Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Jiawei Dai¹, Yanyu Zhong¹, Jiannan Zhu¹, Xiaoling Liu¹, Tiansui Zhang¹, Deyu Zhu¹, Guangfang Li¹, Zhengyun Wang^{1*}, Hongfang Liu^{1*}

[1] School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China

*Corresponding Author: <u>wzyhustsh@163.com</u>, <u>liuhf@hust.edu.cn</u>

Experimental Section

1. Materials and chemicals

The ligand 4,4,4,4-(Porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid) (H₂TCPP), 4,4'-Bipyridine (BPY), copper (II) chloride dihydrate, ascorbic acid (AA), dopamine (DA), uric acid (UA), glucose (Glu), ZnSO₄, NaCl, KCl, Na₂HPO₄ and Na₂HPO₄ were purchased from Wuhan Shen Shi Chemical Co. Ltd. The phosphate buffer solution (PBS) were prepared by mixing the stock solution of from 0.1 M Na₂HPO₄ and Na₂HPO₄ and Na₂HPO₄ and used without further purification.

2. Characterization

The mophology characterizations of the CuTCPP and CuTCPP-BPY were carried out on field-emission scanning electron microscope (FESEM, SU-8010). The functional groups of the sample were studied using Fourier transform infrared spectrometer (FTIR, Bruker INVENIO-R). Transmission electron microscopy (TEM) images, SAED patterns and mapping patterns were obtained by a high-resolution transmission electron microscopy with 200 kV (Tecnai G2 20). The optical property of CuTCPP and CuTCPP-BPY was measured by UV-vis absorption spectroscopy (SHIMADZU UV-2600). X-ray diffraction (XRD) analysis was carried out on Empyrean X-ray diffractometer using Cu Ka radiation (λ =1.5406 Å, scanning range: 10°-80°, scanning speed: 10° min⁻¹). Atomic force microscope (AFM, Shimadzu SPM 9700) was used to measure the thickness of CuTCPP and CuTCPP-BPY. An ultraviolet visible spectrophotometer (Shimadzu UV-2600) was employed to study the metalation of porphyrin rings by Cu²⁺. All electrochemical test were performed by CHI760E electrochemical workstation.

3. Synthesis of CuTCPP and CuTCPP-BPY MOFs

First, 5.1mg of CuCl₂·2H₂O (0.03 mmol) were dissolved in 6 mL of the mixture of ethanol and DMF (V:V = 1:3) in a 15 mL breaker. Then, 7.9 mg of H₂TCPP (0.01 mmol) was added to the obtained solution with stirring. After the solution was stirred for 5 min, the breaker was sonicated for 20 min to form a

homogeneous solution. The mixture was heated to 80 °C and reacted for 5 h. The CuTCPP products were obtained by centrifugation and washing with DMF three times. The synthetic conditions for CuTCPP-BPY was similar to those of CuTCPP except for adding 5.76 mg BPY (0.02 mmol) to the breaker after dissolving $CuCl_2 \cdot 2H_2O$.

4. Preparation of the modified electrode

The as-prepared CuTCPP/CuTCPP-BPY MOF was dispersed in DMF (2 mg/mL) and sonicated in a bath for 10 min. Then Nafion (0.1 wt%) was added in the prepared CuTCPP/CuTCPP (SDS) MOF solution (V: V = 1:500) to form the CuTCPP/CuTCPP (SDS) MOF ink. The Nafion was used for preventing the CuTCPP/CuTCPP-BPY MOF from peeling off from the electrode surface. The modified electrode was made by dropping appropriate prepared ink on a cleaned GCE and dried for following measurement. 10 μ L of CuTCPP/CuTCPP (SDS) MOF ink was dropped onto the GC electrode surface. Subsequently, CuTCPP/GC was allowed to dry at 60 °C to enhance the cohesiveness of the Nafion attached to the electrode surface.

5. Calculations for electrochemically active surface area

The electrochemically active surface area is calculated according to the following formula:

$$I_{c} = v \times C_{dl}$$
$$ECSA = C_{dl} / C_{s}$$

Where v is the scan rate in the CV test, I_c is the calculated changing current density (also known as the charging current), C_{dl} is the double-layer Capacitance (C_{dl}) of the catalytic material surface, and C_s is the specific capacitance of the sample under the same conditions.

