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Experimental Section

General considerations: All reactions were carried out under an inert atmosphere using
standard Schlenk line and/or Glovebox techniques unless stated otherwise. All glassware was
oven-dried at 130 °C overnight prior to use. The solvents used were dried, distilled, and degassed
by standard methods and stored over 4 A molecular sieves. NMR measurements were carried out
on Bruker 500 MHz FT-NMR spectrometers. ESI-MS was recorded using an Agilent 6545A Q-
TOF Mass spectrometer. The chemical shifts in the *H NMR spectra were referenced to the
residual proton signals of the deuterated solvents (CDCls, H 7.26 ppm and *C{H} 77.2 ppm
and reported relative to tetramethylsilane (TMS). The coupling constants are expressed in hertz.
All other chemicals were purchased from the commercial sources and used as received without

further purification.

Synthesis of [(L1)Pd''Br.Py(3-Cl)Pd"'Br,Py(3-Cl)], 1. To a Schlenk tube (25 mL) equipped with
a magnetic stirring bar, [L1-H2]Br2 (100 mg, 0.23 mmol), PdCI> (94.8 mg, 0.54 mmol), K.CO3
(96.3 mg, 0.70 mmol), and KBr (221.3 mg, 1.86 mmol) were added. A solvent mixture of
acetonitrile:3-chloropyridine (10:1 mL) was then added and stirred at 70 °C for 18 h. After that,
the reaction mixture was cooled and filtered through a pad of celite to obtain a clear yellow
solution. Concentration followed by the addition of diethyl ether resulted in the precipitation of a
compound. The precipitate was then washed with diethyl ether and dried in high vacuum to
obtain a bright yellow powder that was further purified by silica gel column chromatography
using dichloromethane and methanol (98:2, v:v) as eluent. Suitable single crystals for X-ray
crystallographic studies were grown by slow diffusion of diethyl ether into a saturated solution of
the complex in acetonitrile. Yield: 170 mg (0.17 mmol, 74%).

IH NMR (500 MHz, CDCl3) 6 = 9.14 (d, J = 2.4 Hz, 1H), 9.04 (dd, J = 5.4, 1.4 Hz, 1H), 8.92
(d, J = 2.4 Hz, 1H), 8.76 (dd, J = 5.5, 1.4 Hz, 1H), 8.36 (d, J = 1.9 Hz, 1H), 7.80 (ddd, J = 8.2,
2.4, 1.3 Hz, 1H), 7.69 (ddd, J = 8.2, 2.4, 1.3 Hz, 1H), 7.64 (dd, J = 8.6, 1.9 Hz, 1H), 7.55 (d, J =
8.6 Hz, 1H), 7.35 (dd, J = 8.2, 5.4 Hz, 1H), 7.23 (dd, J = 8.3, 5.6 Hz, 1H), 7.18 (dd, J = 14.1, 2.1
Hz, 2H), 4.96 (m, 4H), 4.74 (q, J = 7.4 Hz, 2H), 1.79-1.69 (m, 9H) ppm.

BC{IH} NMR (126 MHz, CDCls) 6 = 163.4 (Pd"-Cnrc), 151.9, 151.7, 150.8, 150.6, 148.1
(Pd"-Cnwc), 138.2, 138.1, 135.1, 134.3, 134.1, 132.8, 132.7, 125.2, 125.1, 125.1, 124.3, 121.9,
121.7,110.9, 110.4, 46.8, 44.6, 44.4, 15.6, 14.6, 14.6 ppm.
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MS (ESI, positive ions): C26H2sNsPd2Cl2Brs, calculated for [M-Br-2Py(3-CI)+2CH3CN]* m/z =
802.7828, found: 802.7836; calculated for [M-Br-2Py(3-Cl)+CH3CN]" m/z = 761.7562, found:
761.7642; calculated for [M-2Br-2Py(3-Cl)-H]* m/z = 640.8037, Found: 640.8052.
Anal. Calculated for 2: C, 30.38; H, 2.75; N, 8.18. Found: C, 31.55; H, 2.0; N, 8.39.

