Electronic Supplementary Information

Construction of photofunctional peptide conjugates through selective modification of \mathbf{N}-terminal cysteine with cyclometallated iridium(III) 2-formylphenylboronic acid complexes for organelle-specific imaging, enzyme activity sensing and photodynamic therapy
Lili Huang, ${ }^{a}$ Lawrence Cho-Cheung Lee, ${ }^{a b}$ Justin Shum, ${ }^{a}$ Guang-Xi Xu ${ }^{a}$ and Kenneth Kam-Wing Lo ${ }^{a b c}$
${ }^{a}$ Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China; E-mail: bhkenlo@cityu.edu.hk.
${ }^{b}$ Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China.
${ }^{c}$ State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.

Table of Contents

Experimental Section S8
Scheme S1 Synthetic routes of the ligands and complexes. S29
Table S1 Electronic absorption spectral data of complexes 1a-3a S30and $\mathbf{1 b} \mathbf{- 3 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$ at 298 K .
Table S2 Photophysical data of complexes 1a-3a and 1b-3b. S31
Table S3 The ${ }^{1} \mathrm{O}_{2}$ generation quantum yields of complexes $\mathbf{1 a} \mathbf{- 3 a}$ S33and $\mathbf{1 b} \mathbf{- 3 b}$ in aerated MeOH at 298 K .
Table S4 Photophysical data of the conjugates of complex 1a in S34degassed KPi (50 mM, pH 7.4)/MeOH (1:1, v/v).
Table S5 The ${ }^{1} \mathrm{O}_{2}$ generation quantum yields of the conjugates of S35complex 1a in aerated MeOH at 298 K.
Table S6 (Photo)cytotoxicity $\left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$ of the conjugates of complex S361a toward HeLa and HEK 293 cells under dark or lightconditions ($\left.\lambda_{\mathrm{ex}}=450 \mathrm{~nm}, 10 \mathrm{~mW} \mathrm{~cm}{ }^{-2}, 10 \mathrm{~min}\right)$.
Table S7 Cellular uptake of the conjugates of complex 1a towards S37HeLa and HEK 293 cells.
Table S8 FRET parameters of conjugate 1a-FC-QSY7. S38
Fig. S1 Electronic absorption spectra of complexes $\mathbf{1 a} \mathbf{- 3 a}$ and $\mathbf{1 b}$ S39- 3b in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (black) and $\mathrm{CH}_{3} \mathrm{CN}$ (red) at 298 K .
Fig. S2 Normalised emission spectra of complexes 1a-3a and 1b S40- 3b in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (black) and $\mathrm{CH}_{3} \mathrm{CN}$ (red) at 298 K and alcoholglass at 77 K (blue).

Fig. S3 HPLC chromatograms of the reaction mixtures of
complexes (a) 1a ($25 \mu \mathrm{M}$), (b) 2a ($25 \mu \mathrm{M}$) and (c) $\mathbf{3 a}(25 \mu \mathrm{M})$ without (black) or with L-Cys ($100 \mu \mathrm{M}$) (red) in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF (9:1, v/v) containing TCEP $(400 \mu \mathrm{M})$ after incubation at $37^{\circ} \mathrm{C}$ for 4 h . The absorbance was monitored at 210 nm .

Fig. S4 ESI-mass spectra of the reaction mixtures of complexes (a)S42 1a ($25 \mu \mathrm{M}$), (b) 2a ($25 \mu \mathrm{M}$) and (c) 3a ($25 \mu \mathrm{M}$) with L-Cys (100 $\mu \mathrm{M}$) in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH}$ 7.4)/DMF (9:1, v / v) containing TCEP (400 $\mu \mathrm{M}$) after incubation at $37^{\circ} \mathrm{C}$ for 4 h .

Fig. S5 Second-order kinetics for the reaction of (a)complex 1 (25 $\mu \mathrm{M})$, (b) complex $\mathbf{2}(25 \mu \mathrm{M})$ and (c) complex $\mathbf{3}(25 \mu \mathrm{M})$ with L-Cys (125 $\mu \mathrm{M}$) at different time points in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF (9:1, v/v) containing TCEP ($500 \mu \mathrm{M}$) after incubation at $37^{\circ} \mathrm{C}$. The slope of the linear fit corresponds to the k_{2} of the reaction.

Fig. S6 HPLC chromatograms of (a) complex $1(25 \mu \mathrm{M})$, (b) complex $2(25 \mu \mathrm{M})$ and (c) complex $3(25 \mu \mathrm{M})$ after incubation in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.5$)/DMF (9:1, v/v) at $37^{\circ} \mathrm{C}$ for 0 and 12 h . The absorbance was monitored at 350 nm .

Fig. S7

Fig. S8

Fig. S9

Fig. S10 HPLC chromatograms of the purified conjugates 1a-Cys, 1a-
Fig. S10 HPLC chromatograms of the purified conjugates 1a-Cys, 1aER and 1a-GA. The absorbance was monitored at 350 nm .

Fig. S11 ESI-mass spectra of the purified conjugates 1a-Cys, 1a-ER and 1a-GA. complex 1a (25 $\mu \mathrm{M}$) without (black) or with L-Cys (100 $\mu \mathrm{M}$), L-Lys (100 $\mu \mathrm{M})$, L-Met $(100 \mu \mathrm{M})$ and L-Ser $(100 \mu \mathrm{M})$ (red) in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF (9:1, v / v) containing TCEP $(400 \mu \mathrm{M})$ after incubation at $37^{\circ} \mathrm{C}$ for 4 h . The absorbance was monitored at 350 nm . (b) ESI-mass spectrum of the new emerging peak collected from HPLC eluent at $t_{\mathrm{R}}=12.6 \mathrm{~min}$.

HPLC chromatograms of (a) complex $1 \mathrm{a}(25 \mu \mathrm{M})$ and (b) the reaction mixture of complex 1a ($25 \mu \mathrm{M}$) and CKDEL (100 $\mu \mathrm{M}$) in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF (9:1, v / v) containing TCEP $(400 \mu \mathrm{M})$ after incubation at $37^{\circ} \mathrm{C}$ for 4 h . The absorbance was monitored at 210 nm .

HPLC chromatograms of (a) complex 1a (25 $\mu \mathrm{M}$), (b) CSDYQRL (100 $\mu \mathrm{M}$) and (c) a reaction mixture of complex 1a $(25 \mu \mathrm{M})$ and $\operatorname{CSDYQRL}(100 \mu \mathrm{M})$ in ammonium acetate buffer (50 mM , pH 7.4)/DMF (9:1, v/v) containing TCEP (400 $\mu \mathrm{M}$) after incubation at $37^{\circ} \mathrm{C}$ for 4 h . The absorbance was monitored at 210 nm . and 1a-GA.

Fig. S12

Fig. S13

Fig. S14
ESI-mass spectra of the conjugates (a) 1a-CGGGGRVRR and
(b) SVK-QSY7 collected from the HPLC eluent at $t_{\mathrm{R}}=9.3$ and $t_{R}=10.3 \mathrm{~min}$, respectively.

Fig. S15 LSCM images of caspase 3/7 activity of HeLa cells upon without (left) or with (right) light irradiation (450 nm, 10 $\mathrm{mW} \mathrm{cm}-10 \mathrm{~min}$) and further incubation with CellEvent

Caspase-3/7 Red ($20 \mu \mathrm{~L}, 1: 100,1 \mathrm{~h}, \lambda_{\mathrm{ex}}=590 \mathrm{~nm}, \lambda_{\mathrm{em}}=610$ -630 nm).

Fig. S16
Flow cytometric analysis of HeLa cells treated without (a) S54 or with conjugate 1a-FC-QSY7 ($5 \mu \mathrm{M}$) in the dark for 24 h , then washed thoroughly with PBS, incubated in the dark (b) or irradiated at $450 \mathrm{~nm}\left(10 \mathrm{~mW} \mathrm{~cm}{ }^{-2}\right)$ (c) for 10 min and subsequently incubated in the dark for 4 h . They were then stained with PI ($\left.100 \mu \mathrm{~g} \mathrm{~mL}^{-1}, 15 \mathrm{~min}, \lambda_{\mathrm{ex}}=561 \mathrm{~nm}\right)$ and Alexa Fluor 647-Annexin V conjugate ($50 \mu \mathrm{~L} \mathrm{~mL}^{-1}, 15 \mathrm{~min}$, $\left.\lambda_{\text {ex }}=638 \mathrm{~nm}\right)$.

Fig. S17	${ }^{1} \mathrm{H}$ NMR spectrum of bpy-Ph-aldh-bae in CDCl_{3} at 298 K.	S55
Fig. S18	${ }^{1} \mathrm{H}$ NMR spectrum of bpy-2-FPBA in DMSO-d ${ }_{6}$ at 298 K .	S5
Fig. S19	${ }^{1} \mathrm{H}$ NMR spectrum of complex 1a in DMSO-d ${ }_{6}$ at 298 K.	S57
Fig. 520	${ }^{13} \mathrm{C}$ NMR spectrum of complex 1a in DMSO- d_{6} at 298 K .	S5
Fig. 521	HR-ESI- mass spectra of complex 1a in $\mathrm{CH}_{3} \mathrm{CN}$.	S59
Fig. 522	${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{1 b}$ in DMSO- d_{6} at 298 K .	S60
Fig. S23	${ }^{13} \mathrm{C}$ NMR spectrum of complex $\mathbf{1 b}$ in DMSO- d_{6} at 298 K.	S61
Fig. S24	HR-ESI-mass spectra of complex $\mathbf{1 b}$ in $\mathrm{CH}_{3} \mathrm{CN}$.	S62
Fig. S25	${ }^{1} \mathrm{H}$ NMR spectrum of complex 2a in DMSO-d ${ }_{6}$ at 298 K .	S63
Fig. S26	${ }^{13} \mathrm{C}$ NMR spectrum of complex $\mathbf{2 a}$ in DMSO- d_{6} at 298 K .	S64
Fig. ${ }^{\text {27 }}$	HR-ESI-mass spectra of complex $\mathbf{2 a}$ in $\mathrm{CH}_{3} \mathrm{CN}$.	S65
Fig. 528	${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{2 b}$ in acetone- d_{6} at 298 K .	S66
Fig. 529	${ }^{13} \mathrm{C}$ NMR spectrum of complex $\mathbf{2} \mathbf{b}$ in DMSO- d_{6} at 298 K .	S6

