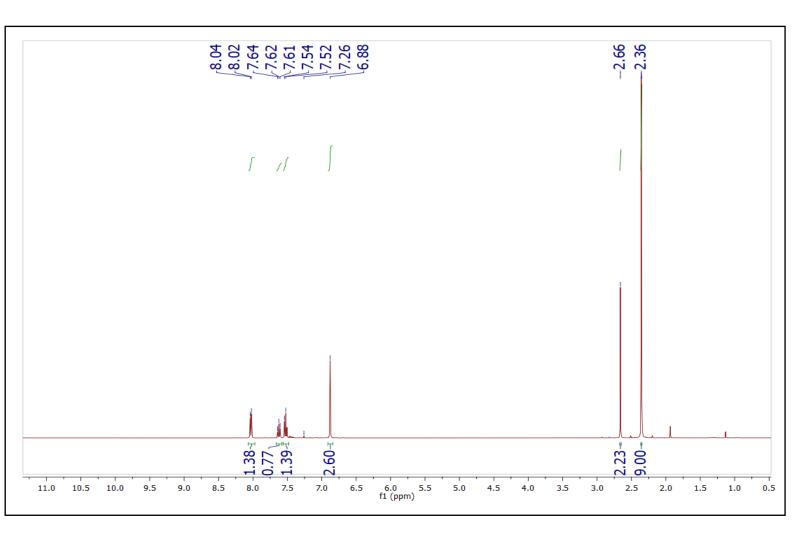
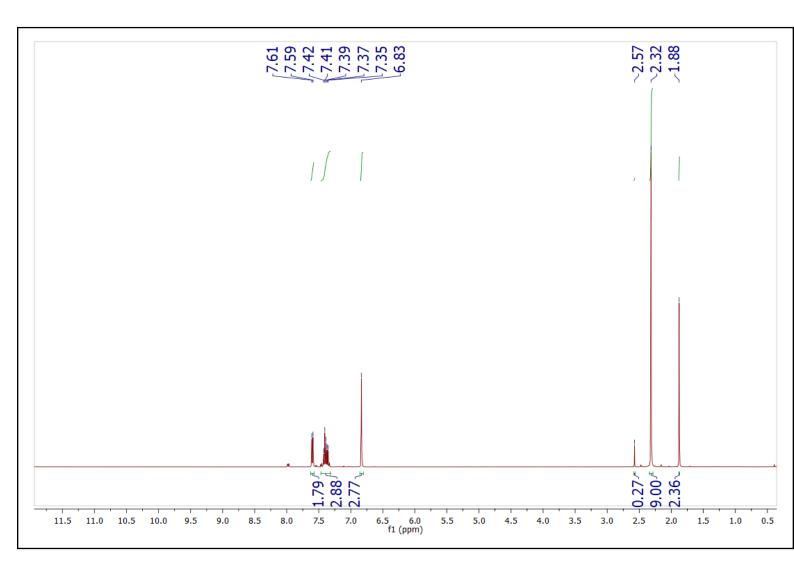


Figure S59. 1H NMR of cyanosilylation of acetophenone with AgSbF $_6$ (0.5 mol%) using mesitylene as internal standard.