Synthesis of [(L2)Pd''Br,Py(3-Cl)], 5. To a Schlenk tube (25 mL) equipped with a magnetic
stirring bar, [L2-H]Br (100 mg, 0.395 mmol), PdCI> (84 mg, 0.474 mmol), K.COz (65.4 mg, 0.474
mmol), and KBr (141 mg, 1.185 mmol) were added. A solvent mixture of acetonitrile:3-
chloropyridine (10:1 mL) was then added and stirred at 70 °C for 18 h. After that the reaction
mixture was cooled and filtered through a pad of celite to obtain a clear yellow solution.
Concentration followed by the addition of diethyl ether resulted in precipitation of a compound.
The precipitate was then washed with diethyl ether and dried in high vacuum to obtain a bright

yellow air stable powder that was further purified via silica gel column

Br~ . . .
Et, . chromatography using dichloromethane as eluent. Yield: 172 mg (0.312 mmol,

\ o+

N
H ,(/Nl 79%).
IH NMR (500 MHz, CDCl3) = 8.91 (dd, J = 2.3, 0.6 Hz, 1H), 8.81 (dd, J =
@ 5.5, 1.4 Hz, 1H), 8.00-7.98 (m, 2H), 7.70 (ddd, J = 8.2, 2.4, 1.3 Hz, 1H), 7.57

t2ner | (44, 3=85,69Hz, 2H), 7,53-7.48 (m, 1H), 7.23 (ddd, J = 8.2, 5.5, 0.7 Hz, 1H),

7.20 (d, J = 2.0 Hz, 1H), 7.12 (d, J = 2.1 Hz, 1H), 4.72 (q, J = 7.4 Hz, 2H), 1.69
(t, J=7.4 Hz, 3H) ppm.

BC{IH} NMR (126 MHz, CDCIls3) 6§ = 152.0, 150.9, 147.3 (Pd"-Cnnc), 139.9, 138.2, 132.8,
129.6, 129.2, 126.6, 125.2, 123.9, 121.8, 47.1, 15.9 ppm.

MS (ESI, positive ions): CisHisN3PdBr.Cl, calculated for [M-Py(3-Cl)-Br+CH3CN]" m/z =
399.9478, found: 399.9490; calculated for [M-Py(3-CI)-Br]" m/z = 358.9212, found: 358.9218;
calculated for [M-Py(3-Cl)-2Br-H+CH3CN]" m/z = 318.0228, found: 318.0230; calculated for
[M-Py(3-CI)-2Br-H]" m/z = 276.9962, found: 276.9968.
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NMR spectra of the isolated compounds
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Figure S1. *H NMR spectrum of complex 1 in CDCls. # represents solvent impurity of water.
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Figure S2. 3C NMR spectrum of complex 1 in CDCls.
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Figure S3. 'H NMR spectrum of complex 5 in CDCls. # represents solvent impurity of water.
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General procedure for the HDF of the fluoroarenes: To an oven dried pressure tube, NaO'Bu
(0.1 mmol), complex 1 (0.5 mol%) and fluoroarene (0.1 mmol) were added. Next, 2-propanol
(1.5 mL) was added to it and kept in a preheated oil bath at 100 °C. After a specific reaction
time, the pressure tube was taken out and cooled to room temperature. The progress of the

reaction was monitored by GC-MS analysis using mesitylene as an internal standard.

General procedure for the tandem HDF and transfer hydrogenation of fluoroarenes: To an
oven dried pressure tube, NaO'Bu (0.1 mmol), complex 1 (0.5 mol%) and fluoroarene (0.1
mmol) were added. Next, 2-propanol (1.5 mL) was added to it and kept in a preheated oil bath at
100 °C. After a specific reaction time, the pressure tube was taken out and cooled to room
temperature. The progress of the reaction was monitored by GC-MS analysis using mesitylene as

an internal standard.

Table S1. Tandem HDF and TH of fluoroarenes?

o OH
R Cat. 1, NaOBu
_O = A O
F 45 100 °C, ProH ~ H—L{Ar R
8 9

Substrate scope

e mo*

9a, °57% 9a', 1% : 'l 9b, 70% 9b’, 30%

___________________________________________________________________

________________________________________________________________________

Cﬁo\* mm

9e, 82% 9e', 18% j; bof, 75% of', 23%

aReaction conditions: Fluoroarene (0.1 mmol), NaO'Bu (0.1 mmol), complex 1 (0.5 mol%),
'PrOH (1.5 mL), 24 h. ®NaO'Bu (0.2 mmol). ¢1-(4-fluorophenyl)ethanol (9a’*, 32%). 91-(3-
fluorophenyl)ethanol (9d°°, 12%). Conversions are based on GC-MS using mesitylene as internal
standard.
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General procedure for the HDF of the trifluorotoluenes: To an oven dried pressure tube,
NaO'Bu (0.3 mmol), complex 1 (1.5 mol%) and fluoroarene (0.1 mmol) were added. Next, 2-
propanol (2 mL) was added to it and kept in a preheated oil bath at 100 °C. After a specific
reaction time, the pressure tube was taken out and cooled to room temperature. The progress of

the reaction was monitored by GC-MS analysis using mesitylene as an internal standard.