Fig. S30 HR-ESI-mass spectra of complex $\mathbf{2} \mathbf{b}$ in $\mathrm{CH}_{3} \mathrm{CN}$. S68
Fig. S31 ${ }^{1} \mathrm{H}$ NMR spectrum of complex 3a in DMSO- d_{6} at 298 K. S69
Fig. S32 ${ }^{13} \mathrm{C}$ NMR spectrum of complex 3 a in $\mathrm{DMSO}-d_{6}$ at 298 K S70
Fig. S33 HR-ESI-mass spectra of complex 3 a in $\mathrm{CH}_{3} \mathrm{CN}$. S71
Fig. S34 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{3 b}$ in acetone- d_{6} at 298 K S72
Fig. S35 ${ }^{13}$ C NMR spectrum of complex $\mathbf{3 b}$ in DMSO- d_{6} at 298 K. S73
Fig. S36 HR-ESI-mass spectra of complex $\mathbf{3 b}$ in $\mathrm{CH}_{3} \mathrm{CN}$. S74
References S75

Experimental Section

Materials and Synthesis

All solvents were of analytical reagent grade and purified according to standard procedures. ${ }^{1}$ Sodium borohydride, hydrogen bromide, 2-bromo-5hydroxybenzaldehyde, sodium carbonate, bis(pinacolato) diboron, potassium acetate, potassium carbonate, $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$, sodium carbonate, sodium periodate, phenol, anhydrous sodium sulfate, tris(2-carboxyethyl)phosphine (TCEP), trifluoroacetic acid (TFA), 1,3-diphenylisobenzofuran (DPBF), L-cysteine (L-Cys), L-lysine (L-Lys), Lmethionine (L-Met) and L-serine (L-Ser) were sourced from Acros. Selenium dioxide, 4,4'-dimethyl-2,2'-bipyridine, sodium metabisulfite, $\mathrm{IrCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, 2-phenylphyridine (Hppy), 2-phenylquinonline (Hpq) and 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT) were purchased from Sigma-Aldrich. The peptides CKDEL (ER), CSDYQRL (GA) and CGGGGRVRRSVK (FC) were obtained from GL Biochem. The chemicals were directly used with no further purification. The ligands 2phenylquinonline (Hpqe), ${ }^{2}$ 4-bromomethyl-4'-methyl-2, 2'-bipyridine (bpy- $\mathrm{CH}_{2}-\mathrm{Br}$), ${ }^{3}$ 4-phenoxymethyl-4'-methyl-2,2'-bipyridine (bpy-Ph), ${ }^{4} \quad$ 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-hydroxybenzaldehyde (Ph-aldh-bae-OH) ${ }^{5}$ and the iridium(III) dimer $\left[\mathrm{Ir}_{2}\left(\mathrm{~N}^{\wedge} \mathrm{C}\right)_{4} \mathrm{Cl}_{2}\right]\left(\mathrm{HN}^{\wedge} \mathrm{C}=\mathrm{Hppy} \text {, } \mathrm{Hpq} \text { and } \mathrm{Hpqe}\right)^{6}$ were synthesised according to previous procedures. The buffer components were used as received and were of biological grade. Autoclaved Milli- $\mathrm{Q}_{2} \mathrm{O}$ was used for the preparation of the aqueous solutions. HeLa and HEK 293 cells were obtained from American Type Culture Collection. QSY7 carboxylic acid succinimidyl ester (QSY7-NHS), Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum (FBS), penicillin/streptomycin, phosphatebuffered saline (PBS), Hank's Balanced Salt Solution (HBSS), trypsin-EDTA, human furin
recombinant, MitoTracker Deep Red, ER-Tracker Green, BODIPY FL C5-ceramide complexed to BSA, LysoTracker Deep Red, LysoTracker Green, CellMask Deep Red, CM-H2DCFDA, Rhodamine 123, CellEvent Caspase-3/7 Red, Alexa Fluor 647-Annexin V conjugate, annexin V binding buffer and propidium iodide (PI) were purchased from Invitrogen. Hoechst 33342 was sourced from Abcam. aldh-bae)

A mixture of Ph-aldh-bae-OH (248 mg, 1 mmol$),$ bpy $-\mathrm{CH}_{2}-\mathrm{Br}(263 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(209 \mathrm{mg}, 1.5 \mathrm{mmol})$ in DMF (1 mL) was stirred at 298 K for 18 h and then quenched with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc (15 $\times 3$ $\mathrm{mL})$. The combined organic extract was washed with brine solution (10 mL), dried over anhydrous sodium sulfate and filtered. The solvent was removed under reduced pressure and the residual yellow solid was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(100: 1, v / v)$ as the eluent. The solvent was removed under reduced pressure to afford the product as a white solid. Yield: 224 mg (52\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}, \mathrm{TMS}\right): \delta 10.68$ (s, 1H, CHO), 8.72 (d, J = $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$ of bpy), $8.61-8.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6^{\prime}\right.$ and H3 of bpy), $8.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3^{\prime}\right.$ of bpy), 7.91 (d, J = 8.2 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 5$ of phenyl ring of bpy-Ph-aldh-bae), $7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2$ of phenyl ring of bpy-Ph-aldh-bae), 7.45 (d, J = $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ of bpy), $7.28-7.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5^{\prime}\right.$ of bpy and H 6 of phenyl ring of bpy-Ph-aldh-bae), 5.28 (s, 2H, CH CH_{2} of bpy-Ph-aldh-bae), 2.51 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of bpy), 1.39 (s, CH_{3} of pinacol ester of bpy-Ph-aldh-bae). ESI-MS (positive-ion mode): $m / z 431\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$.

4-((3-Formyl-4-boronophenyl)oxymethyl)-4'-methyl-2,2'-bipyridine (bpy-2-FPBA)

To a mixture of bpy-2-FPBA ($430 \mathrm{mg}, 1 \mathrm{mmol}$) in THF (1 mL) and $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL}), \mathrm{NaIO}_{4}$ ($636 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added and the resulting solution was stirred at 298 K for 15 min. After addition of $\mathrm{HCl}(1 \mathrm{~N}, 1 \mathrm{~mL})$, the mixture was further stirred for 4 h and then extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic extract was washed with brine solution (30 mL), dried over anhydrous sodium sulfate and filtered. The solutions were reduced in vacuum to 1 mL and then hexane (20 mL) was added to precipitate the product. A white solid was obtained by filtration and used without further purification. Yield: $69.8 \mathrm{mg}(20 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 298 \mathrm{~K}, \mathrm{TMS}$): $\delta 10.20$ (s, 1H, CHO), 8.70 (d, J = $4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$ of bpy), 8.57 (d, J = $4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6^{\prime}$ of bpy), 8.48 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 3$ of bpy), $8.28\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3^{\prime}\right.$ of bpy), $7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ of phenyl bpy-2FPBA), $7.54-7.51$ (m, 2H, H5 of bpy and H2 of phenyl bpy-2-FPBA), 7.35 - 7.33 (m, $2 \mathrm{H}, \mathrm{H} 5$ ' of bpy and H 6 of phenyl bpy-2-FPBA), 5.41 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ of bpy-2-FPBA), 2.44 (s , $3 \mathrm{H}, \mathrm{CH}_{3}$ of bpy). ESI-MS (positive-ion mode): m/z $349\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$.
$\left[\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{bpy}-2-\mathrm{FPBA})\right]\left(\mathrm{PF}_{6}\right)(1 \mathrm{a})$

A mixture of $\left[\mathrm{Ir}_{2}(\mathrm{ppy})_{4} \mathrm{Cl}_{2}\right]$ ($76.4 \mathrm{mg}, 0.06 \mathrm{mmol}$) and bpy-2-FPBA ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(20 \mathrm{~mL})(1: 1, \mathrm{v} / \mathrm{v})$ was stirred at 298 K under an inert atmosphere of nitrogen in the dark for 18 h . After the addition of solid $\mathrm{KPF}_{6}(17.4 \mathrm{mg}, 0.12 \mathrm{mmol})$, the mixture was further stirred for 2 h . The solvent was removed under reduced pressure and the residual yellow solid was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(100: 1, v / v)$ as the eluent. The solvent was removed under reduced pressure to give a yellow solid. Subsequent recrystallisation of the solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ afforded the complex as yellow crystals. Yield: $45.9 \mathrm{mg}(65 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}, 298 \mathrm{~K}, \mathrm{TMS}$): $\delta 10.27$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$), 8.96 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 3$ of bpy), $8.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3^{\prime}\right.$ of bpy), $8.29-8.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3\right.$ and $\mathrm{H} 3^{\prime}$ of pyridyl ring of ppy), $7.97-$ 7.86 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H} 6$ and $\mathrm{H} 6^{\prime}$ of bpy, H 3 and $\mathrm{H} 3^{\prime}$ of phenyl ring of ppy, and H 5 of bpy), 7.77 (d, J = 5.6 Hz, 1H, H5 of phenyl ring of bpy-2-FPBA), $7.72-7.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 6$ and H 6 ' of pyridyl ring of ppy and H 4 and H 4 ' of pyridyl ring of ppy), $7.56-7.52$ (m, 2H, H2 of phenyl ring of bpy-2-FPBA and H5' of bpy), $7.39-7.35$ (m, 1H, H6 of phenyl ring of bpy-2-FPBA), $7.19-7.15$ (m, 2H, H5 and H 5 ' of pyridyl ring of ppy), $7.05-7.00(\mathrm{~m}, 2 \mathrm{H}$, H 4 and H 4 ' of phenyl ring of ppy), $6.90(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5$ and H 5 ' of phenyl ring of ppy), $6.22-6.18$ (m, 2H, H6 and H6' of phenyl ring of ppy), $5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of bpy-2-

FPBA), 2.55 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of bpy). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}, \mathrm{TMS}$): δ 194.6, $167.3,158.9,156.1,155.2,152.1,151.1,150.3,149.6,149.3,144.3,142.0,139.2$, $136.4,131.6,131.5,130.7,129.9,126.9,126.3,125.6,124.4,123.1,122.7,120.5$, 120.4, 113.4, 67.9, 21.4. IR (KBr) $\tilde{v} / \mathrm{cm}^{-1}: 3446(\mathrm{O}-\mathrm{H}), 1706(\mathrm{C}=\mathrm{O}), 845\left(\mathrm{PF}_{6}{ }^{-}\right)$. HR-ESIMS (positive-ion mode, m / z): $\left[\mathrm{M}-\mathrm{PF}_{6}^{-}\right]^{+}$calcd for $\operatorname{IrC}_{41} \mathrm{H}_{33} \mathrm{BN}_{4} \mathrm{O}_{4}$ 849.2224, found 849.2180.
$\left[\operatorname{lr}(p p y)_{2}(b p y-P h)\right]\left(\mathrm{PF}_{6}\right)(1 b)$