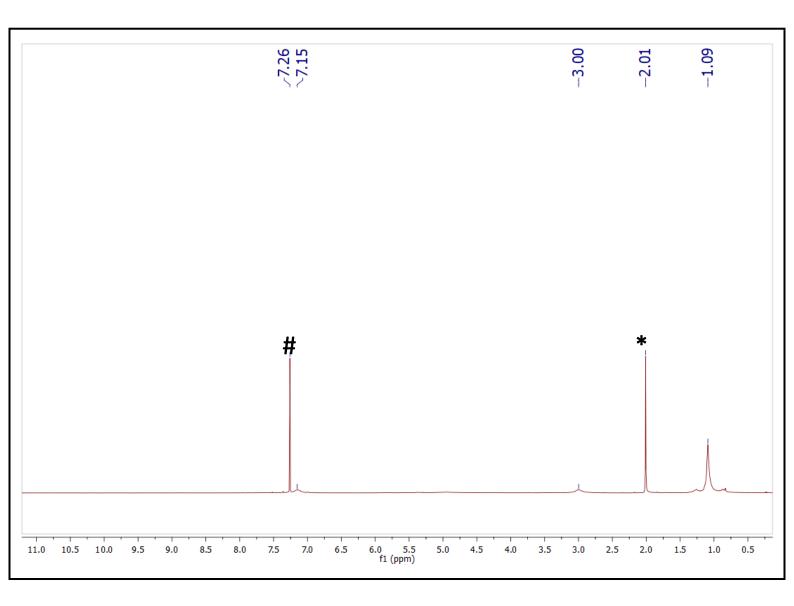

Figure S60. ¹H NMR of cyanosilylation of acetophenone with NaBarF₄ using mesitylene as internal standard

Figure S61. ¹H NMR of cyanosilylation of acetophenone as compound **2** as the catalyst using mesitylene as an internal standard.

Figure S62. ¹H NMR of cyanosilylation of acetophenone using mesitylene as an internal standard in acetonitrile as a solvent.

Figure S63. ¹H NMR of 1:1 reaction of catalyst **3** and acetonitrile in CDCl₃ (* - Acetonitrile, # - CDCl₃).

[S12]. Computational Details:

The electronic structure of all the systems studied is done by density functional theory. For geometry optimization M062X²⁻³ exchange-correlation functional along with 6-311G(d,p) basis set is used for lighter atoms (C, H, B, N, O, F). For Bi, we have used lanl2dz basis set in combination with Stuttgart-Dresden pseudopotential. All optimized geometries are characterized by harmonic vibrational analysis to recognize the structures as minima (all positive frequencies) or transition states (one negative frequency). Transition states (TS) are verified through intrinsic reaction coordinate (IRC) calculations. All thermochemical data are estimated within the ideal gas-rigid rotor-harmonic oscillator approximation at 298.15 K and 1 atm pressure. SMD model is used to consider solvent effects.⁴ Photophysical properties of these catalysts are calculated using time-dependent density functional theory (TD-DFT) methods using B3LYP-D3⁴⁻⁸ exchange-correlation functional. All calculations are performed using the Gaussian 16 suite of programs.⁹

The approximation used in this DFT model:

- 1. The model catalysts **3m** is used for the mechanistic study, wherein the methyl groups replace the CH₂Bu substituent on the N center. Such modeling does not impose major changes in the electronic and structural properties of the catalyst and has been routinely used in simulations to reduce the computational cost. Due to this, however, it is possible that this model catalyst always lies in a higher energy state in the free energy profile and overestimates the activation barrier.
- 2. In our DFT calculations, the computed entropic corrections are scaled to 100% to consider the quenching of translational and rotational degrees of freedom in the solution phase. This entropic correction makes the overall activation barrier high.
- 3. All the thermochemical corrections are estimated using the ideal-gas-rigid rotor-simple harmonic oscillator approximations at 298.15 K and 1 atm pressure in our DFT study. This harmonic approximation also leads to the overestimation of the activation barrier.

Geometry optimized structures of all the compounds, reaction intermediates and transition states.

