[Supporting Information]

Synthesis of Dihydrotropone Derivatives Using an Anionic 8π Electrocyclic Reaction

Ranmaru Kato, ^a Takahiro Suzuki ^b and Keiji Tanino ^{*b}

^a Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan.

^b Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.

*Corresponding Author (E-mail: ktanino@sci.hokudai.ac.jp)

Table of Contents

Supplementary Materials	
Table S1. Using other base for anionic cyclisation	S2
Figure S1. Other unsuccessful substrates	S2
Scheme S1. Substrates with other β -substituents	S3
General Information	S4
Experimental and Characterisation Details	
Preparation of Synthetic Fragments	S 6
Synthesis of Dienynes: General Procedure A	S 8
Synthesis of Dienynes: General Procedure B	S12
Synthesis of Cycloheptatrienes: General Procedure C	S16
Synthetic Applications	S22
Brook Rearrangement: General Procedure D	S25
Total Synthesis of (-)-Orobanone	S28
Table S2. Comparison of ¹ H NMR spectral data	S41
Table S3. Comparison of ¹³ C NMR spectral data	S42
References	S43
¹ H and ¹³ C NMR Spectra	S44–S96

Supplementary Materials

Table S1. Using other base for anionic cyclisation.

Reactions were conducted on 0.1 mmol scale. † Isolated yield.

Use of LHMDS instead of LDA resulted in almost full recovery of the starting material due to its low basicity (entry 2). When KHMDS was used as the base, undesired deprotonation at the isopropyl group occurred to give cumulene **9b** as the major product (entry 3).

Figure S1. Other unsuccessful substrates.

Scheme S1. Substrates with other β -substituents.

The reaction using dienyne **S1**, lacking a silyloxy group as a substrate, resulted in decomposition of the starting material. The reaction using methoxy-dienyne **S2** gave dimerised product **S3** in moderate yield, which caused by 1,4-addition of nucleophilic species including LDA. Indeed, the use of a OTBS group instead of a OTIPS group was applicable, but the substrate **S4** was labile and easily desilylated, thus not isolated in a pure form. These results indicate that the β -OTIPS group is essential to prevent undesired 1,4-addition or desilylation by its large steric hindrance.

General Information

All reactions were performed using flame-dried glassware under a positive pressure of argon unless otherwise noted. Reactions at elevated temperatures were performed under heating in an oil bath. THF was distilled from sodium benzophenone ketyl. Other anhydrous solvents were purchased from chemical companies. ^{*i*}Pr₂NH and Et₃N were distilled from CaH₂ under argon and stored in the presence of NaOH (pellets). All other reagents were used as received from commercial sources without further purification.

The melting points were measured using ASONE ATM-02 apparatus and uncorrected. Specific optical rotations were determined using JASCO P-2200 polarimeter with a 100 mm cell at 589 nm. Enantiomeric excesses were determined by HPLC analysis using JASCO PU-2089 Plus pump, UV-2075 Plus detector, and DAICEL CHIRALPAK AS-H column (0.46 cm $\phi \times 25$ cm). ¹H NMR spectra were recorded on JEOL ECA-500 (500 MHz) in CDCl₃ ($\delta_{\rm H}$ 7.26). Chemical shifts are reported in parts per million (ppm), and signal are expressed as broad (br), singlet (s), doublet (d), triplet (t), quartet (q), septet (sept), and multiplet (m). Coupling constants are reported in Hz. ¹³C NMR spectra were recorded on JEOL ECA-500 (126 MHz) in CDCl₃ ($\delta_{\rm C}$ 77.0). HRMS were recorded on JEOL JMS-T100GCV (GC-TOFMS) at the GC-MS & NMR Laboratory, Faculty of Agriculture, Hokkaido University. FT-IR spectra were recorded on JASCO FT/IR-4100 spectrophotometer. Analytical TLC was performed using Silica Gel 60 F₂₅₄ (E. Merck), and PTLC was performed using PLC Silica Gel 60 F₂₅₄ (E. Merck). Reaction components were visualised by illumination with UV light (254 nm) and by staining with 8% ethanolic phosphomolybdic acid, ceric ammonium molybdate in 10% sulfuric acid, or basic potassium permanganate aqueous solution. Flash column chromatography was performed on Chromatorex PSQ60B (Fuji Silysia Chemical Ltd.) or Chromatorex NH-DM2035 (Fuji Silysia Chemical Ltd.).

Alkynyl ester **S6–8**, ^[1–3] alkynyl carboxylic acid **S9–13**, ^[4–7] alkyne **S14,15**, ^[8,9] alkenyl ester **S16–19**, ^[10–12] alkenyl carboxylic acid **S20**, ^[13] and alkenyl malonic acid monoester **S21** ^[14] were prepared by known or previously reported procedures.

Experimental and Characterisation Details

Preparation of Synthetic Fragments Alkynyl ester S22

To a solution of **S14** (320 mg, 2.00 mmol) in THF (10 mL) was added "BuLi (2.65 mol/L in hexane, 792 μ L, 2.10 mmol) at -78 °C. The reaction mixture was then warmed up to 0 °C and stirred for 20 min. To this mixture was added ethyl chloroformate (381 μ L, 4.00 mmol), and the reaction mixture was warmed up to room temperature and stirred for 20 min. The reaction was quenched with saturated aqueous NaHCO₃ solution (10 mL), and the organic layer was diluted with EtOAc (10 mL). Two layers were separated, and the aqueous layer was extracted with EtOAc (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 30:1) to afford **S22** (480 mg, > 2.00 mmol, quant.) as a white solid. The spectral data matched with those reported in literature. ^[15]

Alkynyl carboxylic acid S23

To a solution of **S15** (331 mg, 1.68 mmol) in THF (7.5 mL) was added "BuLi (2.65 mol/L in hexane, 582 μ L, 1.54 mmol) at -78 °C. After stirring for 20 min, crushed dry ice (excess.) was added, and the reaction mixture was stirred under ambient temperature until no further evolution of CO₂ gas was detected. The reaction was quenched with saturated aqueous NH₄Cl solution (5 mL), and the organic layer was diluted with Et₂O (5.0 mL). Two layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane only, then EtOAc only) to afford **S23** (238 mg, 0.991 mmol, 59% yield) as a white solid.

S23: ¹H NMR (500 MHz, CDCl₃) δ 1.73 (s, 2H), 1.22–1.14 (m, 3H), 1.09 (d, *J* = 6.9 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 158.6, 93.7, 72.3, 18.4 (6C), 11.0 (3C), 0.2; FT-IR (ATR) *v* 2943, 2867, 2225, 1676, 1283 cm⁻¹; HRMS (FD) calcd for C₁₃H₂₅O₂Si ([M + H]⁺): 241.1624, found: 241.1615; m.p.

(hexane) 52-55 °C.

Alkynyl carboxylic acid S24

To a solution of *tert*-butyldimethyl(2-propynyloxy)silane (601 μ L, 3.00 mmol) in THF (10 mL) was added "BuLi (2.65 mol/L in hexane, 1.19 mL, 3.15 mmol) at -78 °C. After stirring for 30 min, crushed dry ice (excess.) was added, and the reaction mixture was stirred under ambient temperature until no further evolution of CO₂ gas was detected. The reaction was quenched with saturated aqueous NaHCO₃ solution (5.0 mL) and water (10 mL). Two layers were separated, and the aqueous layer was washed with CH₂Cl₂ (5.0 mL × 2). The aqueous layer was then neutralised with 3 M aqueous HCl solution and extracted with CH₂Cl₂ (5.0 mL × 4). The combined organic extracts were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford **S24** (634 mg, 2.96 mmol, 99% yield) as a white solid. The spectral data matched with those reported in literature. ^[16]

Alkenyl ester S25

To a solution of **S20** (116 mg, 1.01 mmol) in CH₂Cl₂ (5.0 mL) were added successively EtOH (294 μ L, 5.05 mmol), 4-dimethylaminopyridine (11.7 mg, 95.8 μ mol), and *N*,*N*'-dicyclohexylcarbodiimide (228 mg, 1.10 mmol) at room temperature. After stirring for 14 h, AcOH (578 μ L, 10.1 mmol) was added, and the mixture was stirred for 1 h. The reaction was quenched with saturated aqueous NaHCO₃ solution (5.0 mL). Two layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, pentane:Et₂O = 10:1) to afford **S25** (117 mg, 0.823 mmol, 81% yield) as a colourless oil.

S25: ¹H NMR (500 MHz, CDCl₃) δ 5.52–5.45 (m, 1H), 5.38–5.32 (m, 1H), 4.12 (q, *J* = 7.2 Hz, 2H), 2.38–2.31 (m, 4H), 1.62 (dd, *J* = 5.7, 1.1 Hz, 3H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.3, 128.3, 125.3, 60.2, 34.2, 22.4, 14.2, 12.7; FT-IR (ATR) *v* 2980, 2927, 1735, 1161 cm⁻¹; HRMS (FI) calcd for C₈H₁₄O₂ (M⁺): 142.0994, found: 142.0989.

Synthesis of Dienynes: General Procedure A

An LDA solution (1 mol/L in THF-hexane) was prepared by the addition of "BuLi (2.65 mol/L in hexane, 755 μ L, 2.00 mmol) to a solution of 'Pr₂NH (281 μ L, 2.00 mmol) in THF (1.25 mL) at 0 °C. The mixture was stirred for 20 min at the same temperature before the use. To another reaction vessel charged with alkenyl ester (1.2 equiv.) in THF (0.2 mol/L) was added the LDA solution (2.4 equiv.) via a syringe at -78 °C. After stirring for 20 min, alkynyl ester (1.0 equiv.) in THF was added, and the mixture was stirred for 10 min at the same temperature. [For synthesis of **6p** and (*E*)-**6q**, alkynyl ester (1.2 equiv.) and LDA solution (2.4 equiv.) based on alkenyl ester (1.0 equiv.) were used]. Crushed dry ice was added to trap the excessive enolate, and the mixture was stirred under ambient temperature until evolution of CO₂ gas ceased. The reaction was quenched with saturated aqueous NaHCO₃ solution, and the organic layer was diluted with EtOAc. Two layers were separated, and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Highly polar components were filtered off through a plug of SiO₂ (hexane:EtOAc = 10:1) to afford ketoester along with a small amount of byproducts.