A mixture of $\left[\mathrm{Ir}_{2}(\mathrm{ppy}){ }_{4} \mathrm{Cl}_{2}\right](76.4 \mathrm{mg}, 0.06 \mathrm{mmol})$ and bpy-Ph (33.2 mg, 0.12 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(20 \mathrm{~mL})(1: 1, v / v)$ was stirred under an inert atmosphere of nitrogen in the dark for 18 h . After the addition of solid KPF_{6} ($17.4 \mathrm{mg}, 0.12 \mathrm{mmol}$), the mixture was further stirred for 2 h . The solvent was removed under reduced pressure and the residual yellow solid was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(100: 1, v / v)$ as the eluent. The solvent was removed under reduced pressure to give a yellow solid. Subsequent recrystallisation of the solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ afforded the complex as yellow crystals. Yield: $41.5 \mathrm{mg}(75 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}, \mathrm{TMS}$): $\delta 8.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3$ of bpy), 8.82 (s, 1H, H3' of bpy), $8.29-8.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3\right.$ and $\mathrm{H} 3^{\prime}$ of pyridyl ring of ppy), $7.97-7.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 6\right.$ and H^{\prime} of bpy and H3 and H3' of phenyl ring of ppy), $7.87(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$ of pyridyl ring
of ppy), $7.76\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right.$ of bpy), $7.70\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6^{\prime}\right.$ of pyridyl ring of ppy), $7.67-7.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3$ and H5 of phenyl ring of bpy-Ph), $7.55(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}$, H5' of bpy), $7.38-7.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2$ and H 6 of phenyl ring of bpy-Ph), $7.19-7.15(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H} 4$ and H 4 'of pyridyl ring of ppy), $7.10-7.00(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 4$ and H 4 ' of phenyl ring of ppy, H 5 and $\mathrm{H} 5^{\prime}$ of phenyl ring of ppy and H 4 of phenyl ring of bpy- Ph), $6.90(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H} 5$ and $\mathrm{H} 5^{\prime}$ of phenyl ring of ppy), $6.22-6.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6\right.$ and $\mathrm{H} 6^{\prime}$ of phenyl ring of ppy), 5.33 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ of bpy-Ph), 2.55 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of bpy). ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- $d_{6}, 298$ K, TMS): $\delta 167.3,167.2,158.2,156.1,155.3,152.1,151.1,151.0,150.7$, $150.3,149.6,149.3,149.3,144.2,144.2,139.2,130.2,127.0,126.3,125.6,125.5$, 124.4, 123.3, 122.7, 121.9, 120.5, 115.3, 67.8, 21.4. IR (KBr) $\tilde{v} / \mathrm{cm}^{-1}: 844\left(\mathrm{PF}_{6}{ }^{-}\right)$. HR-ESIMS (positive-ion mode, m / z): $\left[\mathrm{M}-\mathrm{PF}_{6}{ }^{-}\right]^{+}$calcd for $\mathrm{IrC}_{40} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}$ 777.2205, found 777.2222.
$\left[\operatorname{lr}(p q)_{2}(b p y-2-F P B A)\right]\left(P_{6}\right)(2 a)$

The synthetic procedure was similar to that of complex $1 \mathbf{a}$, except that $\left[\mathrm{Ir}_{2}(\mathrm{pq})_{4} \mathrm{Cl}_{2}\right]$ (38.1 mg .0 .03 mmol) was used instead of $\left[\mathrm{Ir}_{2}(\mathrm{ppy}){ }_{4} \mathrm{Cl}_{2}\right]$. Subsequent recrystallisation of the solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ afforded the complex as orange crystals. Yield: 45.9 mg (70\%). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $\left.6,298 \mathrm{~K}, \mathrm{TMS}\right): \delta 10.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.59-8.52(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{H} 3$ of bpy, H 4 and $\mathrm{H} 4^{\prime}$ of quinolinyl ring of pq , and H 3 and $\mathrm{H} 3^{\prime}$ of quinolinyl ring of
$\mathrm{pq}), 8.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3^{\prime}\right.$ of bpy), $8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3$ and H3' of phenyl ring of pq), $8.10\left(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right.$ of bpy), $7.95-7.93\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 6^{\prime}\right.$ of bpy and H8 and H8' of quinolinyl ring of $p q$), $7.74(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ of bpy), $7.66-7.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5$ of phenyl ring of bpy-2-FPBA), $7.54\left(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5^{\prime} \mathrm{bpy}\right), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 2$ of phenyl ring of bpy-2-FPBA and H5 and H5' of quinolinyl ring of pq), 7.26-7.23(m,2H, H 7 and $\mathrm{H} 7^{\prime}$ of quinolinyl ring of pq$), 7.18-7.11\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 6\right.$ and H^{\prime} of quinolinyl ring of pq and H 4 and H 4 ' of phenyl ring of pq$), 6.98-6.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6$ of phenyl ring of bpy-2-FPBA), $6.82\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5\right.$ and $\mathrm{H} 5^{\prime}$ of phenyl ring of pq$), 6.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6$ and H^{\prime} of phenyl ring of pq$), 5.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of bpy-2-FPBA), $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of bpy). ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO_{6}, $298 \mathrm{~K}, \mathrm{TMS}$): $\delta 194.5,170.2,158.6,155.7,154.8,152.3$, $151.6,150.7,147.8,147.3,147.2,147.1,146.3,142.0,140.9,136.3,134.2,131.5$, $131.3,131.0,129.9,129.7,128.2,128.1,127.9,127.2,126.5,125.5,124.6,124.4$, 123.1, 122.3, 120.4, 118.7, 113.4, 67.4, 21.2. IR (KBr) $\tilde{v} / \mathrm{cm}^{-1}: 3445(\mathrm{O}-\mathrm{H}), 1706(\mathrm{C}=\mathrm{O})$, $845\left(\mathrm{PF}_{6}{ }^{-}\right)$. HR-ESI-MS (positive-ion mode, m / z): $\left[\mathrm{M}-\mathrm{PF}_{6}{ }^{-}\right]^{+}$calcd for $\mathrm{IrC}_{49} \mathrm{H}_{37} \mathrm{BN}_{4} \mathrm{O}_{4}$ 949.2537, found 949.2555.
$\left[\operatorname{Ir}(p q)_{2}(b p y-P h)\right]\left(\mathrm{PF}_{6}\right)(2 b)$

The synthetic procedure was similar to that of complex $\mathbf{1 b}$, except that $\left[\operatorname{lr}_{2}(p q)_{4} \mathrm{Cl}_{2}\right]$ (38.1 mg. 0.03 mmol$)$ was used instead of $\left[\mathrm{Ir}_{2}(\mathrm{ppy}){ }_{4} \mathrm{Cl}_{2}\right]$. Subsequent recrystallisation
of the solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ afforded the complex as orange crystals. Yield: 46.6 mg (76\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}, $298 \mathrm{~K}, \mathrm{TMS}$): $\delta 8.55-8.54$ (m, $5 \mathrm{H}, \mathrm{H} 3$ of bpy$\mathrm{Ph}, \mathrm{H} 4$ and $\mathrm{H} 4^{\prime}$ of quinolinyl ring of $\mathrm{pq}, \mathrm{H} 3$ and $\mathrm{H} 3^{\prime}$ of quinolinyl ring of pq), 8.37 (s, $1 \mathrm{H}, \mathrm{H} 3^{\prime}$ of bpy-Ph), 8.34 (d, J=5.7 Hz, 1H, H6 of bpy-Ph), 8.26 (d, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3$ and H3' of phenyl ring of pq), $8.20\left(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6^{\prime}\right.$ of bpy-Ph), $7.97-7.94(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H} 8$ and $\mathrm{H} 8{ }^{\prime}$ of quinolinyl ring of pq$), 7.80(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ of bpy), $7.57(\mathrm{~d}, \mathrm{~J}=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5^{\prime}$ of bpy), $7.49-7.40(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 5$ and H 6 of phenyl ring of bpy$\mathrm{Ph}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5$ and H 5 ' of quinolinyl ring of pq$), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 4$ of phenyl ring of bpy-Ph, and H7 and H7' of quinolinyl ring of pq), 7.06-6.96(m, 4H, H4 and $\mathrm{H} 4^{\prime}$ of phenyl ring of pq and H 6 and $\mathrm{H} 6^{\prime}$ of quinolinyl ring of pq$), 6.86(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H} 5$ and H 5 ' of phenyl ring of pq), 6.59-6.57 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 6$ and $\mathrm{H} 6^{\prime}$ of phenyl ring of pq), $5.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of bpy-Ph), $2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of bpy). ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO$d_{6}, 298$ K, TMS): $\delta 170.2,157.8,155.6,154.8,152.2,151.6,151.1,147.8,147.3,147.2$, 147.1, 146.3, 140.9, 134.2, 131.5, 131.3, 131.1, 130.1, 129.9, 129.6, 128.2, 128.1, 127.9, 127.2, 126.6, 125.5, 124.6, 124.4, 123.1, 122.5, 121.9, 118.7, 115.4, 67.3, 21.2. IR (KBr) $\tilde{\mathrm{V}} / \mathrm{cm}^{-1}: 844\left(\mathrm{PF}_{6}{ }^{-}\right)$. HR-ESI-MS (positive-ion mode, m / z): $\left[\mathrm{M}-\mathrm{PF}_{6}{ }^{-}\right]^{+}$calcd for $\mathrm{IrC}_{48} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}$ 877.2518, found 877.2524.
$\left[\operatorname{lr}(\text { pqe })_{2}(\right.$ bpy-2-FPBA) $]\left(\mathrm{PF}_{6}\right)(3 \mathrm{a})$