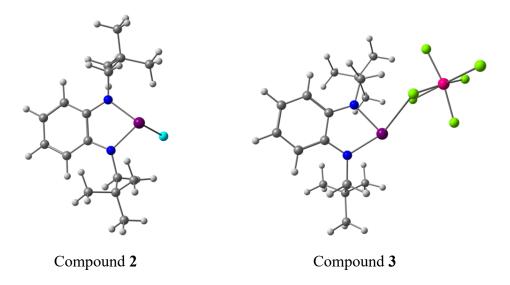
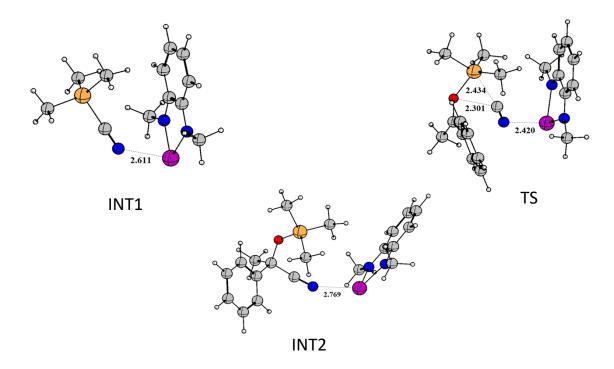
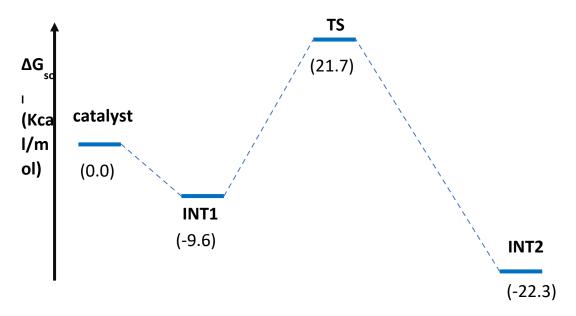




Figure S63. Geometry optimized structures of compound 2 and 3. All the distances are shown in Å unit.

Figure S64. Geometry optimized structures of all the intermediates and transition state for the cyanosilylation reaction of acetophenone catalyzed by **3**. All the distances are shown in Å units.

Figure S65. Relative solvent-corrected Gibbs free energy profiles for cyanosilylation of acetophenone catalyzed by **3**.

[S13]. References

- 1. N. Sen, P. Gothe, P. Sarkar, S. Das, S. Tothadi, S. K. Pati and S. Khan, *Chem. Commun.*, 2022, **58**, 10380-10383.
- Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theoretical chemistry accounts*, 2008, 120, 215-241.
- 3. Y. Zhao and D. G. Truhlar, Density functionals with broad applicability in chemistry, *Accounts of chemical research*, 2008, **41**, 157-167
- 4. C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, *Physical review B*, 1988, **37**, 785.
- 5. S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, *Journal of computational chemistry*, 2004, **25**, 1463-1473.
- 6. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, *Journal of computational chemistry*, 2006, **27**, 1787-1799.

- 7. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *The Journal of chemical physics*, 2010, **132**, 154104.
- 8. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, *Journal of computational chemistry*, 2011, **32**, 1456-1465
- 9. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 16, revision A.03.2016; GaussianInc.: Wallingford, CT.