Procedure for the calculation of TON for HDF of fluorobenzene: To an oven dried pressure
tube, NaO'Bu (0.2 mmol), complex 1 (0.1 mol%) and fluorobenzene (0.2 mmol) were added.
Next, 2-propanol (1.5 mL) was added to it and kept in a preheated oil bath at 100 °C for 12 h.
After completion of the reaction, small portion of aliquot was taken for GC-MS analysis. The
data based on GC-MS analysis (using mesitylene as an internal standard) shows 41% conversion
which gives TON of 410 and TOF 34.2 h'.,

General procedure for the HDF of the fluoroarenes for the isolated products: To an oven
dried pressure tube, NaO'Bu (0.3 mmol), complex 1 (0.5 mol%) and fluoroarene (0.3 mmol)
were added. Next, 2-propanol (2 mL) was added to it and kept in a preheated oil bath at 100 °C.
After a specific reaction time, the pressure tube was taken out and cooled to room temperature.
Finally, the product was isolated by column chromatography using hexane: ethyl acetate as

eluent.

Characterization data of isolated compounds:

1,1-biphenyl (7b): Following the general procedure, the titled compound "
was isolated as colorless solid (42 mg, 91% vyield). *H NMR (400 MHz, O
CDClI3) 6 7.61 (d,J =7.6 Hz, 4H), 7.45 (t, J = 7.5 Hz, 4H), 735 (t, J=7.4

Hz, 2H) ppm. ®C{*H} NMR (101 MHz, CDCls) ¢ 141.4, 128.9, 127.4, O

127.3 ppm. Analytical data matches with reported data.*

Aniline (7d): Following the general procedure, the titled compound was
isolated as brown liquid (26 mg, 93% yield). *H NMR (500 MHz, CDCls) H
§7.21-7.18 (m, 2H), 6.80 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 7.9 Hz, 2H), 3.66 /©/
(bs, 2H) ppm. BC{*H} NMR (126 MHz, CDCls) ¢ 146.5, 129.3, 118.6, | HzN

115.2 ppm. Analytical data matches with reported data.?
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NMR spectra of the isolated products
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Figure S7. *H NMR spectrum of 7b in CDCls.
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Figure S8. 3C{*H} NMR spectrum of 7b in CDCls.
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Figure S9. 'H NMR spectrum of 7d in CDCls.
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Figure S10. 3C{*H} NMR spectrum of 7b in CDCls.
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Table S2: Optimization conditions for the HDF of fluorobenzene.?

Entry Base Base Cat. Temp. | Conv.
(equiv.) | (mol%) (°O) (%)
1 NaO'Bu 2 1 100 100
2 NaO'Bu 1.5 0.5 100 100
3 NaO'Bu 1 0.5 100 96
4 NaO'Bu 1 0.5 80 74
5 KO'Bu 1 0.5 100 81
6 K2CO3 1 0.5 100 1
7 Cs2C0O3 1 0.5 100 9
8 NaOAc 1 0.5 100 0
9 NaTMAH 1 0.5 100 0

@Reaction conditions: Fluorobenzene (0.1 mmol), catalyst 1 (x mol%), base (x equiv.) in 2-
propanol (1.5 mL), 12 h. Conversions were determined by GC-MS using mesitylene as internal
standard. NaTMAH = sodium trimethylacetate hydrate.

Ft— N/\I Et Br 2.106(4) . N/\l Et 2104(7)
1. 953(4) \©: :# Q 1. 983(8) \©: % /\:>
2101(3) ol 2098(6)
1 947(4) 1 958(8)
CI 2

t - 2133(18)

1. 942(2) \©:
ﬁ; UL
2.089(17) Br ol
ta 005(2)

CI

Figure S11: Selected bond lengths (A) of Pd-C and Pd-N in the complexes 1-3.
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Calculation of cooperativity index (a):

Cooperativity index was calculated using equations | and Il. Here, Ao and A, are the %

conversion using the bimetallic complex 1 (entry 1, Table 1, 96% conversion) and the

combination of mono-metallic fragments 4 (13% conversion) and 5 (5% conversion) (entries 4-5,

Table 1), respectively. The cooperativity index (a) for the present system was calculated to be

8.67.
it
n
Ao —Ap
“=A

Figure S12: Calculation of cooperativity index (a).
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Single crystal X-ray Crystallography:

Single crystal X-ray diffraction data were collected on a Bruker AXS Kappa APEX3
diffractometer equipped with PHOTON-II detector using MoKo radiation (A = 0.71073 A).
Crystals were selected using a polarizing optical microscope and then mounted in a crystal-
mounting loop using Paraton oil. The mounted crystal was then placed on a goniometer head and
the crystal is centered with the help of a video microscope. The automatic cell determination
routine, with 24/36 frames (10 sec exposure time per frame) at two/three different orientations of
the detector, respectively was employed to collect reflections for unit cell determination. The
collected reflections were indexed using inbuilt APEX software® to obtain the unit cell
parameters. Further, intensity data for structure determination were collected through an
optimized strategy, which gave an average 4-fold redundancy for the reflections. The program
Bruker-SAINT® was used for integrating the frames and multi-scan absorption correction was
applied using the program SADABS.% The structure was solved by SHELXT?! and refined by
full-matrix least squares techniques on F? using SHELXL3*f computer program incorporated in
WinGX3¢ system. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms
were fixed at chemically meaningful positions and riding model refinement was applied. The

graphical representations were performed using the program Mercury.3"

Br3
= &«
N1 Pd2 % @

&>—& !
\ucm )hf o &g N6 o
o ‘ & \

5 ®@/® Nzl‘* #Br“ 2@

Pd1 4

Br2

€ N5 &
cn & -
Q/b o

Figure S13: Ellipsoid representation (at 40% probability level) of the molecular structure of
complex 1. Hydrogen atoms are removed and N-ethyl groups are shown in capped stick for
clarity.
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Crystallographic Data

Compound 1
CCDC No. 2301305
Empirical formula CssHesBrsClsN120Pd4
Formula weight 2129.88
Temperature (K) 297(2)

Crystal system Monoclinic
Space group C2/c

a(A) 29.200(2)

b (A) 8.5804(6)

c(A) 28.6903(18)
a(°) 90

B 96.068(3)

Y (°) 920

V (A3 7178.0(8)

z 4

D calc (Mg/m?®) 1.971

F (000) 4104

p (mm?) 5.634

0 Range (°) 3.270t0 27.116

Crystal size (mm?®)

0.117 x 0.101 x 0.092

No. of total refins
collected

146462

No. of unique reflns [I > | 7890

20(1)]

Data/restraints/ 7890/1/384
parameters

Goodness-of-fit on F2 1.078

Final R indices
[I>20(D)]

R1=0.0342, wR2 = 0.0914

R indices (all data)

R1 =0.0426, wR2 = 0.0972
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Electrochemical analysis of the metal complexes:

The electrochemical measurements, differential pulse voltammetry (DPV) of the synthesized
complexes 1, 2, and 3 were carried out at ambient temperature using Origalys OGFO1A
potentiostat instrument. The measurements of all the complexes (0.01 mM) were performed at a
sweep rate of 100 mV/sec in CH2Cl2 using BusNPFs (0.1 M) as supporting electrolyte with three
electrode configurations e.g. counter electrode: Pt foil; working electrode: Glassy carbon (6 mm
diameter); reference electrode: saturated Calomel electrode (Hg/HgCl2). All the measurements

were calibrated externally using Ferrocene (E1s, Fc/Fc* = 1.20 volts vs. Hg/Hg?").

23

(a) —— Complex 1 (b)
2.0 4 Complex 2
—— Complex 3
< 1.8
g il Entry | Complex E,; (V) AE
: v 1 1 20.109 | 1.109 | 1.218
1.0 4
goa 2 2 0.098 | 1.026 | 0.928
- 3 3 -0.191 | 0.676 | 0.867
0.3
0.0

T T T T ¥
08 05 03 00 03 05 08 10 13 15 18
Potential / V vs. Fc¢/Fe*

Figure S14: (a) Differential Pulse Voltametry (DPV) plot of the complexes 1-3. (b)
Electrochemical data obtained from DPV (referenced to Fc/Fc™).

Computational data

All the calculations were performed using the Gaussian 16, Revision B.01 program.* All
structures were optimized with B3LYP® functional. Metals (Pd) were treated with SDD
(Stuttgart-Dresden)® basis set with an effective core potential, while the other atoms were treated
using 6-31G**,” a double-{ Pople type basis set. Further, the solvent (toluene) effect was
incorporated by using CPCM solvent model, scrf= (cpcm, solvent = toluene). Dispersion effects
were incorporated by using the D3 version of Grimme’s dispersion with Becke-Johnson damping
with the keyword “Empiricaldispersion=GD3BJ”.2 ESP charges were calculated using the
keywords “pop=mk” and “pop=saveesp”.
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Figure S15: ESP charge distribution of the complexes 1 and 3. DFT
performed at the B3LYP/SDD (for metals) or 6-31G** (for non-metals) level of theory.

Complex 1 (HOMO-2)

calculations were

Complex 3 (HOMO-3)

Figure S16: Orbital distribution of the complexes 1 (HOMO-2) and 3 (HOMO-3). DFT
calculations were performed at the B3LYP/SDD (for metals) or 6-31G** (for non-metals) level

of theory.
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