The synthetic procedure was similar to that of complex 1a, except that $\left[\mathrm{Ir}_{2}(\mathrm{pqe})_{4} \mathrm{Cl}_{2}\right]$ (45.1 mg .0 .03 mmol) was used instead of $\left[\mathrm{Ir}_{2}(\mathrm{ppy})_{4} \mathrm{Cl}_{2}\right]$. Subsequent recrystallisation of the solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ afforded the complex as red crystals. Yield: 50.8 mg (70%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}$, $298 \mathrm{~K}, \mathrm{TMS}$): $\delta 10.23$ (s, 1H, CHO), $8.84-8.83$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 3$ and $\mathrm{H} 3^{\prime}$ of quinolinyl ring of pqe), $8.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3$ of bpy), $8.41-8.32(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{H} 3^{\prime}$ of bpy, and H 3 and $\mathrm{H} 3^{\prime}$ of phenyl ring of pqe, and $\mathrm{H} 8^{\prime}$ and $\mathrm{H} 8^{\prime}$ of quinolinyl ring of pqe), 8.09 (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$ of bpy), 7.93 (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$ ' of bpy), 7.76 (d $, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ of bpy-2-FPBA), 7.64 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ of bpy-2-FPBA), 7.57 - 7.47 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H} 5$ ' of bpy and H 5 and H 5 ' of quinolinyl ring of pqe), $7.41-7.39$ (m, $2 \mathrm{H}, \mathrm{H} 7$ and $\mathrm{H} 7^{\prime}$ of quinolinyl ring of pqe), $7.31-7.15(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 2$ of phenyl ring bpy-2FPBA, H 6 and $\mathrm{H} 6^{\prime}$ of quinolinyl ring of pqe, and H 4 and $\mathrm{H} 4^{\prime}$ of phenyl ring of pqe), 7.03 $-6.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6\right.$ of phenyl ring of bpy-2-FPBA), $6.89-6.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5\right.$ and $\mathrm{H} 5^{\prime}$ of phenyl ring of pqe), 6.46 ($\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6$ and $\mathrm{H} 6^{\prime}$ of phenyl ring of pqe), 5.37 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ of bpy-2-FPBA), 4.07 (s, 6H, CH_{3} of pqe), 2.48 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of bpy). ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO-d ${ }_{6}, 298$ K, TMS): $\delta 194.5,170.2,165.8,158.6,155.4,154.6,152.6$, 151.7, 151.1, 147.9, 147.7, 147.1, 145.7, 142.0, 139.6, 136.3, 134.5, 131.7, 130.0, 128.8, 128.6, 126.9, 126.7, 125.6, 125.2, 125.1, 124.0, 123.5, 122.3, 120.4, 119.1,
119.0, 113.3, 67.4, 53.9, 21.2. IR (KBr) $\tilde{\text { v/ }} \mathrm{cm}^{-1}: 3446(\mathrm{O}-\mathrm{H}), 1732(\mathrm{C}=\mathrm{O}), 843\left(\mathrm{PF}_{6}{ }^{-}\right)$. HR-ESI-MS (positive-ion mode, m / z): $\left[\mathrm{M}-\mathrm{PF}_{6}{ }^{-}\right]^{+}$calcd for $\mathrm{IrC}_{53} \mathrm{H}_{41} \mathrm{BN}_{4} \mathrm{O}_{8}$ 1065.2647, found 1065.2643.
$\left[\operatorname{Ir}(\mathrm{pqe})_{2}(\mathrm{bpy}-\mathrm{Ph})\right]\left(\mathrm{PF}_{6}\right)(\mathbf{3 b})$

The synthetic procedure was similar to that of complex 1b, except that $\left[\mathrm{Ir}_{2}(\mathrm{pqe})_{4} \mathrm{Cl}_{2}\right]$ (45.1 mg .0 .03 mmol) was used instead of $\left[\mathrm{Ir}_{2}(\mathrm{ppy})_{4} \mathrm{Cl}_{2}\right]$. Subsequent recrystallisation of the solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ afforded the complex as red crystals. Yield: 49.8 mg (73\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- $\mathrm{d}_{6}, 298 \mathrm{~K}, \mathrm{TMS}$): $\delta 8.88-8.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3\right.$ and $\mathrm{H} 3^{\prime}$ of quinolinyl ring of pqe), $8.56-8.52\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3\right.$ of bpy and H 3 and $\mathrm{H} 3^{\prime}$ of phenyl ring of pqe), $8.37-8.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 8\right.$ and $\mathrm{H} 8^{\prime}$ of quinolinyl ring of pqe and $\mathrm{H} 3^{\prime}$ and H 6 of bpy), 8.20 (d, J = $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$ ' of bpy), 7.81 (d, J = $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ of bpy), $7.64-7.52$ (m, $5 \mathrm{H}, \mathrm{H} 5^{\prime}$ of bpy and $\mathrm{H} 5, \mathrm{H} 5^{\prime}, \mathrm{H} 7$ and $\mathrm{H} 7^{\prime}$ of quinolinyl ring of pqe), $7.33-7.19(\mathrm{~m}, 5 \mathrm{H}$, H2, H3 and H6 of phenyl ring of bpy-Ph and H6 and H6' of quinolinyl ring of pqe), 7.12 - $7.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5$ of phenyl ring of bpy-Ph), 7.03-6.95(m,3H, H4 of phenyl ring of bpy-Ph and H 4 and H 4 ' of phenyl ring of pqe), $6.97(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$ and H 6 of phenyl ring of bpy-Ph), 6.89-6.87(m,2H, H5 and H5' of phenyl ring of pqe), $6.65(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6$ and $\mathrm{H} 6^{\prime}$ of phenyl ring of pqe), $5.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of bpy-Ph), $4.14(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{CH}_{3}$ of pqe), 2.48 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of bpy). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 298 \mathrm{~K}, \mathrm{TMS}$):
$\delta 170.2,170.1,165.8,157.8,155.4,154.6,152.6,151.7,151.4,147.8,147.7,147.1$, 145.6, 139.6, 139.5, 134.5, 131.8, 131.7, 131.6, 130.1, 129.9, 128.8, 128.7, 128.6, $126.9,126.8,125.6,125.2,125.1,124.0,123.5,122.5,121.9,119.1,119.0,115.4,67.3$, 65.4, 53.9, 53.8, 21.2, 15.6. IR (KBr) $\tilde{/} / \mathrm{cm}^{-1}: 845\left(\mathrm{PF}_{6}{ }^{-}\right)$. HR-ESI-MS (positive-ion mode, $\mathrm{m} / \mathrm{z}):\left[\mathrm{M}-\mathrm{PF}_{6}{ }^{-}\right]^{+}$calcd for $\mathrm{IrC}_{52} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5} 993.2628$, found 993.2654 .

Preparation of the Cysteine and Peptide Conjugates of Complex 1a

A mixture of complex 1a ($2 \mu \mathrm{~mol}$) and L-Cys or the cysteine-containing peptides (3 $\mu \mathrm{mol}$) in acetate ammonium buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF (1:1, $\mathrm{v} / \mathrm{v}, 1 \mathrm{~mL}$) containing TCEP ($12 \mu \mathrm{~mol}$) was stirred at $37^{\circ} \mathrm{C}$ in the dark for 12 h . The solvent was removed under reduced pressure and the residual solid was purified by semi-preparative RPHPLC. The purified product was analysed by an Agilent analytical column (ZORBAX Eclipse Plus C18: $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$) with a linear gradient of $30-100 \%$ B over 18 min and a flow rate of $1 \mathrm{~mL} \mathrm{~min}^{-1}$. 1a-Cys. Yield: 1.7 mg (82\%). Positive-ion ESI-MS ion clusters at $m / z 934.9$ [$\left.\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}^{-}\right]^{+}$. 1a-ER. Yield: 2.5 mg (81\%). Positive-ion ESI-MS ion clusters at $\mathrm{m} / \mathrm{z} 761.5\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}+\mathrm{H}^{+}\right]^{2+}$. 1a-GA. Yield: 3.0 mg (82\%). Positive-ion ESI-MS ion clusters at $m / z 899.3\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}^{+}\right]^{2+}$. 1a-FC. Yield: 3.6 mg (83\%). Positive-ion ESI-MS ion clusters at $m / z 682.5\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}+2 \mathrm{H}^{+}\right]^{3+}, 512.1\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}\right.$ $\left.+3 \mathrm{H}^{+}\right]^{4+}$. For the QSY7-containing conjugate, a mixture of the purified $1 \mathrm{a}-\mathrm{FC}(1 \mu \mathrm{~mol})$, QSY7-NHS ($2 \mu \mathrm{~mol}$) and $\mathrm{Et}_{3} \mathrm{~N}(5 \mu \mathrm{~mol})$ in DMF ($500 \mu \mathrm{~L}$) was stirred at $37^{\circ} \mathrm{C}$ under an inert atmosphere of nitrogen in the dark for 18 h . The solvent was removed under reduced pressure and the residual solid was further purified by semi-preparative RPHPLC. 1a-FC-QSY7. Yield: 2.4 mg (85\%). ESI-MS ion clusters at $\mathrm{m} / \mathrm{z} 895.6\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}\right.$ $\left.+2 \mathrm{H}^{+}\right]^{3+}, 672.2\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}^{-}+3 \mathrm{H}^{+}\right]^{4+}, 538.1\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}^{-}+4 \mathrm{H}^{+}\right]^{5+}$.

Physical Measurements and Instrumentation

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE III 300,400 , or 600 MHz spectrometer at 298 K using deuterated solvents. Chemical shifts (δ, ppm) were reported relative to tetramethylsilane (TMS). Positive-ion electrospray ionisation mass spectra (ESI-MS) were recorded on a Perkin-Elmer Sciex API 3200MD mass spectrometer. High-resolution electrospray ionisation mass spectra (HR-ESI-MS) were recorded on a Bruker micrOTOF-QII. IR spectra of the samples in KBr pellets were recorded in the range of $4000-400 \mathrm{~cm}^{-1}$ using a Perkin Elmer FTIR-1600 spectrometer. Electronic absorption spectra were recorded on an Agilent 8453 diode array spectrophotometer. Steady-state emission spectra were recorded on a HORIBA FluoroMax-4 spectrofluorometer. Unless specified otherwise, all solutions for photophysical studies were degassed with no fewer than four successive freeze-pump-thaw cycles and stored in a $10-\mathrm{cm}^{3}$ round bottomed flask equipped with a sidearm 1-cm fluorescence cuvette and sealed from the atmosphere by a Rotaflo HP6/6 quick-release Teflon stopper. Emission quantum yields (Φ_{em}) were measured by optically dilute method using an aerated aqueous solution of the $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}\left(\Phi_{\mathrm{em}}=\right.$ $0.040, \lambda_{\mathrm{ex}}=455 \mathrm{~nm}$) as the standard solution. ${ }^{7}$ The concentrations of the standard and sample solutions were adjusted until the absorbance at 455 nm was 0.1 . Emission lifetimes were measured on an Edinburgh Instruments LP920 laser flash photolysis spectrometer using the third harmonic output ($355 \mathrm{~nm} ; 6-8 \mathrm{~ns}$ fwhm pulse width) of a Spectra-Physics Quanta-Ray Q-switched LAB-150 pulsed Nd:YAG laser (10 Hz) as the excitation source. High performance liquid chromatography (HPLC) was performed on an Agilent 1260 Infinity II system coupled with a diode array detector WR. HPLC was performed on an Agilent 1260 Infinity II system coupled with a diode array detector

WR using $\mathrm{H}_{2} \mathrm{O}$ containing $0.1 \%(v / v)$ trifluoroacetic acid (TFA) (solvent A) and $\mathrm{CH}_{3} \mathrm{CN}$ containing $0.1 \%(v / v)$ TFA (solvent B) as the solvents. The HPLC analyses were carried out using an Agilent analytical column (ZORBAX Eclipse Plus C18: $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$) with a linear gradient of 10 to 100% B and a flow rate of $1 \mathrm{~mL} \mathrm{~min}^{-1}$ and the detector was set at 210 or 350 nm . The HPLC purifications were performed on an Agilent semipreparative column (ZORBAX Eclipse XDB-C18 column: $9.4 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$) with a linear gradient of $50-100 \%$ B over 20 min and a flow rate of $3 \mathrm{~mL} \mathrm{~min}^{-1}$.