Coordinates of the Intermediates and Transition states in XYZ format

Bi -0.00007000 -1.38141100 0.13900400

C1-0.00022700 -2.01946600 2.50840000

N 1.30905200 0.14395400 0.21224200

N -1.30905300 0.14405800 0.21203500

C 3.52365900 -0.03420300 -1.00214400

C 1.39186400 2.56371300 0.75788400

H 2.47296700 2.58085800 0.75134800

C 4.99415500 -0.32017700 -0.68380100

H 5.11669800 -1.30913600 -0.23261200

H 5.39584400 0.42222200 0.01160800

H 5.59739600 -0.28821000 -1.59451700

C 0.69295000 3.73818400 1.02543300

H 1.24161700 4.64926300 1.22897500

C -2.98936200 -1.11549200 -1.94603700

H -1.96561000 -0.89453500 -2.26098000

H -3.60369600 -1.17243800 -2.84816400

H -3.00600200 -2.10244300 -1.46992800

C -4.99416900 -0.31970000 -0.68390800

- H -5.11692900 -1.30849800 -0.23237300
- H -5.59731600 -0.28798700 -1.59469300
- H -5.39582200 0.42298700 0.01119300
- C 2.74672500 -0.07044800 0.33037500
- H 2.91706800 -1.05186700 0.79299300
- H 3.17011900 0.65757300 1.02869900
- C -0.69277800 3.73825900 1.02526600
- H -1.24139900 4.64940600 1.22862500
- C -3.52358600 -0.03408900 -1.00218900
- C -0.71018500 1.37904000 0.49296600
- C 3.39301500 1.33388500 -1.67541400
- H 3.88993800 1.32439100 -2.64939500
- H 3.85824100 2.11759300 -1.07169800
- H 2.34380400 1.59870500 -1.82776600
- C 0.71025600 1.37896300 0.49310700
- C -3.39257800 1.33382700 -1.67570700
- H -3.85783600 2.11773400 -1.07231400
- H -3.88925800 1.32416800 -2.64981700
- H -2.34327800 1.59843200 -1.82784400
- C -2.74675200 -0.07027100 0.33033500
- H -3.17005600 0.65782200 1.02864500
- H -2.91714200 -1.05166300 0.79294400
- C -1.39174100 2.56385400 0.75754400
- H -2.47284100 2.58108400 0.75078500
- C 2.98942200 -1.11533000 -1.94629800
- H 3.60435200 -1.17267400 -2.84800700
- H 1.96602300 -0.89380600 -2.26194800
- H 3.00519100 -2.10228800 -1.47017200

NbBiSbF6

- Bi -0.38623200 -0.48249900 -0.32968000
- N -1.11389000 1.38961200 -0.48925700
- N -2.36681600 -0.87892300 -0.55338000
- C -2.48221000 1.46781400 -0.69730400
- C -3.21330800 2.65551300 -0.87904900
- C -3.16886400 0.22364200 -0.74996100
- C -2.89274300 -2.24512200 -0.54885200
- C -0.30382100 2.61211000 -0.36450900
- C -4.55025100 0.20051800 -1.00746500
- C -0.07991900 3.10597900 1.08467300
- C -5.23952200 1.37960900 -1.19130000
- C -4.56955400 2.60737800 -1.12302200
- C -3.29016800 -2.80039300 0.83855500
- C -3.75278700 -4.24441200 0.61209800
- C 0.81525200 2.13040100 1.85207700
- C -2.08256500 -2.80089000 1.78012000
- C -1.40026700 3.29108300 1.83588400
- C -4.42340600 -1.98884400 1.47057500
- C 0.64474500 4.45222600 0.96866800
- Sb 3.29450100 -0.49092300 -0.17126500
- F 3.97656700 1.04373300 0.65574800
- F 1.82275800 0.61701800 -0.85978500
- F 2.11033700 -0.74397200 1.30373200
- F 2.34465800 -1.90539100 -1.00500200
- F 4.25729200 -0.16200600 -1.73333500
- F 4.57951600 -1.62643600 0.55148200
- H 0.66978900 2.41608500 -0.81156400

```
H -0.77091500 3.39905600 -0.95833700
```