Figures, tables and captions

Figure S1. (a) N 1s and (b) O 1s XPS spectrume of CuTCPP and CuTCPP-BPY.

Figure S2. (a)AFM image of CuTCPP. (b) AFM image of CuTCPP-BPY.

Figure S3. (a) TEM mapping image of different elements in CuTCPP. (b) Energy dispersive X-ray spectrogram of CuTCPP.

Figure S4. (a) TEM mapping image of different elements in CuTCPP-BPY. (b) Energy dispersive X-ray spectrogram of CuTCPP-BPY.

Figure S5. (a) CuTCPP and (b) CuTCPP-BPY CV curve of different scan rate in 0.01 M PBS solution. (c)

Electrochemically active surface area of CuTCPP and CuTCPP-BPY

Figure S6. (a) CuTCPP and (b) CuTCPP-BPY error analysis of three groups parallel experiments of acid and alkali resistance

Figure S7. long-term Stability of CuTCPP and CuTCPP MOFs cruves. Inset is the reproducibility picture.

Samples	$R_{S}(\Omega)$	CPE-T(Ω cm ⁻² s ⁿ)	CPE-P	$R_{ct}(\Omega)$	$W-R(\Omega)$	W-T(($\Omega \ cm^{-2} \ s^n$)	W-P
CuTCPP	2	0.00052	0.8	17	1586	0.07	0.73
CuTCPP-BPY	2	0.00036	0.08	19	1726	0.09	0.59

Table S1 The corresponding impedance values for different MOFs calculated by fitting.

Freq	Z' (a)	Z" (b)	Mag	Phase
681600	7.5829	-6.2333	9.816	-39.421
382800	10.596	-7.0844	12.746	-33.767
215800	13.744	-7.1182	15.478	-27.381
121100	16.466	-6.6278	17.75	-21.925
68120	18.586	-6.186	19.588	-18.409
38330	20.337	-6.2076	21.263	-16.974
21530	22.034	-6.9137	23.093	-17.42
12110	23.955	-8.4535	25.403	-19.437
6812	26.377	-11.02	28.587	-22.674
3833	29.608	-14.908	33.15	-26.725
2153	34.055	-20.591	39.796	-31.159
1211	40.224	-28.706	49.417	-35.514
683.6	48.791	-40.137	63.178	-39.442
380.9	61.112	-56.693	83.359	-42.852
214.8	78.109	-79.612	111.53	-45.546
122.1	101.6	-111.34	150.72	-47.618
68.13	135.74	-157.47	207.9	-49.237
38.31	183.29	-222.07	287.94	-50.464
21.54	250.93	-308.35	397.55	-50.862

Table S2 Impedance fitting data of CuTCPP.

Freq	Z' (a)	Z" (b)	Mag	Phase
681600	6.7557	-5.5542	8.7458	-39.425
382800	9.5146	-6.4605	11.501	-34.177
215800	12.585	-6.4943	14.162	-27.295
121100	15.286	-5.7254	16.323	-20.534
68120	17.214	-4.6973	17.844	-15.263
38330	18.487	-3.8983	18.893	-11.908
21530	19.381	-3.569	19.707	-10.434
12110	20.138	-3.8142	20.496	-10.725
6812	20.953	-4.7322	21.481	-12.726
3833	22.001	-6.5018	22.941	-16.464
2153	23.487	-9.4547	25.319	-21.927
1211	25.677	-14.106	29.297	-28.782
683.6	28.944	-21.241	35.901	-36.273
380.9	34.016	-32.455	47.015	-43.654
214.8	41.582	-49.27	64.472	-49.837
122.1	52.879	-74.437	91.307	-54.61
68.13	70.634	-114.05	134.15	-58.229
38.31	97.784	-173.99	199.59	-60.664
21.54	137.79	-271.65	304.6	-63.104

Table S3 Impedance fitting data of CuTCPP-BPY.