Kinetics Studies

All reactions were performed on a $100-\mu \mathrm{L}$ scale. The reaction kinetics of the ligand bpy-FPBA and FPBA complexes $\mathbf{1 - 3}(25 \mu \mathrm{M})$ with L-Cys (125 $\mu \mathrm{M}$) in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF $(9: 1, v / v)$ containing TCEP $(500 \mu \mathrm{M})$ at 298 K was measured by RP-HPLC. The reactions at different time points were quenched by the addition of $900 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(1: 1, v / v)$ containing 0.1% TFA and then analysed by RP-HPLC. The second-order rate constants (k_{2}) were determined by fitting the data to the following equation:

$$
y=\frac{\ln \frac{[A]_{o}[B]_{t}}{[A]_{t}[B]_{o}}}{\left([B]_{o}-[A]_{o}\right)}=k_{2} t
$$

where $[A]_{o}$ and $[A]_{t}$ are the concentrations of the FPBA-containing compound (ligand or complex) at time $=0$ and $t \mathrm{~s}$, respectively; and $[B]_{o}$ and $[B]_{t}$ are the concentrations
of cysteine at time $=0$ and $t \mathrm{~s}$, respectively. All kinetic curves generated using OriginPro 8.0 software package are summarised in Fig. S5.

Determination of ${ }^{1} \mathrm{O}_{2}$ Generation Quantum Yields (Φ_{Δ})

The ${ }^{1} \mathrm{O}_{2}$ generation quantum yields were determined by detecting the oxidation of DPBF using absorbance measurements. ${ }^{8}$ An aerated MeOH solution (2 mL) containing the iridium(III) complexes and DPBF ($100 \mu \mathrm{M}$) was introduced to a $1-\mathrm{cm}$ path length quartz cuvette and irradiated at 450 nm using a Xenon lamp (Ushio) (150 W) with a bandwidth of $20 \mathrm{~nm} .\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ was used as a reference for ${ }^{1} \mathrm{O}_{2}$ sensitisation $\left(\Phi_{\Delta}=\right.$ 0.73 in MeOH$).{ }^{9}$ The absorbance of DPBF at $c a .418 \mathrm{~nm}$ would decrease upon the irreversible 1,4-cycloaddition reaction of DPBF induced by ${ }^{1} \mathrm{O}_{2}$.

The following equation was used for the calculation of Φ_{Δ} :

$$
\Phi_{\Delta}^{\text {unknown }}=\Phi_{\Delta}^{\text {reference }} \times \frac{m^{\text {unknown }} \times F^{\text {reference }}}{m^{\text {reference }} \times F^{\text {unknown }}}
$$

where m is the slope of a linear fit of the change of absorbance at 418 nm against the irradiation time and F is the absorption correction factor, which is given as $F=1-10^{-A L}$ ($A=$ absorbance at 450 nm and $L=$ path length of the cuvette).

Selectivity Studies

For the chemoselectivity studies, complex 1a (25 nmol) in anhydrous DMF ($100 \mu \mathrm{~L}$) was added to a mixture of L-Cys, L-Lys, L-Met and L-Ser (100 nmol) in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$) ($900 \mu \mathrm{~L}$) containing TCEP (400 nM). The mixture was incubated in the dark at $37^{\circ} \mathrm{C}$ for 4 h . An aliquot of the reaction mixture ($20 \mu \mathrm{~L}$) was analysed by RP-HPLC. For the regioselectivity studies, complex 1a (25 nmol) in
anhydrous DMF ($100 \mu \mathrm{~L}$) was added to the tripeptide CSS, SCS, or SSC (100 nmol) in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4,900 \mu \mathrm{~L}$) containing TCEP (400 nmol).

Förster Distance Measurements

The Förster distance (R_{0}) between the iridium donor (D) and QSY7 acceptor (A) was calculated according to the following equation:

$$
R_{\mathrm{o}}(\text { in } \AA)=0.211 \times \sqrt[6]{\kappa^{2} \times n^{-4} \times \Phi_{\mathrm{D}} \times J(\lambda)}
$$

where k^{2} is a factor describing the relative orientation in space of the transition dipoles of the D and the A and is assumed to be 2/3; n is the refractive index of the solvent; Φ_{D} is the emission quantum yield of $\mathbf{1 a - F C} ; J(\lambda)$ is the overlap integral of the donor 1a-FC emission and the acceptor QSY7 absorption spectra.

Calculation of $J(\lambda)$ is based on the equation below:

$$
J(\lambda)=\int_{0}^{\infty} F_{D}(\lambda) \times \varepsilon_{A}(\lambda) \times \lambda^{4} \mathrm{~d} \lambda
$$

where F_{D} is the corrected emission intensity of the donor 1a-FC with the emission intensity normalised to unity and ε_{A} is the absorption coefficient of the acceptor.

Calculated energy transfer efficiency ($E_{\text {calc }}$) based on Förster's theory was determined according to the following equation:

$$
E_{\text {calc }}=\frac{R_{\mathrm{o}}^{6}}{R_{\mathrm{o}}^{6}+r^{6}}
$$

where r is the distance between the iridium(III) metal centre and the QSY7 moiety, which was estimated by the three-dimensional structures of the conjugate 1a-FC-QSY modulated by Chem3D 16.0.

Experimentally determined energy transfer efficiency ($E_{\text {expt }}$) was determined on the basis of the emission quantum yields of 1a-FC and 1a-FC-QSY according to the
following equation:

$$
E_{\text {expt }}=1-\left(\Phi_{\text {em, } 1 a-F C-Q S Y 7} / \Phi_{\text {em, } 1 a-F C}\right)
$$

Cell Cultures

HeLa and HEK 293 cells were cultured in DMEM containing 10\% FBS and 1\% penicillin/streptomycin in an incubator at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere. Cells were passaged by dissociation from the adherent state with 0.25% trypsin in PBS (pH 7.4) to retain their viability when $70-80 \%$ confluence was reached.

Cellular Uptake

HeLa and HEK 293 cells were grown in a $35-\mathrm{mm}$ tissue culture dish and incubated at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 48 h . The culture medium was removed and replaced with a fresh medium containing the conjugates of complex $1 \mathrm{a}(10 \mu \mathrm{M}, 4 \mathrm{~h})$ at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere and the cells were washed with PBS ($1 \mathrm{~mL} \times 3$). The cells were then trypsinised and harvested with PBS (1 mL). The cell number was counted with a Logos Biosystems LUNA-II automated cell counter. The harvested cells were digested with $65 \% \mathrm{HNO}_{3}(1 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ for 2 h , allowed to cool to room temperature and analysed by a NexION 2000 ICP-MS instrument (PerkinElmer SCIEX Instruments).

Live-cell Confocal Imaging

HeLa cells in growth medium were seeded on a sterilised coverslip in a $35-\mathrm{mm}$ tissue culture dish and grown at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 48 h . In the mitochondria and ER co-staining experiments, after treatment with 1a-Cys or 1a-ER $\left(20 \mu \mathrm{M}, 4 \mathrm{~h}, \lambda_{\mathrm{ex}}=405 \mathrm{~nm}, \lambda_{\mathrm{em}}=550-650 \mathrm{~nm}\right)$, the cells were washed with PBS (1 mL
$\times 3$) and further incubated with MitoTracker Deep Red ($100 \mathrm{nM}, 20 \mathrm{~min}, \lambda_{\mathrm{ex}}=635 \mathrm{~nm}$, $\left.\lambda_{\mathrm{em}}=650-680 \mathrm{~nm}\right)$, MitoTracker Green ($100 \mathrm{nM}, 20 \mathrm{~min}, \lambda_{\mathrm{ex}}=488 \mathrm{~nm}, \lambda_{\mathrm{em}}=500-$ 550 nm), ER-Tracker Green ($1 \mu \mathrm{M}, 20 \mathrm{~min}, \lambda_{\mathrm{ex}}=488 \mathrm{~nm}, \lambda_{\mathrm{em}}=500-550 \mathrm{~nm}$), LysoTracker Deep Red (100 nM, $30 \mathrm{~min}, \lambda_{\text {ex }}=635 \mathrm{~nm}$, $\lambda_{\mathrm{em}}=650-680 \mathrm{~nm}$) or LysoTracker Green ($100 \mathrm{nM}, 30 \mathrm{~min}, \lambda_{\mathrm{ex}}=488 \mathrm{~nm}, \lambda_{\mathrm{em}}=500-550 \mathrm{~nm}$) in growth medium at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere. After washing with $\mathrm{PBS}(1 \mathrm{~mL} \times 3)$, the cells were imaged using a Leica TCS SPE (inverted configuration) confocal microscope with an oil immersion $63 x$ oil-immersion objective lens. In the GA co-staining experiment, after treatment with 1a-GA $\left(20 \mu \mathrm{M}, 16 \mathrm{~h}, \lambda_{\mathrm{ex}}=405 \mathrm{~nm}, \lambda_{\mathrm{em}}=550-650\right.$ $\mathrm{nm})$, the cells were washed with Hank's Balanced Salt Solution (HBSS) ($1 \mathrm{~mL} \times 3$) and then incubated with BODIPY FL C C_{5}-ceramide complexed to BSA ($5 \mu \mathrm{M}, 30 \mathrm{~min}, \lambda_{\mathrm{ex}}=$ $\left.488 \mathrm{~nm}, \lambda_{\mathrm{em}}=500-550 \mathrm{~nm}\right)$ in HBSS at $4^{\circ} \mathrm{C}$. After washing with ice-cold HBSS $(1 \mathrm{~mL} \times$ 3), the cells were further incubated in fresh HBSS at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 30 min . The PCCs were determined using the program ImageJ (Version 1.4.3.67).