H 1.77375500 1.97777300 1.35153400

H 1.01862200 2.52109300 2.85234000

H 0.34119600 1.15343300 1.99655200

H 0.03303300 5.18591200 0.43562400

H 0.86153600 4.85196200 1.96191000

H 1.59361200 4.34161900 0.43714600

H -1.96503200 2.35607200 1.89124100

H -1.19882800 3.62048700 2.85828100

H -2.03498100 4.04440400 1.36272400

H -3.73824800 -2.31633500 -1.23809900

H -2.11474200 -2.90151400 -0.95486400

H -1.21506600 -3.29304600 1.32653800

H -1.79817000 -1.78655700 2.07443200

H -2.32222800 -3.34225000 2.69821200

H -2.94638300 -4.85959200 0.20325500

H -4.07186000 -4.69285700 1.55556700

H -4.59774500 -4.28334000 -0.08104500

H -5.33504100 -2.04095100 0.86975200

H -4.65575600 -2.38709600 2.46154600

H -4.14830600 -0.93762000 1.58622500

H -2.72079700 3.61514200 -0.83048700

H -5.11720400 3.53061400 -1.26380500

H -6.30407600 1.35321200 -1.38655300

H -5.07677200 -0.74220700 -1.05411300

Int1

N -1.22842719 0.88939291 -1.12771797

C -0.04016308 1.36304141 0.87663863

```
\mathbf{C}
           0.38359245
                        2.75191433 -1.08549746
Η
                        3.00720604 -2.11877028
           0.18882486
C
           -0.28974625
                        1.67794534 -0.48629727
\mathbf{C}
           1.55636188
                        3.16653468 0.98602013
Η
            2.27252138
                        3.74923436
                                     1.55122822
C
            0.89717677
                        2.11611942
                                     1.59971535
Η
            1.08973811
                        1.88946752
                                     2.64053728
\mathbf{C}
            1.29465499
                        3.48800510 -0.34983999
Η
            1.80963278
                        4.31814400 -0.81620481
N
           -0.78389373
                        0.32397379
                                    1.40574528
C
           -0.53723043 -0.11962890
                                     2.77338537
Η
           -0.71665112  0.69569331
                                     3.47743678
Η
           -1.21154964 -0.93719753
                                     3.02942710
\mathbf{C}
           -1.52375538
                        1.11697184 -2.53941704
Η
           -2.27974190
                        0.41019833 -2.88188259
Η
           -1.91283685
                        2.12659124 -2.68801948
           -1.89107849 -0.68203681
Bi
                                     0.00597974
Η
           -0.62535361
                        0.98386023 -3.14789492
            0.49279683 -0.47237568
                                    2.88576461
Η
           3.34035278 -1.03855654 -0.25626597
Si
\mathbf{C}
           3.47279115
                       0.51449922 -1.26836210
            2.82063916
                        1.29384736 -0.86666590
Η
            4.50016504
                        0.88706208 -1.24138582
Η
            3.20771763
                        0.33988755 -2.31302596
Η
            4.29905082 -2.48669465 -0.91993975
\mathbf{C}
Η
            5.36962579 -2.27354935 -0.86259767
Η
            4.10723098 -3.39309804 -0.34272017
Η
           4.05347715 -2.68512440 -1.96481427
\mathbf{C}
           3.57484123 -0.74648646 1.56860146
```

```
Η
            4.62248880 -0.50744142
                                     1.76960195
Η
            2.97025826
                        0.09922838
                                     1.90357702
                                     2.15899108
Η
            3.31630272 -1.62776618
C
            1.49613271 -1.55126801 -0.41544984
N
            0.38618493 -1.85632969 -0.49495902
TS
\mathbf{C}
          -3.29466600 -2.27776500 0.36105100
C
           -3.50933900 -0.98033400 -0.12302700
C
           -4.24175500 -0.06009800
                                     0.63548300
\mathbf{C}
           -4.74855500 -0.43249200
                                     1.87157800
\mathbf{C}
           -4.50822100 -1.71292300
                                     2.36002900
\mathbf{C}
           -3.77829400 -2.63357700
                                     1.60827500
C
           -3.03921100 -0.60013400 -1.45422600
O
           -2.76429000
                        0.57861000 -1.74768400
           -2.04691400
                        2.06254500 -0.93106100
Si
C
           -0.58843400
                        2.56183400 -1.98217500
C
           -0.78786300 -0.01071400 -0.72684400
           -0.18978200 -0.98568300 -0.97963000
N
\mathbf{C}
           -3.48323000
                        3.16858500 -1.42416300
C
           -1.83438100
                        2.17380700
                                     0.92140500
Η
           -4.44582000
                                     0.23962300
                        0.92779900
Η
           -5.33421900
                        0.27061500
                                     2.44978100
           -4.90091100 -2.00135600
Η
                                     3.32756400
Η
           -3.60029400 -3.62908500
                                      1.99446200
Η
           -2.72611900 -2.98906700 -0.22586600
Η
           -3.24100200
                        4.20104100 -1.15391000
```