NaH (60% dispersion in mineral oil, 2.0 equiv.) was washed with hexane and suspended with THF (0.4 mol/L). To this suspension was added above ketoester (1.0 equiv.) in THF via cannula at 0 °C. After stirring for 10 min, TIPSOTf (1.5 equiv.) was added, and the reaction mixture was warmed up to room temperature and stirred for 10 min. The reaction was quenched by the careful addition of saturated aqueous NaHCO₃ solution, and the organic layer was diluted with EtOAc. Two layers were separated, and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 100:1) to afford the product dienyne.

According to the general procedure A, **6a** (154 mg, 0.392 mmol, 79% yield for 2 steps) was synthesised from LDA (ca. 1.0 mol/L in THF-hexane, 1.20 mL, 1.20 mmol), ethyl 4-pentenoate (85.4 μ L, 0.600 mmol), alkynyl ester **S6** (76.6 mg, 0.497 mmol), NaH (60% in mineral oil, 40.2 mg, 1.01 mmol), and TIPSOTf (202 μ L, 0.750 mmol).

6a: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.82 (ddt, *J* = 17.1, 10.1, 6.4 Hz, H), 5.06 (ddt, *J* = 17.1, 1.7, 1.6 Hz, 1H), 4.95 (ddt, *J* = 10.1, 1.7, 1.6 Hz, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.13 (ddd, *J* = 6.4,

1.6, 1.6 Hz, 2H), 1.36–1.28 (m, 3H), 1.26 (s, 9H), 1.25 (t, J = 7.2 H, 3H), 1.11 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 140.7, 136.0, 115.8, 114.8, 104.7, 76.0, 59.9, 34.6, 30.2 (3C), 28.2, 17.9 (6C), 14.4, 13.0 (3C); FT-IR (ATR) *v* 2969, 2945, 2867, 2216, 1716, 1318, 1197 cm⁻¹; HRMS (FD) calcd for C₂₃H₄₀O₃Si (M⁺): 392.2747, found: 392.2759.

CO₂Et

Ad

6c

According to the general procedure A, **6b** (933 mg, 2.46 mmol, 60% yield for 2 steps) was synthesised from 'Pr₂NH (1.39 mL, 9.91 mmol), "BuLi (2.65 mol/L in hexane, 3.74 mL, 9.91 mmol), ethyl 4-pentenoate (706 μ L, 4.96 mmol), alkynyl ester **S7** (579 mg, 4.13 mmol), NaH (60% in mineral oil, 249 mg, 6.21 mmol), and TIPSOTf (1.33 mL, 4.96 mmol). Enolate was prepared by the addition of **S7** in THF to an LDA solution.

6b: pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 5.82 (ddt, J = 17.1, 10.2, 6.4 Hz, 1H), 5.06 (ddt, J = 17.1, 1.7, 1.6 Hz, 1H), 4.95 (ddt, J = 10.2, 1.7, 1.5 Hz, 1H), 4.17 (q, J = 7.3 Hz, 2H), 3.14 (ddd, J = 6.4, 1.6, 1.5 Hz, 2H), 2.73 (sept, J = 6.9 Hz, 1H), 1.34–1.28 (m, 3H), 1.25 (t, J = 7.3 Hz, 3H), 1.20 (d, J = 6.9 Hz, 6H), 1.10 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 140.7, 136.0, 115.7, 114.9, 102.3, 76.5, 59.9, 34.6, 22.1 (2C), 21.2, 17.9 (6C), 14.4, 13.0 (3C); FT-IR (ATR) v 2944, 2867, 2216, 1715, 1322, 1207 cm⁻¹; HRMS (FD) calcd for C₂₂H₃₈O₃Si (M⁺): 378.2590, found: 378.2607.

According to the general procedure A, **6c** (172 mg, 0.365 mmol, 73% yield for 2 steps) was synthesised from LDA (ca. 1.0 mol/L in THF-hexane, 1.20 mL, 1.20 mmol), ethyl 4-pentenoate (85.4 μ L, 0.600 mmol), alkynyl ester **S22** (116 mg, 0.501 mmol), NaH (60% in mineral oil, 41.0 mg, 1.03 mmol), and TIPSOTf (202 μ L, 0.750 mmol).

6c: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.82 (ddt, J = 16.9, 10.1, 6.5 Hz, 1H), 5.07 (ddt, J = 16.9, 1.9, 1.9 Hz, 1H), 4.95 (ddt, J = 10.1, 1.9, 1.9 Hz, 1H), 4.17 (q, J = 7.3 Hz, 2H), 3.13 (d, J = 6.5 Hz, 2H), 1.98 (br, 3H), 1.88 (br-d, J = 2.9 Hz, 6H), 1.70 (br, 6H), 1.36–1.28 (m, 3H), 1.25 (t, J = 7.3 Hz, 3H), 1.11 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 141.0, 136.1, 115.6, 114.8, 104.5, 76.2, 59.9, 42.0 (3C), 36.2 (3C), 34.7, 30.3, 27.7 (3C), 17.9 (6C), 14.4, 13.1 (3C); FT-IR (ATR) v 2906, 2865, 2213, 1715, 1322, 1133 cm⁻¹; HRMS (FD) calcd for C₂₉H₄₆O₃Si (M⁺): 470.3216, found: 470.3232.

According to the general procedure A, **6e** (E/Z or Z/E = 3.9:1, 118 mg, 0.342 mmol, 69% yield for 2 steps) was synthesised from LDA (ca. 1.0 mol/L in THF-hexane, 1.20 mL, 1.20 mmol), 4-pentenenitrile (57.9 µL, 0.600 mmol), alkynyl ester **S6** (76.6 mg, 0.497 mmol), NaH (60% in mineral oil, 40.6 mg, 1.01 mmol), and TIPSOTT (202 µL, 0.750 mmol).

6e (*E*/*Z* mixture): pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 5.82–5.72 (m, 1H), 5.17–5.08 (m, 2H), 2.98 (dt, *J* = 6.5, 1.4 Hz, 2H), 1.37–1.28 (m, 3H), 1.28 (s, 0.20 × 9H), 1.27 (s, 0.80 × 9H), 1.12 (d, *J* = 7.4 Hz, 0.80 × 18H), 1.09 (d, *J* = 7.4 Hz, 0.20 × 18H); ¹³C NMR (126 MHz, CDCl₃) δ 146.4, 145.9, 133.4, 133.0, 120.0, 117.9, 117.0, 116.9, 109.0, 104.5, 99.1, 97.2, 74.6, 73.7, 33.7, 31.2, 30.0 (3C, major), 29.9 (3C, minor), 28.3, 28.2, 17.8 (6C, major + minor), 12.73 (3C, minor), 12.68 (3C, major); FT-IR (ATR) *v* 2947, 2868, 2204, 1588, 1313, 1190 cm⁻¹; HRMS (FD) calcd for C₂₁H₃₅NOSi (M⁺): 345.2488, found: 345.2481.

According to the general procedure A, **6h** (260 mg, 63.0 mmol, 63% yield for 2 steps) was synthesised from ^{*i*}Pr₂NH (337 μ L, 2.40 mmol), "BuLi (2.66 mol/L, 902 μ L, 2.40 mmol), ethyl 4-pentenoate (171 μ L, 1.20 mmol), ethyl phenylpropiolate (164 μ L, 1.00 mmol), NaH (60% in mineral oil, 80.0 mg, 2.00 mmol), and TIPSOTF (403 μ L, 1.50 mmol). Enolate was prepared by the addition of ethyl phenylpropiolate to an LDA

solution.

6h: yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.45–7.43 (m, 2H), 7.39–7.35 (m, 3H), 5.89 (ddt, J = 17.1, 10.2, 6.4 Hz, 1H), 5.12 (ddt, J = 17.1, 1.6, 1.6 Hz, 1H), 5.00 (ddt, J = 10.2, 1.6, 1.5 Hz, 1H), 4.22 (q, J = 7.3 Hz, 2H), 3.27 (ddd, J = 6.4, 1.6, 1.5 Hz, 2H), 1.43–1.33 (m, 3H), 1.29 (t, J = 7.3 Hz, 3H), 1.15 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 140.1, 135.8, 131.4 (2C), 129.3, 128.6 (2C), 121.8, 117.3, 115.3, 95.2, 85.6, 60.1, 34.7, 17.9 (6C), 14.4, 13.1 (3C); FT-IR (ATR) ν 2944, 2867, 2203, 1714, 1325, 1186 cm⁻¹; HRMS (FD) calcd for C₂₅H₃₆O₃Si (M⁺): 412.2434, found: 412.2444.

According to the general procedure A, **6m** (136 mg, 0.335 mmol, 67% yield for 2 steps) was synthesised from LDA (ca. 1.0 mol/L in THF-hexane, 1.20 mL, 1.20 mmol), alkenyl ester **S16** (85.5 mg, 0.602 mmol), alkynyl ester **S6** (77.4 mg, 0.502 mmol), NaH (60% in mineral oil, 40.5 mg, 1.01 mmol), and TIPSOTf (202 μ L, 0.750 mmol).

6m: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 4.70 (s, 2H), 4.16 (q, *J* = 7.3 Hz, 2H), 3.11 (s, 2H), 1.73 (s, 3H), 1.36–1.28 (m, 3H), 1.243 (s, 9H), 1.242 (t, *J* = 7.3 Hz, 3H), 1.11 (d, *J* = 7.4 Hz, 18H); ¹³C

NMR (126 MHz, CDCl₃) δ 167.4, 143.7, 140.2, 116.2, 110.5, 104.2, 76.0, 59.9, 38.3, 30.2 (3C), 28.1, 22.4, 17.9 (6C), 14.3, 13.0 (3C); FT-IR (ATR) *v* 2968, 2945, 2867, 2217, 1715, 1200, 1060 cm⁻¹; HRMS (FD) calcd for C₂₄H₄₂O₃Si (M⁺): 406.2903, found: 406.2911.