For imaging of furin activity, HeLa cells were incubated with conjugate 1a-FCQSY7 ($10 \mu \mathrm{M}, 6 \mathrm{~h}$), washed with PBS ($1 \mathrm{~mL} \times 3$) and then imaged using a Leica TCS SPE. For the control experiment, HeLa cells were pretreated with the furin inhibitor (500 $\mu \mathrm{M}, 30 \mathrm{~min})$, washed with PBS ($1 \mathrm{~mL} \times 3$), followed by incubation with conjugate 1a-FC-QSY7 ($10 \mu \mathrm{M}, 6 \mathrm{~h})$. After washing with PBS ($1 \mathrm{~mL} \times 3$), the cells were imaged using a Leica TCS SPE.

MTT Assays

HeLa and HEK 293 cells were seeded in a 96-well flat-bottomed microplate (ca. 10,000 cells per well) in a growth medium ($100 \mu \mathrm{~L}$) and incubated at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$
atmosphere for 48 h . The growth medium was removed and replaced with the conjugates of complex 1a in growth medium/DMSO $(99: 1, v / v)$ at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 24 h . After treatment, the medium was removed and replenished with phenol red-free growth medium ($100 \mu \mathrm{~L}$). One of the microplates was kept in the dark for 10 min , while the other microplate was irradiated with an LED ($450 \mathrm{~nm}, 10 \mathrm{~mW}$ $\mathrm{cm}^{-2}, 10 \mathrm{~min}$) cellular photocytotoxicity irradiator (PURI Materials, Shenzhen, China). The growth medium was replaced with fresh DMEM ($100 \mu \mathrm{~L}$) and the cells were further incubated at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 24 h . After replenished with fresh DMEM $(90 \mu \mathrm{~L})$ and a solution of MTT in PBS ($10 \mu \mathrm{~L}, 5 \mathrm{mg} \mathrm{mL}^{-1}$), the cells were incubated at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 4 h . The growth medium was removed and DMSO ($100 \mu \mathrm{~L}$) was added to each well. The microplates were further incubated at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 15 min . The absorbance of the solutions at 570 nm was measured with a SPECTRAmax 340 microplate reader (Molecular Devices Corp., Sunnyvale, CA).

Studies of the Cell Death Mechanism

The intracellular ROS levels were assessed by using a fluorogenic probe CMH_{2} DCFDA, ${ }^{10}$ the cytoplasmic membrane was stained by CellMask Deep Red, ${ }^{11}$ the nucleus morphology was visualised by staining with Hoechst 33342^{12} and MMP was analysed using Rhodamine 123 as the indicator. ${ }^{13}$ HeLa cells in growth medium were seeded on a sterilised coverslip in $35-\mathrm{mm}$ tissue culture dishes and grown at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 48 h . The culture medium was removed and replaced with conjugate 1a-FC-QSY7 (10 $\left.\mu \mathrm{M}, 4 \mathrm{~h}, \lambda_{\mathrm{ex}}=405 \mathrm{~nm}\right)$ in DMEM/DMSO $(99: 1, v / v)$ at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere. The cells were washed with PBS ($1 \mathrm{~mL} \times 3$) and
replenished by phenol red-free medium. The tissue culture dish was kept in the dark for 10 min or irradiated at $450 \mathrm{~nm}\left(10 \mathrm{~mW} \mathrm{~cm}{ }^{-2}, 10 \mathrm{~min}\right)$ with an LED cellular photocytotoxicity irradiator (PURI Materials, Shenzhen, China). The cells were washed with PBS ($1 \mathrm{~mL} \times 3$) and subsequently stained with CM-H2DCFDA ($5 \mu \mathrm{M}, 30 \mathrm{~min} ; \lambda_{\text {ex }}=$ $488 \mathrm{~nm}, \lambda_{\mathrm{em}}=500-550 \mathrm{~nm}$), CellMask Deep Red ($5 \mu \mathrm{M}, 15 \mathrm{~min} ; \lambda_{\mathrm{ex}}=635 \mathrm{~nm}, \lambda_{\mathrm{em}}=$ $650-700 \mathrm{~nm})$, Hoechst $33342\left(5 \mu \mathrm{M}, 15 \mathrm{~min} ; \lambda_{\mathrm{ex}}=405 \mathrm{~nm}, \lambda_{\mathrm{em}}=415-495 \mathrm{~nm}\right)$, Rhodamine $123\left(5 \mu \mathrm{M}, 15 \mathrm{~min} ; \lambda_{\mathrm{ex}}=488 \mathrm{~nm}, \lambda_{\mathrm{em}}=500-550 \mathrm{~nm}\right)$ or CellEvent Caspase-3/7 Red ($20 \mu \mathrm{~L}, 1: 100,1 \mathrm{~h}, \lambda_{\mathrm{ex}}=590 \mathrm{~nm}, \lambda_{\mathrm{em}}=610-630 \mathrm{~nm}$) in DMEM at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere. The cells were washed with PBS ($1 \mathrm{~mL} \times 3$) and then mounted onto a sterilised glass slide for imaging.

Annexin V/PI Assays

HeLa cells in growth medium were seeded on two 6-well plates and grown at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 48 h . HeLa cells were treated without or with conjugate 1a-FC-QSY7 ($5 \mu \mathrm{M}, 24 \mathrm{~h}$) in DMEM/DMSO (99:1, v/v) at $37^{\circ} \mathrm{C}$ under a 5% CO_{2} atmosphere. The cells were washed with PBS ($1 \mathrm{~mL} \times 3$) and fresh phenol red-free medium was added. The cells were kept in the dark for 10 min or photoirradiated at $450 \mathrm{~nm}\left(10 \mathrm{~mW} \mathrm{~cm}{ }^{-2}, 10 \mathrm{~min}\right)$. After further incubation in fresh DMEM $(100 \mu \mathrm{~L})$ at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 4 h , the medium was removed, followed by washing with PBS ($1 \mathrm{~mL} \times 3$). The cells were then trypsinised and centrifuged at 1500 rpm for 1 min and the resulting cell pellet was washed with PBS (1 mL) and subjected to centrifugation. The cells were resuspended in an Annexin-V binding buffer ($100 \mu \mathrm{~L}$) in the flow cytometer tubes, followed by the addition of the $\mathrm{PI}\left(100 \mu \mathrm{~g} \mathrm{~m}^{-1}, 15 \mathrm{~min}\right.$, $15 \mathrm{~min}, \lambda_{\mathrm{ex}}=561 \mathrm{~nm}$) and Alexa Fluor 647-Annexin V conjugate ($5 \mu \mathrm{~L}, 50 \mu \mathrm{LmL}^{-1}, 15$
$\left.\min , \lambda_{\mathrm{ex}}=638 \mathrm{~nm}\right)$. The cell suspension was kept in the dark for 15 min , followed by the addition of Annexin V binding buffer ($400 \mu \mathrm{~L}$) and was analysed by flow cytometer (Beckman CytoFLEX). The cells without any treatment were used as a control group for background correction. The experiments were performed in triplicates and analysed using the FlowJo V10 software.

bpy-Br
bpy-Ph-aldh-bae
bpy-2-FPBA

$\mathrm{N}^{\wedge} \mathrm{C}=\mathrm{ppy}(\mathbf{1 a}), \mathrm{pq}(\mathbf{2 a})$, pqe (3a)

$\mathrm{N}^{\wedge} \mathrm{C}=\mathrm{ppy}(\mathbf{1 b}), \mathrm{pq}(\mathbf{2 b})$, pqe (3b)

Scheme S1 Synthetic routes of the ligands and complexes.

Table S1 Electronic absorption spectral data of complexes $\mathbf{1 a} \mathbf{a} \mathbf{3 a}$ and $\mathbf{1 b} \mathbf{- 3 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$ at 298 K .

Complex	Solvent	$\lambda_{\text {abs }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$
1a	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	257 (58,950), 311 sh (24,470), 339 sh (10,585), 380
		$(7,395), 417$ sh (3,890), 480 (985)
	$\mathrm{CH}_{3} \mathrm{CN}$	$255(57,095), 309$ sh (23,960), $338(11,670), 378(6,130)$,
		414 sh (3,470), 482 (940)
1b	$\mathrm{CH}_{2} \mathrm{Cl} 2$	$259(61,130), 270$ sh (58,345), 310 sh (25,970), 337 sh
		$(11,790), 382(8,085), 415$ sh (4,330), 480 (990)
	$\mathrm{CH}_{3} \mathrm{CN}$	255 (59,275), 267 (56,440), 309 (25,260), 337 sh
		$(11,435), 379(6,160), 413$ sh (4,115), 482 (945)
2a	$\mathrm{CH}_{2} \mathrm{Cl} 2$	266 (73,020), 281 sh (70,140), $334(31,875), 441(6,280)$
	$\mathrm{CH}_{3} \mathrm{CN}$	260 (72,270), 280 sh (65,210), $336(29,610), 430(6,215)$
2b	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	278 (70,470), 308 sh (31,610), $339(31,275), 441(6,150)$
	$\mathrm{CH}_{3} \mathrm{CN}$	$271(68,640), 301$ sh (31,085), $337(29,905), 438(6,810)$
3a	$\mathrm{CH}_{2} \mathrm{Cl} 2$	266 (67,550), $292(61,190), 356$ sh (31,590), $462(4,950)$
	$\mathrm{CH}_{3} \mathrm{CN}$	$262(69,105), 262(69,105), 349$ sh (31,260), $458(5,140)$
3b	$\mathrm{CH}_{2} \mathrm{Cl} 2$	$268(64,950), 292(61,245), 354$ sh (32,835), $472(5,125)$
	$\mathrm{CH}_{3} \mathrm{CN}$	267 (64,770), 290 (58,970), 352 sh (31,480), $461(5,890)$

Table S2 Photophysical data of complexes 1a-3a and 1b-3b.