Η

-3.66266800

3.14504900 -2.50153000

Н	-4.42339200	2.92226400	-0.92381600
Н	-2.41214000	3.00609200	1.33078500
Н	-2.10741400	1.26052100	1.44884300
Н	-0.77164400	2.34793000	1.11938700
Н	-0.65528700	3.62221200	-2.23783500
Н	0.34136800	2.38005700	-1.44109100
Н	-0.57063200	1.98872800	-2.91212400
N	2.66509200	0.65892100	-0.59742500
C	1.09908500	-1.48937800	2.50556300
C	3.19673400	1.31621300	-1.78422000
C	1.35255500	1.38790900	2.75138300
C	1.41419600	2.77365000	2.78353300
C	1.87974400	3.48636600	1.68033700
Н	3.51108500	0.56938300	-2.51439800
Н	2.45131700	1.96392300	-2.25562300
Н	0.04213800	-1.21528600	2.59840800
Н	1.16319600	-2.54773900	2.24810100
Н	2.66260300	3.37889300	-0.31377900
Н	1.92518600	4.56745600	1.71193600
Н	1.09401200	3.30033800	3.67349100
Н	0.98807300	0.84389400	3.61281800
Н	1.58905000	-1.35686800	3.47309300
Н	4.07205700	1.91559300	-1.52167900
C	-2.93967400	-1.61518900	-2.53762000
Н	-3.77614100	-2.31235400	-2.51155100
Н	-2.86733200	-1.11675000	-3.50137300
Н	-2.01139500	-2.17219400	-2.36339400
Bi	2.14291200	-1.32087700	-0.42955700
N	1.75576500	-0.68738900	1.48426000

C	2.24561200	1.42203100	0.48713800
C	2.29432800	2.81862800	0.53636000
C	1.76440400	0.69628900	1.60826700
Int2			
C	-4.85783600	0.86635100	0.23369400
C	-4.01401000	-0.00877800	-0.44742200
C	-4.20558700	-1.38263800	-0.33821600
C	-5.22700300	-1.88121600	0.46427900
C	-6.06018700	-1.00936900	1.15465400
C	-5.87667100	0.36473500	1.03434200
C	-2.93910900	0.59391100	-1.35358900
O	-2.43946900	1.80034700	-0.85003000
Si	-1.50300600	2.06442700	0.54018500
C	0.26966400	2.24117200	-0.03751700
C	-1.79633000	-0.36694800	-1.46635900
N	-0.87290000	-1.05182600	-1.50076300
C	-2.14148900	3.63200100	1.30145800
C	-1.66474800	0.61311900	1.72396000
Н	-3.56188300	-2.07313500	-0.87413200
Н	-5.37053100	-2.95135700	0.54819900
Н	-6.85396200	-1.39839700	1.78008400
Н	-6.53087500	1.04800300	1.56187300
Н	-4.71326300	1.93597000	0.13268400
Н	-3.15532500	3.50235000	1.68642300
Н	-1.50591300	3.94919400	2.13214400
Н	-2.15739500	4.43903400	0.56572100
Н	-0.90087000	0.69621400	2.50411900
Н	-2.64143900	0.60978500	2.21385000
Н	-1.55683000	-0.36129000	1.23900800

Н	0.98080300	2.16958900	0.79221100
Н	0.52323200	1.47228100	-0.77245000
Н	0.42319600	3.21027800	-0.51833500
N	2.60940000	-0.39809200	1.33093500
C	3.17907100	0.46131800	-0.79195400
C	4.23679000	1.44089400	1.19223500
Н	4.36885300	1.48144900	2.26526600
C	3.34989600	0.50299100	0.62306300
C	4.78598100	2.23834700	-1.02437800
Н	5.35278500	2.91557900	-1.65033800
C	3.92354000	1.34038300	-1.60610100
Н	3.81047000	1.31331300	-2.68124700
C	4.94204100	2.29037200	0.37460700
Н	5.62953100	3.00418900	0.80988000
N	2.25529900	-0.43060000	-1.26057000
C	1.99575900	-0.50621100	-2.69792700
Н	1.24014600	-1.26126600	-2.89896000
Н	1.62928800	0.45767100	-3.06220100
C	2.68306700	-0.41070900	2.78992300
Н	2.02211600	-1.18128300	3.18792400
Н	3.70196500	-0.63318600	3.11424600
Н	2.37925600	0.55440200	3.20331100
Н	2.91074100	-0.77047700	-3.23201200
C	-3.49262200	0.85823400	-2.75660300
Н	-2.71557600	1.28691000	-3.38963400
Н	-3.87693600	-0.06096100	-3.19993900
Н	-4.30829400	1.57393100	-2.65306900
Bi	1.26446600	-1.52214100	0.19533600