According to the general procedure A, **6n** (149 mg, 0.343 mmol, 68% yield for 2 steps) was synthesised from LDA (ca. 1.0 mol/L in THF-hexane, 1.20 mL, 1.20 mmol), alkenyl ester **S17** (101 mg, 0.600 mmol), alkynyl ester **S6** (77.4 mg, 0.502 mmol), NaH (60% in mineral oil, 39.9 mg, 0.998 mmol), and TIPSOTf (202 μ L, 0.750 mmol).

6n: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.34 (br, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.16 (s, 2H), 2.30–2.22 (m, 4H), 1.86–1.80 (m, 2H), 1.37–1.28 (m, 3H), 1.243 (s, 9H), 1.241 (t, J = 7.2 Hz, 3H), 1.11 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.5, 142.4, 139.9, 124.2, 116.4, 104.3, 76.0, 59.9, 34.9, 32.4, 32.1, 30.2 (3C), 28.1, 23.4, 17.9 (6C), 14.3, 13.0 (3C); FT-IR (ATR) *v* 2945, 2867, 2218, 1715, 1327, 1203, 1055 cm⁻¹; HRMS (FD) calcd for C₂₆H₄₄O₃Si (M⁺): 432.3060, found: 432.3053.

According to the general procedure A, **60** (135 mg, 0.322 mmol, 64% yield for 2 steps) was synthesised from LDA (ca. 1.0 mol/L in THF-hexane, 1.20 mL, 1.20 mmol), alkenyl ester **S18** (93.2 mg, 0.597 mmol), alkynyl ester **S6** (77.0 mg, 0.499 mmol), NaH (60% in mineral oil, 39 .7 mg, 0.993 mmol), and TIPSOTT (202 μ L, 0.750 mmol).

60: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.14–5.10 (m, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.09 (d, J = 7.4 Hz, 2H), 1.67 (s, 6H), 1.34–1.28 (m, 3H), 1.251 (s, 9H), 1.251 (t, J = 7.2 Hz, 3H), 1.10 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.4, 139.0, 132.1, 121.9, 117.7, 104.3, 76.0, 59.9, 30.2 (3C), 29.3, 28.1, 25.7, 18.0, 17.9 (6C), 14.3, 13.0 (3C); FT-IR (ATR) v 2968, 2867, 2217, 1715, 1316, 1200, 1054 cm⁻¹; HRMS (FD) calcd for C₂₅H₄₄O₃Si (M⁺): 420.3060, found: 420.3074.

According to the general procedure A, **6p** (265 mg, 0.607 mmol, 61% yield for 2 steps) was synthesised from ${}^{i}Pr_{2}NH$ (337 μ L, 2.40 mmol), "BuLi (2.69 mol/L, 892 μ L, 2.40 mmol), alkenyl ester **S18** (155 mg, 0.995 mmol), alkynyl ester **S8** (204 mg, 1.20 mmol), NaH (60% in mineral oil, 80.7 mg, 2.02 mmol), and TIPSOTf (403 μ L, 1.50 mmol). Enolate was prepared by the addition of **S8** in THF to an LDA solution.

6p: pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 5.12 (t, *J* = 7.1 Hz, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.13 (d, *J* = 7.1 Hz, 2H), 1.67 (s, 6H), 1.35–1.28 (m, 3H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.10 (d, *J* = 7.4 Hz, 2H), 1.67 (s, 6H), 1.35–1.28 (m, 3H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.10 (d, *J* = 7.4 Hz), 3.13 (d, *J* = 7.1 Hz), 2.11 (d, *J* = 7.4 Hz), 1.28 (m, 3H), 1.26 (t, *J* = 7.2 Hz), 3.13 (d, *J* = 7.1 Hz), 3.14 (d, J = 7.14 Hz), 3.14 (d, J = 7.14

18H), 0.19 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 137.8, 132.4, 121.5, 119.7, 101.6, 100.6, 60.1, 29.4, 25.7, 18.0, 17.9 (6C), 14.3, 13.0 (3C), -0.7 (3C); FT-IR (ATR) *v* 2945, 2868, 2148, 1718, 1204, 843 cm⁻¹; HRMS (FD) calcd for C₂₄H₄₄O₃Si₂ (M⁺): 436.2829, found: 436.2834.

According to the general procedure A, (*Z*)-**6q** (137 mg, 0.336 mmol, 68% yield for 2 steps) was synthesised from LDA (ca. 1.0 mol/L in THF-hexane, 1.48 mL, 1.48 mmol), alkenyl ester **S25** (105 mg, 0.738 mmol), alkynyl ester **S6** (75.6 mg, 0.490 mmol), NaH (60% in mineral oil, 39.2 mg, 0.980 mmol), and TIPSOTf (198 μ L, 0.738 mmol).

(*Z*)-**6q**: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.49–5.36 (m, 2H), 4.16 (q, *J* = 7.0 Hz, 2H), 3.15 (d, *J* = 6.9 Hz, 2H), 1.68 (d, *J* = 6.9 Hz, 3H), 1.35–1.28 (m, 3H), 1.26 (s, 9H), 1.25 (t, *J* = 7.0 Hz, 3H), 1.10 (d, *J* = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 139.6, 128.0, 124.4, 117.1, 104.5, 76.0, 59.9, 30.2 (3C), 28.21, 28.15, 18.0, 17.9 (6C), 14.4, 13.0 (3C); FT-IR (ATR) *v* 2968, 2945, 2867, 2216, 1715, 1328, 1190 cm⁻¹; HRMS (FD) calcd for C₂₄H₄₂O₃Si (M⁺): 406.2903, found: 406.2918.

According to the general procedure A, (*E*)-6q (135 mg, 0.331 mmol, 66% yield for 2 steps) was synthesised from LDA (ca. 1.0 mol/L in THF-hexane, 1.20 mL, 1.20 mmol), alkenyl ester **S19** (71.2 mg, 0.501 mmol), alkynyl ester **S6** (92.5 mg, 0.600 mmol), NaH (60% in mineral oil, 40.5 mg, 1.01 mmol), and TIPSOTf (202 μ L, 0.750 mmol).

(*E*)-**6q**: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.52–5.39 (m, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.05 (d, *J* = 6.3 Hz, 2H), 1.63 (d, *J* = 5.7 Hz, 3H), 1.35–1.28 (m, 3H), 1.26 (s, 9H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.10 (d, *J* = 8.0 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.3, 140.0, 128.3, 125.6, 116.8, 104.5, 76.0, 59.9, 33.5, 30.2 (3C), 28.2, 17.9 (6C), 17.8, 14.4, 13.0 (3C); FT-IR (ATR) *v* 2968, 2944, 2867, 2216, 1715, 1317, 1191 cm⁻¹; HRMS (FD) calcd for C₂₄H₄₂O₃Si (M⁺): 406.2903, found: 406.2890.

Synthesis of Dienynes: General Procedure B

This procedure is based on the method originally reported by Presset *et al.*^[17] A solution of mixed anhydride in THF was prepared by the addition of *N*-methylmorpholine (1.1 equiv.) and MeOCOCl (1.1 equiv.) successively to a solution of alkynyl carboxylic acid (1.0 equiv.) in THF (0.5 mol/L) at 0 °C. The mixture was stirred for 15 min at the same temperature before the use. In another flask, malonic acid monoester S21 (1.5 equiv.) was dissolved in THF (0.75 mol/L), and ⁱPrMgCl (2.0 mol/L in THF, 3.0 equiv.) was added at 0 °C. After stirring for 5 min, the solution of mixed anhydride in THF was transferred via cannula to this mixture, and the resulting mixture was warmed up to room temperature and stirred overnight. The reaction was quenched with saturated aqueous NH₄Cl solution, and the organic layer was diluted with EtOAc. Two layers were separated, and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Highly polar components were filtered off through a plug of SiO₂ (hexane:EtOAc = 10:1) to afford ketoester along with a small amount of byproducts. NaH (60% dispersion in mineral oil, 2.0 equiv.) was washed with hexane and suspended with THF (0.4 mol/L). To this suspension was added above ketoester (1.0 equiv.) in THF via cannula at 0 °C. After stirring for 10 min, TIPSOTf (1.5 equiv.) was added, and the reaction mixture was warmed up to room temperature and stirred for 10 min. The reaction was quenched by the careful addition of saturated aqueous NaHCO₃ solution, and the organic layer was diluted with EtOAc. Two layers were separated, and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 100:1) to afford the product dienyne.

According to the general procedure B, **6d** (751 mg, 1.84 mmol, 73% yield for 2 steps) was synthesised from alkynyl carboxylic acid **S9** (356 mg, 2.50 mmol), *N*-methylmorpholine (275 μ L, 2.50 mmol), MeOCOCl (192 μ L, 2.50 mmol), malonic acid monoester **S21** (646 mg, 3.75 mmol), ^{*i*}PrMgCl (2.0 mol/L in THF, 3.75 mL, 7.50 mmol), NaH (60% in mineral oil, 149 mg, 3.73 mmol), and TIPSOTf (806 μ L, 3.00 mmol).

6d: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.81 (ddt, J = 17.1, 10.2, 6.5 Hz, 1H), 5.06 (ddt, J = 17.1, 1.6, 1.6 Hz, 1H), 4.97 (ddt, J = 10.2, 1.6, 1.5 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.16 (ddd, J = 6.5, 1.6, 1.5 Hz, 2H), 1.36–1.29 (m, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.10 (d, J = 8.0 Hz, 18H), 0.20 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 139.4, 135.6, 117.7, 115.2, 102.2, 100.3, 60.1, 34.6, 17.9 (6C), 14.3, 13.0 (3C), -0.7 (3C); FT-IR (ATR) v 2945, 2868, 2150, 1717, 1200, 842 cm⁻¹; HRMS (FD) calcd for C₂₂H₄₀O₃Si₂ (M⁺): 408.2516, found: 408.2535.

According to the general procedure B, **6f** (160 mg, 0.381 mmol, 76% yield for 2 steps) was synthesised from alkynyl carboxylic acid **S10** (76.2 mg, 0.501 mmol), *N*-methylmorpholine (57.7 μ L, 0.525 mmol), MeOCOCI (40.3 μ L, 0.525 mmol), malonic acid monoester **S21** (129 mg, 0.750 mmol), ⁷PrMgCl (2.0 mol/L in THF, 750 μ L, 1.50 mmol), NaH (60% in mineral oil, 36.4 mg, 0.910 mmol), and TIPSOTf (183 μ L, 0.679

mmol).

