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(1) Computational details. All calculations were using the B3LYP functional and the def2-SVP basis set1 using dense numerical 
grids (grid 4 in Turbomole2 and int=ultrafine in Gaussian163). All geometries were optimised using tight optimisation criteria 
(total energy converged to 10–7 a.u.). Frequency calculations were done to confirm that the obtained geometries are true 
minima on the potential energy surface, i.e. that they have no imaginary frequencies. In (B), all computed frequencies were 
scaled by 0.95. Excited state calculations were done at LR-TD-B3LYP/def2-SVP using Gaussian16. 

Our code for both calculating orbital energy derivatives and generating geometries displaced by σi(T) from Turbomole2 
output is available at https://github.com/lisa-schroeder/mode-resolved-molecular-properties. Briefly, the Turbomole 
evib4 module provides derivatives of orbital energies with respect to atomic movements, while aoforce outputs 
normal modes as linear combinations of atomic movements. The Python script get_dE_dsigma uses the output from 
these modules to calculate the derivative of orbital energies with respect to normal modes. Geometries displaced 
along a normal mode i by the standard deviation of the thermal population ±σi(T) at temperature T (zero takes zero-
point vibration energy into account) can be obtained by using generate_coords_tmole. 

(2) Static binding approximation (SBA) and the Hubbard model. Let us consider a two-electron two-orbital model described 
with a Hubbard Hamiltonian, in which U and V represent the on-site and nearest-neighbour Coulombic interaction, and εH and 
εL the HOMO and LUMO energies, respectively (Figure S3). In such a case, the one-electron terms (orange in Figure S3) of the 
first vertical excitation energy are equal to Egap, while the two-electron terms  (blue in Figure S3) correspond to Ebind (cf. Figure 
S3 with eq (1) in main text).  

  
Figure S1. First vertical excitation energy in terms of one- (orange) and two-electron (blue) contributions.   

When extending the Hubbard model to include electron-vibration coupling, a common approximation is to couple the nuclear 
degrees of freedom to only the one-electron terms5-7 and treat U and V as independent of geometry, which is equivalent to 
the SBA (ΔEbind = 0, eq (3) in main text).  

(3) Performance of the SBA. Figure S2 lists compounds in the Thiel's set in which the S0→S1 transition can be mostly attributed 
to the HOMO-LUMO transition, and which are not listed in Figure 1. The SBA shows good performance in the case of first four 
molecules (Figure S2a–d), mostly good performance for (Figure S2e), while small compounds (S2c,f–h) mostly show poor 
performance. In the case of tetracene (S2a), anthracene (S2b), and hexatriene (S2b), the first optical transition only 
corresponds 75–85% to the HOMO-LUMO transition, resulting in the overestimation of ΔEgap relative to ΔEbind. A similar 
overestimation occurs in benzene (Figure 1o) and zinc porphyrin (Figure 1p).  
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Figure S2. Comparison of ΔEgap (vertical axis) and ΔES1 (horizontal axis) for Thiel’s set molecules not included in Figure 1, 
decomposed by normal modes (triangles).  

(4) Beyond HOMO-LUMO transitions. The SBA may be extended to more optical transitions by performing a single excited-
state (TD-DFT) calculation, and we recommend doing this for any larger molecule. Such a calculation will characterise the 
excited states in terms of orbital transitions, enabling us to calculate the ΔEgap for any transition. For example, the first optical 
transition in adenine (Figure S3a) corresponds to HOMO–1→LUMO, while the second transition (Figure S3e) can be written 
as roughly 80% HOMO→LUMO + 10% HOMO–2→LUMO+1, and both can be captured using the SBA. Similar good results are 
obtained in case of thymine (Figure S3b,f) and pyridine (Figure 3c,g), while the results for uracil (Figure 3d,h) are poorer. It is 
also notable that the SBA performs similarly well for both n→π* and π→π* transitions (cf. top and bottom row in Figure S3). 
Finally, the SBA is not applicable when the composition of the excited states significantly changes with nuclear motion, as it 
has no way of predicting how the weights of each contribution change with nuclear movement.  

 

Figure S3. Comparison of ΔEgap (vertical axis) and ΔES1 or ΔES2 (horizontal axis) for Thiel’s set molecules not included in Figure 
1 nor S2, decomposed by normal modes (triangles). In the case of pyridine (1g), the second optically active transition 
corresponds to a transition to S3.  
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Figure S4. The dipole forbidden vibration in 1•+ strongly coupled to electronic states. 
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