Complex	Medium (T/K)	$\lambda_{\text {em }} / \mathrm{nm}^{\text {a }}$	$\tau_{0} / \mu s^{b}$	$\Phi_{\mathrm{em}}{ }^{c}$
1a	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (298)	575	0.61	0.24
	$\mathrm{CH}_{3} \mathrm{CN}$ (298)	586	0.36	0.10
	Buffer/ $/ \mathrm{MeOH}^{d}$ (298)	590	0.15	0.07
	Glass ${ }^{e}$ (77)	515, 536 sh	4.33	
1b	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (298)	578	0.62	0.32
	$\mathrm{CH}_{3} \mathrm{CN}$ (298)	590	0.35	0.20
	Buffer/ $/ \mathrm{MeOH}^{d}$ (298)	590	0.14	0.08
	Glass ${ }^{e}$ (77)	515, 533 sh	4.58	
2a	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (298)	557	2.36	0.65
	$\mathrm{CH}_{3} \mathrm{CN}$ (298)	560	1.77	0.47
	Buffer/ $/ \mathrm{MeOH}^{d}$ (298)	557	1.09	0.50
	Glass ${ }^{\text {e }}$ (77)	543 (max), 582, 639 sh	4.72	
2b	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (298)	556	2.51	0.61
	$\mathrm{CH}_{3} \mathrm{CN}$ (298)	558	1.98	0.43
	Buffer/ $/ \mathrm{MeOH}^{d}$ (298)	557	1.06	0.45
	Glass ${ }^{e}$ (77)	542 (max), 582, 638 sh	4.70	
3a	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (298)	622	1.22	0.26
	$\mathrm{CH}_{3} \mathrm{CN}$ (298)	640	0.63	0.12
	Buffer/ $/ \mathrm{MeOH}^{d}$ (298)	655	0.04	0.007
	Glass ${ }^{\text {e }}$ (77)	597, 648 sh	4.89	
3b	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (298)	623	1.42	0.22

$\mathrm{CH}_{3} \mathrm{CN}(298)$	639	0.74	0.13
Buffer $/ \mathrm{MeOH}^{d}(298)$	655	0.04	0.007
Glass $^{e}(77)$	$598,648 \mathrm{sh}$	4.82	

${ }^{a} \lambda_{\mathrm{ex}}=350 \mathrm{~nm}$.
${ }^{b}$ The lifetimes were measured at the emission maxima ($\lambda_{\mathrm{ex}}=355 \mathrm{~nm}$).
${ }^{c}\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ was used as a reference $\left(\Phi_{\mathrm{em}}=0.040\right.$ in aerated $\left.\mathrm{H}_{2} \mathrm{O}, \lambda_{\text {ex }}=455 \mathrm{~nm}\right) .{ }^{7}$
${ }^{d}$ Potassium phosphate buffer (50 mM, pH 7.4)/MeOH (1:1, v/v).
${ }^{e} \mathrm{EtOH} / \mathrm{MeOH}(4: 1, v / v)$

Table S3 The ${ }^{1} \mathrm{O}_{2}$ generation quantum yields of complexes $\mathbf{1 a} \mathbf{a} \mathbf{- 3 a}$ and $\mathbf{1 b} \mathbf{b} \mathbf{3 b}$ in aerated MeOH at 298 K .

Complex	$\Phi_{\Delta}{ }^{a}$
1a	0.77
1b	0.79
2a	0.83
2b	0.86
3a	0.72
3b	0.75

${ }^{a}\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ was used as the reference $\left(\Phi_{\Delta}=0.73\right.$ in aerated MeOH$) .{ }^{9}$

Table S4 Photophysical data of the conjugates of complex 1a in degassed KPi (50 mM , $\mathrm{pH} 7.4) / \mathrm{MeOH}(1: 1, v / v)$.

Conjugate	$\lambda_{\mathrm{em}} / \mathrm{nm}^{a}$	$\tau_{0} / \mu \mathrm{s}^{b}$	$\Phi_{\mathrm{em}}{ }^{c}$
1a-Cys	592	0.14	0.08
1a-ER	592	0.15	0.08
1a-GA	592	0.16	0.07
1a-FC	592	0.15	0.08
1a-FC-QSY7	610	0.04	0.003

${ }^{a} \lambda_{\mathrm{ex}}=350 \mathrm{~nm}$.
${ }^{b}$ The lifetimes were measured at the emission maxima $\left(\lambda_{\mathrm{ex}}=355 \mathrm{~nm}\right)$.
${ }^{c}\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ was used as a reference $\left(\Phi_{\mathrm{em}}=0.040\right.$ in aerated $\left.\mathrm{H}_{2} \mathrm{O}, \lambda_{\mathrm{ex}}=455 \mathrm{~nm}\right) .{ }^{7}$

Table S5 The ${ }^{1} \mathrm{O}_{2}$ generation quantum yields of the conjugates of complex $\mathbf{1 a}$ in aerated MeOH at 298 K .

Complex	$\Phi_{\Delta}{ }^{a}$
1a-Cys	0.75
1a-ER	0.74
1a-GA	0.73
1a-FC	0.72
1a-FC-QSY7	0.51

${ }^{a}\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}$ was used as the reference $\left(\Phi_{\Delta}=0.73\right.$ in aerated MeOH$) .{ }^{9}$

Table S6 (Photo)cytotoxicity ($\mathrm{IC}_{50}, \mu \mathrm{M}$) of the conjugates of complex 1a toward HeLa and HEK 293 cells under dark or light conditions ($\lambda_{\text {ex }}=450 \mathrm{~nm}, 10 \mathrm{~mW} \mathrm{~cm}{ }^{-2}, 10 \mathrm{~min}$).

HeLa				HEK 293			
Conjugate	$\mathrm{IC}_{50, \text { dark }}$	$\mathrm{IC}_{50, \mathrm{light}}$	$\mathrm{Pl}^{\text {a }}$	$\mathrm{IC}_{50, \text { dark }}$	$\mathrm{IC}_{50, \mathrm{light}}$	$\mathrm{Pl}^{\text {a }}$	SI ${ }^{\text {b }}$
1a-Cys	28.0 ± 2.2	1.1 ± 0.1	25	29.0 ± 0.2	2.9 ± 0.1	10	3
1a-ER	26.1 ± 0.9	2.6 ± 0.1	10	33.7 ± 0.3	3.3 ± 0.1	10	1
1a-GA	33.7 ± 0.2	5.2 ± 0.4	6	38.7 ± 1.2	6.3 ± 0.2	6	1
1a-FC-QSY7	29.1 ± 2.4	1.3 ± 0.1	22	31.5 ± 0.5	8.2 ± 0.1	4	6

${ }^{a}$ Photocytotoxicity Index $(\mathrm{PI})=\mathrm{IC}_{50, \text { dark }} / \mathrm{IC}_{50, \text { light }}$.
${ }^{b}$ Cancer Selectivity Index (SI) $=1 C_{50, l i g h t}(H e L a) / I C_{50, \text { light }}($ HEK 293 $)$.

Table S7 Cellular uptake of the conjugates of complex 1a towards HeLa and HEK 293 cells.

	Amount of iridium per cell/fmol ${ }^{a}$	
Conjugate	HeLa	HEK293
1a-Cys	0.26 ± 0.04	0.16 ± 0.01
1a-ER	0.23 ± 0.06	0.14 ± 0.04
1a-GA	0.20 ± 0.01	0.10 ± 0.01
1a-FC-QSY7	1.08 ± 0.06	0.43 ± 0.02

${ }^{a}$ Amount of iridium associated with an average cell upon incubation with the conjugates $(10 \mu \mathrm{M})$ at $37^{\circ} \mathrm{C}$ for 4 h , as determined by ICP-MS.

Table S8 FRET parameters of conjugate 1a-FC-QSY7.

Donor	Acceptor	$J(\lambda)^{a} / \mathrm{nm}^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$	R_{0} / \AA	d^{b} / \AA	$E_{\text {calc }}$	$E_{\text {expt }}$
1a-FC	QSY7	4.01×10^{17}	88.5	29.8	0.99	0.97

${ }^{a}$ Overlap integral of the emission spectrum of the QSY7-free conjugate 1a-FC and the absorption spectrum of QSY7 (acceptor).
${ }^{b}$ Distance between the iridium(III) atom and QSY7 in 1a-FC-QSY7.

Fig. $\mathbf{S 1}$ Electronic absorption spectra of complexes $\mathbf{1 a} \mathbf{-} \mathbf{3 a}$ and $\mathbf{1 b} \mathbf{-} \mathbf{3 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (black) and $\mathrm{CH}_{3} \mathrm{CN}$ (red) at 298 K .

Fig. S2 Normalised emission spectra of complexes $\mathbf{1 a} \mathbf{-} \mathbf{3 a}$ and $\mathbf{1 b} \mathbf{-} \mathbf{3} \mathbf{b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (black) and $\mathrm{CH}_{3} \mathrm{CN}$ (red) at 298 K and alcohol glass at 77 K (blue).

Fig. S3 HPLC chromatograms of the reaction mixtures of complexes (a) 1a ($25 \mu \mathrm{M}$), (b) 2a ($25 \mu \mathrm{M}$) and (c) 3a ($25 \mu \mathrm{M}$) without (black) or with L-Cys ($100 \mu \mathrm{M}$) (red) in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF ($9: 1, \mathrm{v} / \mathrm{v}$) containing TCEP ($400 \mu \mathrm{M}$) after incubation at $37^{\circ} \mathrm{C}$ for 4 h . The absorbance was monitored at 210 nm .
(a)

(b)

(c)

Fig. S4 ESI-mass spectra of the reaction mixtures of complexes (a) 1a (25 $\mu \mathrm{M}$), (b) 2a ($25 \mu \mathrm{M}$) and (c) 3a ($25 \mu \mathrm{M}$) with L-Cys ($100 \mu \mathrm{M}$) in ammonium acetate buffer (50 mM , $\mathrm{pH} 7.4) / \mathrm{DMF}(9: 1, v / v)$ containing TCEP $(400 \mu \mathrm{M})$ after incubation at $37^{\circ} \mathrm{C}$ for 4 h .

Fig. S5 Second-order kinetics for the reaction of (a)complex $\mathbf{1}(25 \mu \mathrm{M})$, (b) complex 2 $(25 \mu \mathrm{M})$ and (c) complex $3(25 \mu \mathrm{M})$ with L-Cys $(125 \mu \mathrm{M})$ at different time points in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF ($9: 1, v / v$) containing TCEP ($500 \mu \mathrm{M}$) after incubation at $37^{\circ} \mathrm{C}$. The slope of the linear fit corresponds to the k_{2} of the reaction.

Fig. S6 HPLC chromatograms of (a) complex $1(25 \mu \mathrm{M})$, (b) complex $2(25 \mu \mathrm{M})$ and (c) complex $3(25 \mu \mathrm{M}$) after incubation in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH}$ $7.5) /$ DMF $(9: 1, v / v)$ at $37^{\circ} \mathrm{C}$ for 0 and 12 h . The absorbance was monitored at 350 nm .