6f: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.83 (ddt, J = 17.1, 10.4, 6.4 Hz, 1H), 5.06 (ddt, J = 17.1, 1.7, 1.7 Hz, 1H), 4.95 (ddt, J = 10.4, 1.7, 1.7 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.15 (d, J = 6.4 Hz, 2H), 2.57–2.52 (m, 1H), 1.85–1.80 (m, 2H), 1.74–1.68 (m, 2H), 1.50–1.43 (m, 2H), 1.35–1.29 (m, 7H), 1.26 (t, J = 7.2 Hz, 3H), 1.11 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 140.8, 136.1, 115.7, 114.9, 101.2, 77.1, 59.9, 34.6, 31.9 (2C), 29.7, 25.7, 24.8 (2C), 17.9 (6C), 14.4, 13.1 (3C); FT-IR (ATR) v 2932, 2866, 2213, 1715, 1321, 1204 cm⁻¹; HRMS (FD) calcd for C₂₅H₄₂O₃Si (M⁺): 418.2903, found: 418.2917.

According to the general procedure B, **6g** (129 mg, 0.341 mmol, 68% yield for 2 steps) was synthesised from alkynyl carboxylic acid **S11** (54.9 mg, 0.499 mmol), *N*-methylmorpholine (57.7 μ L, 0.525 mmol), MeOCOCI (40.3 μ L, 0.525 mmol), malonic acid monoester **S21** (129 mg, 0.751 mmol), ^{*i*}PrMgCl (2.0 mol/L in THF, 750 μ L, 1.50 mmol), NaH (60% in mineral oil, 34.0 mg, 0.850 mmol), and TIPSOTf (174 μ L, 0.646

mmol).

6g: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.81 (ddt, J = 17.0, 10.2, 6.4 Hz, 1H), 5.05 (ddt, J = 17.0, 1.7, 1.6 Hz, 1H), 4.96 (ddt, J = 10.2, 1.7, 1.6 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.13 (ddd, J = 6.4, 1.6, 1.6 Hz, 2H), 1.43–1.38 (m, 1H), 1.31–1.26 (m, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.10 (d, J = 7.4 Hz, 18H), 0.91–0.87 (m, 2H), 0.78–0.75 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 140.7, 136.1, 115.6, 114.8, 100.5, 72.4, 59.9, 34.5, 17.9 (6C), 14.4, 13.0 (3C), 8.5 (2C), 0.1; FT-IR (ATR) *v* 2945, 2867, 2217, 1714, 1208, 1184, 1126 cm⁻¹; HRMS (FD) calcd for C₂₂H₃₆O₃Si (M⁺): 376.2434, found: 376.2420.

According to the general procedure B, **6i** (62.6 mg, 0.149 mmol, 74% yield for 2 steps) was synthesised from alkynyl carboxylic acid **S12** (31.0 mg, 0.201 mmol), *N*-methylmorpholine (24.2 μ L, 0.220 mmol), MeOCOCI (16.9 μ L, 0.220 mmol), malonic acid monoester **S21** (51.5 mg, 0.299 mmol), ⁱPrMgCl (2.0 mol/L in THF, 300 μ L, 0.600 mmol), NaH (60% in mineral oil, 16.1 mg, 0.403 mmol), and TIPSOTf (80.6 μ L, 0.300

mmol).

6i: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.82 (ddt, J = 17.1, 10.3, 6.4 Hz, 1H), 5.05 (ddt, J = 17.1, 1.7, 1.7 Hz, 1H), 4.95 (ddt, J = 10.3, 1.7, 1.7 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.15 (d, J = 6.4 Hz, 2H), 2.36 (t, J = 7.2 Hz, 2H), 1.57–1.51 (m, 2H), 1.43–1.37 (m, 2H), 1.33–1.25 (m, 7H), 1.26 (t, J = 7.2 Hz, 3H), 1.11 (d, J = 7.4 Hz, 18H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 140.6, 136.1, 115.7, 114.9, 97.7, 59.9, 34.5, 31.3, 28.6, 28.0, 22.5, 19.4, 17.9 (6C), 14.4, 14.0, 13.0 (3C) (1 signal overlapped with the solvent signals δ 77.2, 77.0, 76.7); FT-IR (ATR) v 2934, 2867, 2220, 1715, 1334, 1205 cm⁻¹; HRMS (FD) calcd for C₂₅H₄₄O₃Si (M⁺): 420.3060, found: 420.3040.

According to the general procedure B, **6j** (59.1 mg, 0.117 mmol, 78% yield for 2 steps) was synthesised from alkynyl carboxylic acid **S23** (35.9 mg, 0.149 mmol), *N*-methylmorpholine (18.1 μ L, 0.165 mmol), MeOCOCl (12.7 μ L, 0.165 mmol), malonic acid monoester **S21** (39.1 mg, 0.227 mmol), ^{*i*}PrMgCl (2.0 mol/L in THF, 225 μ L, 0.450 mmol), NaH (60% in mineral oil, 12.3 mg, 0.308 mmol), and TIPSOTf (60.5 μ L, 0.225

mmol).

6j: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.79 (ddt, J = 17.0, 10.1, 6.3 Hz, 1H), 5.03 (ddt, J = 17.0, 1.8, 1.8 Hz, 1H), 4.94 (ddt, J = 10.1, 1.8, 1.8 Hz, 1H), 4.16 (q, J = 7.3 Hz, 2H), 3.15 (d, J = 6.3 Hz, 2H), 1.73 (s, 2H), 1.33–1.26 (m, 3H), 1.25 (t, J = 7.3 Hz, 3H), 1.18–1.12 (m, 3H), 1.11 (d, J = 7.5 Hz, 18H), 1.08 (d, J = 7.0 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.3, 141.1, 136.3, 114.8, 114.7, 97.1, 76.4, 59.8, 34.2, 18.5 (6C), 17.9 (6C), 14.4, 13.1 (3C), 11.1 (3C), 0.4; FT-IR (ATR) ν 2943, 2867, 2204, 1715, 1205, 1163, 881 cm⁻¹; HRMS (FD) calcd for C₂₉H₅₄O₃Si₂ (M⁺): 506.3612, found: 506.3607.

According to the general procedure B, **6k** (59.8 mg, 0.171 mmol, 63% yield for 2 steps) was synthesised from alkynyl carboxylic acid **S13** (75% in Et₂O, 30.2 mg, 0.270 mmol), *N*-methylmorpholine (32.7 μ L, 0.297 mmol), MeOCOC1 (22.8 μ L, 0.297 mmol), malonic acid monoester **S21** (69.2 mg, 0.402 mmol), ⁷PrMgCl (2.0 mol/L in THF, 406 μ L, 0.811 mmol), NaH (60% in mineral oil, 19.6 mg, 0.490 mmol), and TIPSOTf (96.8

μL, 0.360 mmol).

6k: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.82 (ddt, J = 17.0, 9.9, 6.4 Hz, 1H), 5.05 (ddt, J = 17.0, 1.7, 1.7 Hz, 1H), 4.96 (ddt, J = 9.9, 1.7, 1.7 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.14 (d, J = 6.4 Hz, 2H), 2.01 (s, 3H), 1.31–1.26 (m, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.10 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 140.5, 136.2, 115.6, 114.9, 93.2, 76.6, 59.9, 34.4, 17.9 (6C), 14.4, 13.0 (3C), 4.3; FT-IR (ATR) v 2945, 2867, 2228, 1715, 1589, 1206 cm⁻¹; HRMS (FI) calcd for C₂₀H₃₄O₃Si (M⁺):

According to the general procedure B, **61** (146 mg, 0.303 mmol, 61% yield for 2 steps) was synthesised from alkynyl carboxylic acid **S24** (107 mg, 0.499 mmol), *N*methylmorpholine (57.7 μ L, 0.525 mmol), MeOCOCI (40.3 μ L, 0.525 mmol), malonic acid monoester **S21** (129 mg, 0.750 mmol), ^{*i*}PrMgCl (2.0 mol/L in THF, 750 μ L, 1.50 mmol), NaH (60% in mineral oil, 34.5 mg, 0.863 mmol), and TIPSOTf (175 μ L, 0.651

mmol).

6I: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.80 (ddt, J = 16.9, 10.3, 6.4 Hz, 1H), 5.06 (ddt, J = 16.9, 1.6, 1.6 Hz, 1H), 4.96 (ddt, J = 10.3, 1.6, 1.6 Hz, 1H), 4.45 (s, 2H), 4.17 (q, J = 7.2 Hz, 2H), 3.15 (d, J = 6.4 Hz, 2H), 1.34–1.28 (m, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.10 (d, J = 7.4 Hz, 18H), 0.90 (s, 9H), 0.10 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 139.3, 135.7, 117.2, 115.2, 94.2, 80.6, 60.1, 51.8, 34.4, 25.6 (3C), 18.2, 17.9 (6C), 14.3, 13.0 (3C), -5.4 (2C); FT-IR (ATR) ν 2947, 2867, 1717, 1207, 1093, 833, 777 cm⁻¹ (C=C absorption band was not detected due to very weak intensity); HRMS (FI) calcd for C₂₆H₄₈O₄Si₂ (M⁺): 480.3091, found: 480.3078.

Synthesis of Cycloheptatrienes: General Procedure C

An LDA solution (1 mol/L in THF-hexane) was prepared by the addition of "BuLi (2.65 mol/L in hexane, 755 μ L, 2.00 mmol) to a solution of 'Pr₂NH (281 μ L, 2.00 mmol) in THF (1.25 mL) at 0 °C. The mixture was stirred for 20 min at the same temperature before the use. To another reaction vessel charged with dienyne (1.0 equiv.) in THF (0.1 mol/L) was added the LDA solution (2.0 equiv.) via a syringe at 0 °C. The reaction mixture was then warmed up to room temperature and stirred for 20 min. The reaction was quenched with saturated aqueous NaHCO₃ solution, and the organic layer was diluted with EtOAc. Two layers were separated, and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 100:1) to afford the product cycloheptatriene.

According to the general procedure C, **7a** (33.0 mg, 84.0 μ mol, 84% yield) was synthesised from dienyne **6a** (39.1 mg, 99.6 μ mol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 μ L, 0.200 mmol).

7a: yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.41 (d, J = 9.5 Hz, 1H), 5.86 (s, 1H), 5.28 (dt, J = 9.5, 6.7 Hz, 1H), 4.23 (q, J = 7.3 Hz, 2H), 2.35 (d, J = 6.7 Hz, 2H), 1.30 (t, J = 7.3 Hz, 3H), 1.27–1.20 (m, 3H), 1.12 (s, 9H), 1.10 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 168.1, 157.9, 153.7, 125.1, 118.6, 117.5, 116.7, 60.2, 36.1, 29.24 (3C), 29.16, 17.9 (6C), 14.4, 13.3 (3C); FT-IR (ATR) *v* 2946, 2867, 1720, 1195, 1058, 881 cm⁻¹; HRMS (FD) calcd for C₂₃H₄₀O₃Si (M⁺): 392.2747, found: 392.2762.

According to the general procedure C, 7c (37.3 mg, 79.2 µmol, 79% yield) was synthesised from dienyne 6c (47.1 mg, 0.100 mmol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 µL, 0.200 mmol).

7c: yellow semisolid; ¹H NMR (500 MHz, CDCl₃) δ 6.41 (d, *J* = 9.4 Hz, 1H), 5.76 (s, 1H), 5.23 (ddd, *J* = 9.4, 7.0, 7.0 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 2.32 (br, 2H), 2.04 (br, 3H), 1.75–1.65 (m, 12H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.27–1.20 (m, 3H), 1.10 (d, *J* = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 158.1, 153.8, 125.0, 118.2, 117.6, 116.6, 60.2, 41.2 (3C), 37.7, 36.7 (3C), 28.3 (3C), 28.0, 17.9 (6C), 14.4, 13.3 (3C); FT-IR (ATR) *v* 2903, 2865, 2849, 1713, 1204, 1064 cm⁻¹; HRMS (FD) calcd for C₂₉H₄₆O₃Si (M⁺): 470.3216, found: 470.3207.

According to the general procedure C, **7d** (38% NMR yield) and **8d** (12% NMR yield) was synthesised from dienyne **6d** (39.4 mg, 96.4 μ mol) and LDA (ca. 1.0 mol/L in THF-hexane, 193 μ L, 0.193 mmol). The major product **7d** was partially isolated by PTLC purification.

7d: yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.41 (d, J = 9.3 Hz, 1H), 6.22 (s, 1H), 5.29 (dt, J = 9.3, 6.9 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 2.32 (d, J = 6.9 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H), 1.26–1.18 (m, 3H), 1.10 (d, J = 6.9 Hz, 18H), 0.13 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.1, 158.0, 144.8, 131.7, 125.0, 118.8, 117.9, 60.4, 30.2, 17.9 (6C), 14.3, 13.2 (3C), -1.9 (3C); FT-IR (ATR) v 2946, 2867, 1723, 1206, 1053, 834 cm⁻¹; HRMS (FD) calcd for C₂₂H₄₀O₃Si₂ (M⁺): 408.2516, found: 408.2506.

CO2Et

8b

OH

According to the general procedure C, **7e** (17.3 mg, 50.1 μ mol, 51% yield) was synthesised from dienyne **6e** (34.1 mg, 98.7 μ mol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 μ L, 0.200 mmol).

7e: yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.12 (d, *J* = 9.1 Hz, 1H), 5.92 (s, 1H), 5.31 (dt, *J* = 9.1, 7.4 Hz, 1H), 2.40 (d, *J* = 7.4 Hz, 2H), 1.28–1.21 (m, 3H), 1.132 (s, 9H), 1.125 (d, *J* = 6.9 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 165.0, 156.7, 124.1, 120.4, 118.7, 116.9, 97.1, 36.6, 29.2, 29.1 (3C), 17.8 (6C), 13.0 (3C); FT-IR (ATR) *v* 2947, 2868, 2209, 1308, 1228, 878, 837 cm⁻¹; HRMS (FD) calcd for C₂₁H₃₅NOSi (M⁺): 345.2488, found: 345.2484.

According to the general procedure C, **8b** (451 mg, 1.19 mmol, 85% yield) was synthesised from dienyne **6b** (530 mg, 1.40 mmol) and LDA (ca. 1.0 mol/L in THF-hexane, 2.80 mL, 2.80 mmol).

8b: yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 6.33 (dd, J = 9.3, 1.4 Hz, 1H), 5.45 (ddd, J = 9.3, 7.4, 6.4 Hz, 1H), 4.31–4.22 (m, 2H), 2.89 (dd, J = 12.2, 7.4 Hz, 1H), 2.80 (sept, J = 6.8 Hz, 1H), 1.87 (ddd, J = 12.2, 6.4, 1.4 Hz, 1H), 1.42–1.34 (m, 3H), 1.34 (t, J = 7.3 Hz, 3H), 1.12 (d, J = 6.8 Hz, 3H), 1.08 (d, J = 6.8 Hz, 3H), 1.07 (d, J = 7.4 Hz, 9H), 1.03 (d, J = 7.4 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 178.8, 172.8, 167.5, 124.5, 123.6, 122.7, 103.4, 60.6, 34.3, 29.8, 22.2, 21.6, 19.4 (3C), 19.3 (3C), 14.2, 13.6 (3C); FT-IR (ATR) ν 2946, 2866, 1637, 1533, 1226, 1067 cm⁻¹; HRMS (FD) calcd for C₂₂H₃₈O₃Si (M⁺): 378.2590, found: 378.2576; m.p. (Et₂O) 57–62 °C.

According to the general procedure C, **8f** (33.1 mg, 79.1 μ mol, 81% yield) was synthesised from dienyne **6f** (41.1 mg, 98.2 μ mol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 μ L, 0.200 mmol).

Cy 8f

CO2Et

OH

TIPS

8f: yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 6.33 (dd, J = 9.0, 1.4 Hz, 1H), 5.44 (ddd, J = 9.0, 7.4, 6.4 Hz, 1H), 4.31–4.21 (m, 2H), 2.90 (dd, J = 12.1, 7.4 Hz, 1H), 2.46 (tt, J = 11.4, 3.1 Hz, 1H), 1.84 (ddd, J = 12.1, 6.4, 1.4 Hz, 1H), 1.82–1.70 (m, 3H), 1.65–1.61 (m, 2H), 1.53–1.19 (m, 8H), 1.34 (t, 7.0 Hz, 3H), 1.08 (d, J = 7.4 Hz, 9H), 1.03 (d, J = 7.4 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 178.8, 172.8, 166.4, 124.7, 123.1, 122.7, 103.5, 60.6, 45.2, 32.2, 31.4, 31.1, 26.05, 26.00, 25.8, 19.5 (3C), 19.4 (3C), 14.2, 13.7 (3C); FT-IR (ATR) v 2927, 2864, 1636, 1316, 1228, 1070 cm⁻¹; HRMS (FD) calcd for

C₂₅H₄₂O₃Si (M⁺): 418.2903, found: 418.2922; m.p. (Et₂O) 96–101 °C.

According to the general procedure C, **8g** (21.8 mg, 57.9 μ mol, 58% yield) was synthesised from dienyne **6g** (37.6 mg, 99.8 μ mol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 μ L, 0.200 mmol).

8g: yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.35 (d, J = 9.3 Hz, 1H), 5.33 (ddd, J = 9.3, 7.1, 7.1 Hz, 1H), 4.31–4.21 (m, 2H), 2.14 (dd, J = 12.6, 7.1 Hz, 1H), 1.77–1.71 (m, 2H), 1.47–1.38 (m, 3H), 1.33 (t, J = 7.2 Hz, 3H), 1.04 (d, J = 7.5 Hz, 18H), 0.95–0.87 (m, 2H), 0.85–0.79 (m, 1H), 0.68–0.63 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 178.8, 172.8, 162.0, 124.7, 123.5, 122.0, 103.1, 60.6, 27.6, 19.3 (3C), 19.1 (3C), 17.1, 14.2, 13.3 (3C), 9.5, 7.3; FT-IR (ATR) v 2944, 2865, 1635, 1299, 1227, 1072 cm⁻¹; HRMS (FD) calcd for C₂₂H₃₆O₃Si (M⁺): 376.2434, found: 376.2420.

According to the general procedure C, **8h** (19.3 mg, 46.8 μ mol, 47% yield) was synthesised from dienyne **6h** (40.7 mg, 98.6 μ mol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 μ L, 0.200 mmol).

8h: yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 7.27–7.22 (m, 5H), 6.51 (d, J = 9.2 Hz, 1H), 5.72 (ddd, J = 9.2, 6.8, 6.8 Hz, 1H), 4.31 (q, J = 7.3 Hz, 2H), 2.86 (br, 1H), 2.34 (br, 1H), 1.37 (t, J = 7.3 Hz, 3H), 1.25–0.86 (m, 21H); ¹³C NMR (126 MHz, CDCl₃) δ 178.0, 172.9, 159.2, 144.3, 127.9 (2C), 127.8, 127.5 (2C), 127.2, 123.4, 121.5, 104.1, 60.9, 40.2, 19.5 (6C), 14.2, 13.0 (3C); FT-IR (ATR) *v* 2946, 2865, 1637, 1315, 1226, 1081 cm⁻¹; HRMS (FD) calcd for C₂₅H₃₆O₃Si (M⁺): 412.2434, found: 412.2426; m.p. (Et₂O) 79–81 °C.

According to the general procedure C, **8i** (36.7 mg, 87.2 μ mol, 86% yield) was synthesised from dienyne **6I** (42.5 mg, 0.101 mmol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 μ L, 0.200 mmol).