(b)

(c)

Fig. S7 (a) HPLC chromatograms of the reaction mixture of complex 1a ($25 \mu \mathrm{M}$) without (black) or with L-Cys ($100 \mu \mathrm{M}$), L-Lys ($100 \mu \mathrm{M}$), L-Met ($100 \mu \mathrm{M}$) and L-Ser (100 $\mu \mathrm{M}$) (red) in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF (9:1, v / v) containing TCEP $(400 \mu \mathrm{M})$ after incubation at $37^{\circ} \mathrm{C}$ for 4 h . The absorbance was monitored at 350 nm . (b) ESI-mass spectrum of the new emerging peak collected from HPLC eluent at t_{R} $=12.6 \mathrm{~min}$.
(a)

(b)

Fig. $\mathbf{S 8}$ HPLC chromatograms of (a) complex 1a ($25 \mu \mathrm{M}$) and (b) the reaction mixture of complex 1a ($25 \mu \mathrm{M}$) and CKDEL ($100 \mu \mathrm{M}$) in ammonium acetate buffer (50 mM , pH 7.4)/DMF (9:1, v/v) containing TCEP $(400 \mu \mathrm{M})$ after incubation at $37^{\circ} \mathrm{C}$ for 4 h . The absorbance was monitored at 210 nm .
(a)

(b)

Fig. S9 HPLC chromatograms of (a) complex 1a (25 $\mu \mathrm{M}$), (b) CSDYQRL (100 $\mu \mathrm{M}$) and (c) a reaction mixture of complex 1a ($25 \mu \mathrm{M}$) and CSDYQRL (100 $\mu \mathrm{M}$) in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF ($9: 1, \mathrm{v} / \mathrm{v}$) containing TCEP ($400 \mu \mathrm{M}$) after incubation at $37^{\circ} \mathrm{C}$ for 4 h . The absorbance was monitored at 210 nm .
(a)

(b)

(c)

Fig. S10 HPLC chromatograms of the purified conjugates 1a-Cys, 1a-ER and 1a-GA. The absorbance was monitored at 350 nm .

Fig. S11 ESI-mass spectra of the purified conjugates 1a-Cys, 1a-ER and 1a-GA.

Fig. S12 LSCM images of HeLa cells incubated with (a) conjugate 1a-Cys (20 $\mu \mathrm{M}, 4 \mathrm{~h}$, $\left.\lambda_{\mathrm{ex}}=405 \mathrm{~nm}, \lambda_{\mathrm{em}}=550-650 \mathrm{~nm}\right)$, (b) 1a-ER $\left(20 \mu \mathrm{M}, 4 \mathrm{~h}, \lambda_{\mathrm{ex}}=405 \mathrm{~nm}, \lambda_{\mathrm{em}}=550-\right.$ $650 \mathrm{~nm})$ or (c) 1a-GA ($20 \mu \mathrm{M}, 16 \mathrm{~h}, \lambda_{\mathrm{ex}}=405 \mathrm{~nm}, \lambda_{\mathrm{em}}=550-650 \mathrm{~nm}$), and then LysoTracker Deep Red ($100 \mathrm{nM}, 30 \mathrm{~min}, \lambda_{\mathrm{ex}}=635 \mathrm{~nm}, \lambda_{\mathrm{em}}=650-680 \mathrm{~nm}$), LysoTracker Green ($100 \mathrm{nM}, 30 \mathrm{~min}, \lambda_{\mathrm{ex}}=488 \mathrm{~nm}, \lambda_{\mathrm{em}}=500-550 \mathrm{~nm}$) or MitoTracker Green (100 $\left.\mathrm{nM}, 20 \mathrm{~min}, \lambda_{\mathrm{ex}}=488 \mathrm{~nm}, \lambda_{\mathrm{em}}=500-550 \mathrm{~nm}\right)$, respectively. Scale bar $=20 \mu \mathrm{~m}$.

Fig. S13 HPLC chromatograms of (a) complex 1a (25 $\mu \mathrm{M}$), (b) CGGGGRVRRSVK (FC) $(100 \mu \mathrm{M})$ and (c) a reaction mixture of complex $1 \mathrm{a}(25 \mu \mathrm{M})$ and FC peptide $(100 \mu \mathrm{M})$ in ammonium acetate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$)/DMF ($9: 1, v / v$) containing TCEP $(400 \mu \mathrm{M})$ after incubation at $37^{\circ} \mathrm{C}$ for 4 h . The absorbance was monitored at 210 nm . (d) ESImass spectrum of the purified conjugate 1a-FC.

Fig. S14 ESI-mass spectra of the conjugates (a) 1a-CGGGGRVRR and (b) SVK-QSY7 collected from the HPLC eluent at $t_{R}=9.3$ and $t_{R}=10.3 \mathrm{~min}$, respectively.
(a)

(b)

Fig. S15 LSCM images of caspase $3 / 7$ activity of HeLa cells upon pretreatment with conjugate 1a-FC-QSY7 (10 $\mu \mathrm{M}, 4 \mathrm{~h}$) without (left) or with (right) light irradiation (450 $\mathrm{nm}, 10 \mathrm{~mW} \mathrm{~cm}{ }^{-2}, 10 \mathrm{~min}$) and further incubation with CellEvent Caspase-3/7 Red (20 $\left.\mu \mathrm{L}, 1: 100,1 \mathrm{~h}, \lambda_{\mathrm{ex}}=590 \mathrm{~nm}, \lambda_{\mathrm{em}}=610-630 \mathrm{~nm}\right)$.

$$
-h v
$$

$+h v$

Fig. S16 Flow cytometric analysis of HeLa cells treated without (a) or with conjugate 1a-FC-QSY7 ($5 \mu \mathrm{M}$) in the dark for 24 h , then washed thoroughly with PBS, incubated in the dark (b) or irradiated at $450 \mathrm{~nm}\left(10 \mathrm{~mW} \mathrm{~cm}^{-2}\right)$ (c) for 10 min and subsequently incubated in the dark for 4 h . They were then stained with $\mathrm{PI}\left(100 \mu \mathrm{gL}^{-1}, 15 \mathrm{~min}, \lambda_{\mathrm{ex}}\right.$ $=561 \mathrm{~nm}$) and Alexa Fluor 647-Annexin V conjugate ($50 \mu \mathrm{~L} \mathrm{~mL}^{-1}, 15 \mathrm{~min}, \lambda_{\mathrm{ex}}=638$ $n m$).
(a)

1a-FC-QSY7
(b)

Q1	Q2	
0.10		0.31
Q4		
94.5		5.11

1a-FC-QSY7 $+h v$
(c)

Q1		Q2
0.011		0.22
Q4		
13.0		86.8

Fig. S17 ${ }^{1} \mathrm{H}$ NMR spectrum of bpy-Ph-aldh-bae in CDCl_{3} at 298 K .

Fig. S18 ${ }^{1} \mathrm{H}$ NMR spectrum of bpy-2-FPBA in DMSO- d_{6} at 298 K .

Fig. S19 ${ }^{1} \mathrm{H}$ NMR spectrum of complex 1a in DMSO- d_{6} at 298 K .

Fig. S20 ${ }^{13} \mathrm{C}$ NMR spectrum of complex 1a in DMSO-d 6 at 298 K .

Fig. S21 HR-ESI-mass spectra of complex 1a in $\mathrm{CH}_{3} \mathrm{CN}$.

Fig. S22 ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{1 b}$ in DMSO- d_{6} at 298 K .

Fig. S23 ${ }^{13} \mathrm{C}$ NMR spectrum of complex $\mathbf{1 b}$ in DMSO- d_{6} at 298 K .

Fig. S24 HR-ESI-mass spectra of complex $\mathbf{1 b}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Fig. S25 ${ }^{1} \mathrm{H}$ NMR spectrum of complex 2a in DMSO- d_{6} at 298 K .

Fig. S26 ${ }^{13} \mathrm{C}$ NMR spectrum of complex 2 a in $\mathrm{DMSO}-d_{6}$ at 298 K .

Fig. $\mathbf{S 2 7}$ HR-ESI-mass spectra of complex $\mathbf{2 a}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Fig. S28 ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{2 b}$ in acetone- d_{6} at 298 K .

Fig. S29 ${ }^{13} \mathrm{C}$ NMR spectrum of complex $\mathbf{2 b}$ in DMSO- d_{6} at 298 K.

Fig. S30 HR-ESI-mass spectra of complex $\mathbf{2} \mathbf{b}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Fig. S31 ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{3 a}$ in DMSO- d_{6} at 298 K .

Fig. S32 ${ }^{13} \mathrm{C}$ NMR spectrum of complex 3 a in DMSO- d_{6} at 298 K .

Fig. S33 HR-ESI-mass spectra of complex $\mathbf{3 a}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Fig. S34 ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{3 b}$ in acetone- d_{6} at 298 K .

Fig. S35 ${ }^{13} \mathrm{C}$ NMR spectrum of complex $\mathbf{3 b}$ in DMSO- d_{6} at 298 K .

Fig. S36 HR-ESI-mass spectra of complex $\mathbf{3 b}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

References

1. W. L. F. Armarego, C. Chai, Purification of Laboratory Chemical, 7th ed, Butterworth-Heinemann, Oxford, 2013, pp. 103-554.
2. T. S.-M. Tang, K.-K. Leung, M.-W. Louie, H.-W. Liu, S. H. Cheng and K. K.-W. Lo, Dalton Trans., 2015, 44, 4945.
3. B. D. Sherman, Y. Xie, M. V. Sheridan, D. Wang, D. W. Shaffer, T. J. Meyer and J. J. Concepcion, ACS Energy Lett., 2017, 2, 124.
4. L. Huang, P. K.-K. Leung, L.C.-C. Lee, G.-X. Xu, Y.-W. Lam and K. K.-W. Lo, Chem. Commun., 2022, 58, 10162.
5. E. Sella and D. Shabat, Org. Biomol. Chem., 2013, 11, 5074.
6. S. Sprouse, K. A. King, P. J. Spellane and R. J. Watts, J. Am. Chem. Soc., 1984, 106, 6647.
7. K. Suzuki, A Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, Phys. Chem. Chem. Phys., 2009, 11, 9850.
8. M. Martínez-Alonso, N. Busto, L. D. Aguirre, L. Berlanga, M. C. Carrión, J. V. Cuevas, A. M. Rodríguez, A. Carbayo, B. R. Manzano, E. Ortí, F. A. Jalón, B. García and G. Espino, Chem. Eur. J., 2018, 24, 17523.
9. D. Garcìa-Fresnadillo, Y. Georgiadou, G. Orellana, A. M. Braun and E. Oliveros, Helv. Chim. Acta, 1996, 79, 1222.
10. M. J. Forkink, A. M. Smeitink, R. Brock, P. H. G. M. Willems and W. J. H. Koopman, Biochim. Biophys. Acta, 2010, 1797, 1034.
11. X. Gong, Y. Didan, J. G. Lock and S. Strömblad, EMBO J., 2018, 37, e98994.
12. L. C. Crowley, B. J. Marfell and N. J. Waterhouse, Cold Spring Harbor Protoc., 2016, 2016, 778.
13. N. E. Saris, V. V. Teplova, I. V. Odinokova and T. S. Azarashvily, Anal. Biochem., 2004, 328, 109.