8i: yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.33 (d, *J* = 9.1 Hz, 1H), 5.52 (ddd, *J* = 9.1, 7.4, 6.4 Hz, 1H), 4.29–4.23 (m, 2H), 2.78 (dd, *J* = 12.1, 7.4 Hz, 1H), 2.38–2.32 (m, 1H), 2.26–2.20 (m, 1H), 2.05 (ddd, *J* = 12.1, 6.4, 1.4 Hz, 1H), 1.55–1.46 (m, 2H), 1.42–1.29 (m, 12H), 1.05 (d, *J* = 7.4 Hz, 9H), 1.02 (d, *J* = 7.4 Hz, 9H), 0.90 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 178.9, 172.8, 162.0, 125.1,

123.0, 122.6, 103.3, 60.6, 38.4, 35.1, 31.7, 29.9, 29.3, 22.5, 19.34 (3C), 19.30 (3C), 14.2, 14.0, 13.5 (3C); FT-IR (ATR) *v* 2928, 2864, 1636, 1315, 1226, 1068 cm⁻¹; HRMS (FD) calcd for C₂₅H₄₄O₃Si (M⁺): 420.3060, found: 420.3045.

According to the general procedure C, **8j** (22.4 mg, 44.2 μ mol, 88% yield) was synthesised from dienyne **6j** (25.4 mg, 50.1 μ mol) and LDA (ca. 1.0 mol/L in THF-hexane, 100 μ L, 0.100 μ mol).

8j: pale yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 6.33 (d, J = 9.3 Hz, 1H), 5.56 (ddd, J = 9.3, 7.0, 7.0 Hz, 1H), 4.28–4.23 (m, 2H), 2.68 (br, 1H), 2.21 (br, 1H), 2.03 (br-d, J = 12.3 Hz, 1H), 1.95 (br-d, J = 12.3 Hz, 1H), 1.52–1.43 (m, 3H), 1.33 (t, J = 7.2 Hz, 3H), 1.25–1.14 (m, 3H), 1.11–1.04 (m, 36H); ¹³C NMR (126 MHz, CDCl₃) δ 179.4, 172.7, 161.0, 125.1, 123.5, 122.7, 102.9, 60.5, 37.9, 21.5, 19.5 (6C), 19.0 (6C), 14.3, 14.0 (3C), 11.8 (3C); FT-IR (ATR) v 2943, 2866, 1637, 1316, 1227, 1070 cm⁻¹; HRMS (FD) calcd for C₂₉H₅₄O₃Si₂ (M⁺): 506.3612, found: 506.3625; m.p. (Et₂O) 64–69 °C.

ÇO₂Et

8j

According to the general procedure C, 7m (32.5 mg, 79.9 µmol, 79% yield) was synthesised from dienyne 6m (41.0 mg, 0.101 mmol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 µL, 0.200 mmol).

7m: colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 6.13 (d, J = 1.1 Hz, 1H), 5.83 (s, 1H), 4.22 (q, J = 7.2 Hz, 2H), 2.41 (s, 2H), 1.97 (d, J = 1.1 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H), 1.26–1.17 (m, 3H), 1.14 (s, 9H), 1.09 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 156.3, 152.6, 129.9, 120.7, 118.1, 116.8, 60.2, 36.1, 34.2, 28.8 (3C), 23.5, 17.9 (6C), 14.4, 13.3 (3C); FT-IR (ATR) ν 2945, 2867, 1720, 1223, 1194, 883 cm⁻¹; HRMS (FD) calcd for C₂₄H₄₂O₃Si (M⁺): 406.2903, found: 406.2907.

According to the general procedure C, **7n** (38.2 mg, 88.3 μ mol, 89% yield) was synthesised from dienyne **6n** (43.1 mg, 99.6 μ mol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 μ L, 0.200 mmol).

7n: pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.23 (s, 1H), 5.84 (s, 1H), 4.30–4.23 (m, 1H), 4.21– 4.14 (m, 1H), 2.65–2.57 (m, 1H), 2.46–2.33 (m, 3H), 2.12–2.06 (m, 1H), 2.04–1.99 (m, 1H), 1.66–1.56 (m, 1H), 1.30 (t, *J* = 6.9 Hz, 3H), 1.25–1.18 (m, 3H), 1.20 (s, 9H), 1.11 (d, *J* = 7.4 Hz, 9H), 1.08 (d, *J* = 6.9 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 155.9, 152.3, 143.9, 118.9, 117.3, 115.1, 60.3, 45.3, 36.5, 33.5, 30.2 (3C), 29.0, 26.6, 18.0 (3C), 17.9 (3C), 14.4, 13.3 (3C); FT-IR (ATR) v 2946, 2867, 1721, 1272, 1200, 883 cm⁻¹; HRMS (FD) calcd for C₂₆H₄₄O₃Si (M⁺): 432.3060, found: 432.3039.

According to the general procedure C, 70 (29.3 mg, 69.6 µmol, 70% yield) was synthesised from dienyne 60 (42.0 mg, 99.8 µmol) and LDA (ca. 1.0 mol/L in THFhexane, 200 µL, 0.200 mmol).

70: yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.44 (d, J = 10.3 Hz, 1H), 5.99 (s, 1H), 4.91 (d, J = 10.3Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H), 1.27–1.20 (m, 18H), 1.11 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 167.8, 157.0, 152.7, 124.2, 122.7, 118.8, 115.3, 60.1, 38.9, 38.5 (2C), 32.0 (3C), 27.2, 18.0 (6C), 14.4, 13.4 (3C); FT-IR (ATR) v 2946, 2867, 1720, 1204, 1068, 882 cm^{-1} ; HRMS (FD) calcd for C₂₅H₄₄O₃Si (M⁺): 420.3060, found: 420.3041.

According to the general procedure C, 7p (12.7 mg, 29.1 µmol, 58% yield) was synthesised from dienyne 6p (21.9 mg, 50.1 µmol) and LDA (ca. 1.0 mol/L in THFhexane, 100 µL, 0.100 µmol).

7p: yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.37 (d, J = 10.3 Hz, 1H), 6.25 (s, 1H), 5.06 (d, J = 10.3Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H), 1.26–1.19 (m, 3H), 1.12 (s, 6H), 1.11 (d, J) = 7.5 Hz, 18H), 0.21 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.1, 157.4, 153.1, 132.1, 129.5, 122.3, 117.4, 60.4, 38.8 (2C), 26.3, 17.9 (6C), 14.4, 13.4 (3C), 1.8 (3C); FT-IR (ATR) v 2947, 2867, 1722, 1203, 835 cm⁻¹; HRMS (FD) calcd for $C_{24}H_{44}O_3Si_2$ (M⁺): 436.2829, found: 436.2830.

From (Z)-6q: According to the general procedure C, 7q (26.5 mg, 65.2 µmol, 66% yield) was synthesised from dienyne (Z)-6q (40.3 mg, 99.1 μ mol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 µL, 0.200 µmol).

From (E)-6q: According to the general procedure C, 7q (14.2 mg, 34.9 µmol, 35% yield)

and 10 (isomeric mixture, 5.8 mg, 16 µmol, 16% yield) was synthesised from dienyne (E)-6q (40.2 mg, 98.8 µmol) and LDA (ca. 1.0 mol/L in THF-hexane, 200 µL, 0.200 mmol).

7q: yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.41 (d, J = 10.2 Hz, 1H), 5.92 (d, J = 1.1 Hz, 1H), 5.39 (dd, J = 10.2, 8.9 Hz, 1H), 4.30–4.24 (m, 1H), 4.20–4.13 (m, 1H), 3.30 (dq, J = 8.9, 7.4 Hz, 1H), 1.30 (t, J = 7.3 Hz, 3H), 1.29–1.21 (m, 3H), 1.13 (s, 9H), 1.12 (d, J = 7.0 Hz, 9H), 1.10 (d, J = 7.0 Hz, 9H), 0.80 (d, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 157.7, 156.2, 124.1, 122.8, 117.0, 115.6, 60.2, 37.5, 32.7, 29.3 (3C), 17.9 (6C), 14.4, 13.5, 13.3 (3C); FT-IR (ATR) ν 2946, 2868, 1719, 1197, 1068, 881 cm⁻¹; HRMS (FD) calcd for C₂₄H₄₂O₃Si (M⁺): 406.2903, found: 406.2911.

Synthetic Applications Ketoester 11

To a solution of **8b** (18.9 mg, 49.9 μ mol) in CH₂Cl₂ (0.25 mL) was added *m*CPBA (ca. 70%, 12.5 mg, 50.7 μ mol) at room temperature. After stirring for 20 min, the reaction was quenched by the addition of saturated aqueous NaHCO₃ solution (0.50 mL) and Na₂S₂O₃·5H₂O (90 mg). After stirring for 1 h, the two layers were separated, the aqueous layer was extracted with CH₂Cl₂ (0.50 mL × 3). The combined organic layers were washed with saturated aqueous NaHCO₃ solution (1.0 mL × 2), then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:Et₂O = 10:1 to 1:1 gradient) to afford **11** (16.9 mg, 42.8 µmol, 86% yield) as a pale yellow oil.

11: ¹H NMR (500 MHz, CDCl₃) δ 7.21 (s, 1H), 4.35 (d, *J* = 11.8 Hz, 1H), 4.26–4.17 (m, 2H), 2.70 (sept, *J* = 6.8 Hz, 1H), 2.64 (dd, *J* = 13.6, 11.8 Hz, 2H), 2.48 (d, *J* = 13.6 Hz, 1H), 2.30 (br, 1H), 1.28 (t, *J* = 7.0 Hz, 3H), 1.29–1.23 (m, 3H), 1.12 (d, *J* = 6.8 Hz, 3H), 1.10 (d, *J* = 7.2 Hz, 9H), 1.05 (d, *J* = 7.2 Hz, 9H), 1.02 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.9, 164.2, 154.4, 149.6, 144.5, 134.7, 68.3, 61.5, 35.7, 35.3, 20.9, 20.8, 19.2 (3C), 19.0 (3C), 13.9, 12.8 (3C); FT-IR (ATR) *v* 3464 (br), 2947, 2867, 1720, 1661, 1243, 1042 cm⁻¹; HRMS (FD) calcd for C₂₂H₃₉O₄Si ([M + H]⁺): 395.2618, found: 395.2607.

Ketoester 12

To a solution of **8b** (37.7 mg, 99.6 µmol) in CH₂Cl₂ (0.50 mL) was added NBS (26.7 mg, 0.150 mmol)

at room temperature. After stirring for 30 min, the mixture was concentrated, and the residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 50:1 to 20:1) to afford **12** (42.6 mg, 93.1 μ mol, 94% yield) as a pale yellow oil.

12: ¹H NMR (500 MHz, CDCl₃) δ 7.30 (dd, J = 3.4, 1.7 Hz, 1H), 4.78 (dt, J = 11.6, 3.4 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.03 (dd, J = 14.5, 11.6 Hz, 1H), 2.81 (dd, J = 14.5, 1.7 Hz, 1H), 2.69 (sept, J = 6.7 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.30–1.22 (m, 3H), 1.10 (d, J = 7.4 Hz, 12H), 1.06 (d, J = 7.4 Hz, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 199.8, 163.4, 154.4, 146.5, 145.8, 133.8, 61.7, 44.9, 36.6, 35.0, 21.5, 20.6, 19.1 (3C), 19.0 (3C), 13.9, 12.8 (3C); FT-IR (ATR) v 2946, 2867, 1720, 1672, 1248, 1042 cm⁻¹; HRMS (FD) calcd for C₂₂H₃₇BrO₃Si (M⁺): 456.1695, found: 456.1682.

Cycloheptatriene 13

To a solution of **8b** (379 mg, 1.00 mmol) in CH₂Cl₂ (5.0 mL) was added NBS (215 mg, 1.21 mmol) at room temperature After stirring for 30 min, hexane (5.0 mL) was added, and the resulting precipitate was filtered and washed with hexane. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography [SiO₂ (NH-functionalised), hexane:EtOAc = 200:1] to afford **13** (396 mg, 0.866 mmol, 86% yield) as a white solid.

13: ¹H NMR (500 MHz, CDCl₃) δ 6.65 (s, 1H), 4.31–4.22 (m, 2H), 3.11 (dd, J = 14.2, 1.4 Hz, 1H), 2.83 (sept, J = 6.7 Hz, 1H), 2.69 (dd, J = 14.2, 1.1 Hz, 1H), 1.43–1.35 (m, 3H), 1.34 (t, J = 7.3 Hz, 3H), 1.21 (d, J = 6.7 Hz, 3H), 1.09 (d, J = 6.7 Hz, 3H), 1.07 (d, J = 7.5 Hz, 9H) 1.04 (d, J = 7.5 Hz, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 178.6, 171.6, 166.6, 127.0, 124.7, 112.9, 103.3, 61.0, 38.9, 34.6, 21.7, 20.9, 19.4 (3C), 19.3 (3C), 14.2, 13.5 (3C); FT-IR (ATR) ν 2966, 2946, 2867, 1639, 1226, 1067 cm⁻¹; HRMS (FD) calcd for C₂₂H₃₇BrO₃Si (M⁺): 456.1695, found: 456.1697; m.p. (EtOAc) 100–105 °C.

Tropone 14

To a solution of **13** (230 mg, 0.502 mmol) in CH_2Cl_2 (5.0 mL) was added NBS (178 mg, 1.00 mmol) at room temperature. After stirring for 1 h, hexane (5.0 mL) was added, and the resulting precipitate was filtered and washed with hexane. The filtrate was concentrated under reduced pressure, and the residue was filtered through a short plug of SiO₂ (hexane:EtOAc = 10:1) to afford dibromide.

To a solution of above dibromide in THF (4.0 mL) and H₂O (1.0 mL) was added Et₃N (347 μ L, 2.50 mmol) at room temperature. After stirring for 15 h, the reaction was quenched with saturated aqueous NH₄Cl solution (5.0 mL), and the organic layer was diluted with EtOAc (5.0 mL). Two layers were separated, and the aqueous layer was extracted with EtOAc (5.0 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 20:1 to 5:1) to afford **14** (111 mg, 0.372 μ mol, 74% yield for 2 steps) as a yellow oil.

14: ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 1.7 Hz, 1H), 7.37 (dd, J = 1.7, 1.1 Hz, 1H), 6.91 (d, J = 1.1 Hz, 1H), 4.35 (q, J = 7.3 Hz, 2H), 2.70 (sept, J = 6.9 Hz, 1H), 1.35 (t, J = 7.3 Hz, 3H), 1.21 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 183.3, 165.9, 154.6, 141.5, 140.3, 139.3, 137.5, 127.2, 62.2, 37.7, 22.5 (2C), 14.1; FT-IR (ATR) *v* 2965, 1730, 1624, 1584, 1234 cm⁻¹; HRMS (FD) calcd for C₁₃H₁₅BrO₃ (M⁺): 298.0205, found: 298.0214.

Tropone 15

To a solution of **13** (196 mg, 0.428 mmol) in CH_2Cl_2 (4.3 mL) was added NBS (152 mg, 0.853 mmol) at room temperature. After stirring for 45 min, hexane (5.0 mL) was added, and the resulting precipitate was filtered and washed with hexane. The filtrate was concentrated under reduced pressure, and the residue was filtered through a short plug of SiO₂ (hexane:EtOAc = 10:1) to afford dibromide.

To a solution of crude dibromide in THF (3.4 mL) and H₂O (0.85 mL) was added Et₃N (297 μ L, 2.14 mmol) at room temperature. After stirring for 15 h, (isopropenyl)Bpin (121 μ L, 0.643 mmol) and Pd(dppf)Cl₂·CH₂Cl₂ (16.9 mg, 20.7 μ mol) were added successively, and the reaction mixture was stirred for 1 h. The reaction was quenched with H₂O (3.0 mL), and the organic layer was diluted with EtOAc (3.0 mL). Two layers were separated, and the aqueous layer was extracted with EtOAc (3.0 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 10:1 to 3:1) to afford

15 (85.2 mg, 0.327 mmol, 76% yield for 2 steps) as a dark orange oil.

15: ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 1.1 Hz, 1H), 6.97 (dd, *J* = 1.7, 1.1 Hz, 1H), 6.90 (d, *J* = 1.7 Hz, 1H), 5.29 (s, 1H), 5.23 (s, 1H), 4.33 (q, *J* = 7.3 Hz, 2H), 2.73 (sept, *J* = 6.9 Hz, 1H), 2.09 (s, 3H), 1.33 (t, *J* = 7.3 Hz, 3H), 1.20 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 184.2, 167.5, 155.8, 145.2, 144.8, 141.7, 137.0, 135.3, 133.9, 117.1, 61.7, 38.3, 22.7 (2C), 22.0, 14.0; FT-IR (ATR) *v* 2964, 1726, 1634, 1579, 1233, 1044 cm⁻¹; HRMS (FD) calcd for C₁₆H₂₀O₃ (M⁺): 260.1412, found: 260.1402.

Brook Rearrangement: General Procedure D

To a solution of vinylsilane (1 equiv.) in EtOH (0.2 mol/L) was added KO^{*t*}Bu (1.0 mol/L in THF, 0.2 equiv.) at room temperature. The reaction mixture was stirred until full consumption of starting material was observed by TLC. The reaction was quenched with saturated aqueous NH₄Cl solution, and the resulting mixture was extracted four times with Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 100:1) to afford the product silylether.

^{CO₂Et} According to the general procedure D, **7b** (35.7 mg, 94.3 µmol, 94% yield) was synthesised from vinylsilane **8b** (38.0 mg, 0.100 mmol) and KO'Bu (1.0 mol/L in THF, 20.0 µL, 20.0 µmol).

7b

7b: ¹H NMR (500 MHz, CDCl₃) δ 6.41 (d, *J* = 9.5 Hz, 1H), 5.79 (s, 1H), 5.27 (dt, *J* = 9.5, 6.9 Hz, 1H), 4.22 (q, *J* = 7.3 Hz, 2H), 2.47 (sept, *J* = 6.7 Hz, 1H), 2.33 (d, *J* = 6.9 Hz, 2H), 1.30 (t, *J* = 7.3 Hz, 3H), 1.27–1.19 (m, 3H), 1.10 (d, *J* = 7.0 Hz, 18H), 1.08 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 157.7, 151.3, 125.3, 118.4, 118.0, 116.7, 60.2, 35.6, 30.4, 21.9 (2C), 17.9 (6C), 14.4, 13.2 (3C); FT-IR (ATR) *v* 2959, 2944, 2867, 1721, 1206 cm⁻¹; HRMS (FD) calcd for C₂₂H₃₈O₃Si (M⁺): 378.2590, found: 378.2573.

CO2Et

OTIPS

^{`n}Hex 7i According to the general procedure D, **7h** (17.0 mg, 41.2 μ mol, 93% yield) was synthesised from vinylsilane **8h** (18.2 mg, 44.1 μ mol) and KO'Bu (1.0 mol/L in THF, 8.8 μ L, 8.8 μ mol).

7h: ¹H NMR (500 MHz, CDCl₃) δ 7.48–7.45 (m, 2H), 7.39–7.36 (m, 2H), 7.33–7.30 (m, 1H), 6.53 (d, J = 9.3 Hz, 1H), 6.30 (s, 1H), 5.43 (dt, J = 9.3, 7.0 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 2.81 (d, J = 7.0 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.30–1.23 (m, 3H), 1.12 (d, J = 7.4 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 168.1, 157.2, 139.9, 139.2, 128.7 (2C), 128.1, 127.3 (2C), 125.9, 121.4, 118.3, 117.7, 60.4, 31.4, 17.9 (6C), 14.4, 13.3 (3C); FT-IR (ATR) v 2944, 2866, 1718, 1207, 1061 cm⁻¹; HRMS (FD) calcd for C₂₅H₃₆O₃Si (M⁺): 412.2434, found: 412.2451.

According to the general procedure D, **7i** (18.0 mg, 42.8 μmol, 87% yield) was synthesised from vinylsilane **8i** (20.6 mg, 49.0 μmol) and KO^tBu (1.0 mol/L in THF, 10.0 μL, 10.0 μmol).

7i: ¹H NMR (500 MHz, CDCl₃) δ 6.41 (d, *J* = 9.1 Hz, 1H), 5.77 (s, 1H), 5.28 (dt, *J* = 9.1, 7.0 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 2.34 (d, *J* = 7.0 Hz, 2H), 2.23 (t, *J* = 7.2 Hz, 2H), 1.50–1.43 (m, 2H), 1.41– 1.20 (m, 9H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.10 (d, *J* = 7.0 Hz, 18H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 157.6, 145.2, 125.4, 120.6, 117.6, 116.9, 60.2, 38.0, 32.1, 31.7, 28.9, 28.6, 22.6, 17.9 (6C), 14.4, 14.1, 13.3 (3C); FT-IR (ATR) *v* 2928, 2866, 1721, 1207, 1060, 882 cm⁻¹; HRMS (FD) calcd for C₂₅H₄₄O₃Si (M⁺): 420.3060, found: 420.3050.

Tropone 16

<u>From 7b</u>: To a solution of 7b (35.6 mg, 94.0 μ mol) in CH₂Cl₂ (0.47 mL) was added NBS (20.2 mg, 0.113 mmol) at -78 °C. The reaction mixture was then warmed up to 0 °C and stirred for 10 min before it was concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 10:1 to 3:1) to afford **16** (16.8 mg, 76.3 μ mol, 81% yield) as a yellow oil.

<u>From 12</u>: To a solution of 12 (44.2 mg, 96.6 μ mol) in DMF (0.50 mL) was added successively Li₂CO₃ (21.6 mg, 0.292 mmol) and LiBr (25.8 mg, 0.297 μ mol) at room temperature. The reaction mixture was warmed up to 115 °C and stirred for 1 h. After cooling down to room temperature, the reaction was quenched with brine (1.5 mL). Two layers were separated, and the aqueous layer was extracted with Et₂O (0.50 mL × 5). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 3:1) to afford **16** (17.8 mg, 80.8 μ mol, 84% yield) as a yellow oil.

16: ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.42 (dd, J = 8.6, 1.0 Hz, 1H), 6.99–6.97 (m, 2H), 6.91 (dd, J = 12.0, 8.6 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 2.73 (sept, J = 6.9 Hz, 1H), 1.34 (t, J = 7.2 Hz, 3H), 1.20 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 184.4, 167.3, 155.7, 143.0, 139.0, 138.6, 135.3, 131.3, 61.7, 37.7, 22.6 (2C), 14.1; FT-IR (ATR) v 2964, 1726, 1633, 1579, 1287, 1230 cm⁻¹; HRMS (FD) calcd for C₁₃H₁₆O₃ (M⁺): 220.1099, found: 220.1108.

Tropone 17

To a solution of **6b** (35.7 mg, 94.3 μ mol) in CH₂Cl₂ (0.47 mL) was added DIBAH (1.0 mol/L, 283 μ L, 0.283 mmol) at -78 °C. After stirring for 10 min, 4-dimethylaminopyridine (57.8 mg, 0.473 mmol) and Ac₂O (44.5 μ L, 0.471 μ mol) were added. The reaction mixture was then warmed up to room temperature and stirred for 10 min. The reaction was quenched with 3 M aqueous HCl solution (0.50 mL). After stirring overnight, two layers were separated, and the aqueous layer was extracted with EtOAc (0.50 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford crude acetate.

The crude acetate was dissolved in THF (0.50 mL) and 3 M aqueous HCl solution (0.50 mL). After stirring overnight, the mixture was extracted with EtOAc (0.50 mL \times 4). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. This cycle was repeated twice, and the resulting residue was purified by flash column chromatography (SiO₂, hexane:EtOAc =

10:1 to 3:1) to afford 17 (9.9 mg, 61 µmol, 65% yield for 3 steps) as a pale yellow oil.

17: ¹H NMR (500 MHz, CDCl₃) δ 7.23–7.21 (m, 1H), 7.01 (s, 1H), 6.88–6.83 (m, 2H), 2.75 (sept, J = 6.9 Hz, 1H), 2.24 (d, J = 1.4 Hz, 3H), 1.21 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 187.2, 156.1, 151.8, 136.6, 134.5, 134.1, 132.5, 38.0, 22.9 (2C), 22.6; FT-IR (ATR) *v* 2962, 1632, 1565, 1471, 794 cm⁻¹; HRMS (FI) calcd for C₁₁H₁₄O (M⁺): 162.1045, found: 162.1046.

Total Synthesis of (–)-Orobanone

To a solution of (+)-citronellal (907 μ L, 5.00 mmol) in ^{*i*}PrOH (0.50 mL) was added successively CH₂O (37% in H₂O, 387 μ L, 5.25 mmol), propionic acid (37.0 μ L, 0.500 mmol), and pyrrolidine (41.3 μ L, 0.500 mmol) at room temperature. The reaction mixture was warmed up to 45 °C and stirred for 3 h. After cooling down to room temperature, the reaction was quenched with saturated aqueous NaHCO₃

solution (2.0 mL), and the organic layer was diluted with Et₂O (2.0 mL). Two layers were separated, and the aqueous layer was extracted with Et₂O (2.0 mL × 4). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was filtered through a short plug of SiO₂ (hexane:EtOAc = 10:1) to afford the product aldehyde.

To a solution of above aldehyde in THF (15 mL) was added DIBAH (1.0 mol/L in hexane, 6.00 mL, 6.00 mmol) at -78 °C. After stirring for 10 min, the reaction was quenched with saturated aqueous Rochelle salt solution (20 mL). The biphasic mixture was warmed up to room temperature and stirred vigorously overnight. Two layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 10:1 to 3:1) to afford **S26** (694 mg, 4.12 mmol, 82% yield) as a colourless oil. The spectral data matched with those reported in literature. ^[18]

Alkenyl ester S19

To a solution of **S26** (694 mg, 4.12 mmol) in triethyl orthoacetate (7.52 mL, 41.2 mmol) was added propionic acid (30.6 μ L, 0.412 mmol) at room temperature. The reaction mixture was warmed up to 155 °C and stirred under reflux for 3 h with removal of EtOH by distillation. After cooling down to room temperature, the mixture was diluted with Et₂O (5 mL), and the reaction was quenched with 1 M aqueous HCl solution (5.0 mL). After stirring overnight, the mixture was extracted with Et₂O (10 mL × 4). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 50:1 to 30:1) to afford **19** (853 mg, 3.58 mmol, 87% yield) as a colourless oil. The spectral data matched with those reported in literature. ^[18]

Alkenyl ester 20

S29

To a solution of **19** (853 mg, 3.58 mmol) in CH₂Cl₂ (10 mL) was added Grubbs catalyst® M2 (Umicore, 38.5 mg, 40.6 μ mol) at room temperature. The reaction mixture was then warmed up to 45 °C and stirred for 14 h. The resulting mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 50:1) to afford **20** (641 mg, 3.52 mmol, 98% yield) as a pale yellow oil.

20: ¹H NMR (500 MHz, CDCl₃) δ 5.30 (d, J = 1.7 Hz, 1H), 4.13 (q, J = 7.0 Hz, 2H), 2.60–2.53 (m, 1H), 2.52–2.37 (m, 3H), 2.30–2.13 (m, 3H), 2.12–2.05 (m, 1H), 1.42–1.35 (m, 1H), 1.25 (t, J = 7.0 Hz, 3H), 1.00 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 147.2, 123.0, 60.3, 41.4, 32.74, 32.69, 30.6, 24.2, 19.2, 14.2; FT-IR (ATR) ν 2953, 2849, 1736, 1156 cm⁻¹; HRMS (FI) calcd for C₁₁H₁₈O₂ (M⁺): 182.1307, found: 182.1311; $[\alpha]_D^{22} = +17.55$ (c 0.315, CHCl₃).

The enantiomeric excess of **20** was determined after conversion to amide **S27** and HPLC analysis (97% ee).

To a suspension of **20** (17.6 mg, 96.6 μ mol) and dimethylhydroxylamine hydrochloride (14.6 mg, 0.150 mmol) in THF (0.50 mL) was added dropwise ^{*i*}PrMgCl (2.0 mol/L in THF, 0.300 mL, 0.600 mmol) at -20 °C. After stirring for 10 min, the reaction was quenched with saturated aqueous NH4Cl solution (0.50 mL), and the organic layer was diluted with EtOAc (0.50 mL). Two layers were separated, and the aqueous layer was extracted with EtOAc (0.50 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 3:1) to afford **S27** (17.5 mg, 88.7 μ mol, 92% yield, 97% ee) as a colourless oil.

S27: ¹H NMR (500 MHz, CDCl₃) δ 5.32 (d, J = 1.7 Hz, 1H), 3.70 (s, 3H), 3.19 (s, 3H), 2.65–2.52 (m, 3H), 2.44–2.38 (m, 1H), 2.32–2.15 (m, 3H), 2.14–2.07 (m, 1H), 1.43–1.37 (m, 1H), 1.02 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 147.9, 122.7, 61.2, 41.5, 32.8, 32.2, 30.6, 30.2, 23.8, 19.3; FT-IR (ATR) v 2951, 2848, 1664, 1415, 1384, 990 cm⁻¹; HRMS (FD) calcd for C₁₁H₁₉NO₂ (M⁺): 197.1416, found: 197.1415; $[\alpha]_D^{21} = +13.51$ (c 0.345, CHCl₃).

HPLC analysis of rac-S27

HPLC analysis of S27

Alkynyl ester S28

To a solution of S15 (819 mg, 4.17 mmol) in THF (12.5 mL) was added "BuLi (2.65 mol/L in hexane,

1.57 mL, 4.17 mmol) at -78 °C. After stirring for 20 min, methyl chloroformate (384 µL, 5.00 mmol) was added, and the reaction mixture was warmed up to 0 °C and stirred for 10 min. The reaction was quenched with saturated aqueous NaHCO₃ solution (10 mL), and the organic layer was diluted with EtOAc (10 mL). Two layers were separated, and the aqueous layer was extracted with EtOAc (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 50:1 to 20:1) to afford **\$28** (1.04 g, 4.08 mmol, 98% yield) as a colourless oil.

S28: ¹H NMR (500 MHz, CDCl₃) δ 3.72 (s, 3H), 1.69 (s, 2H), 1.21–1.14 (m, 3H), 1.08 (d, *J* = 6.9 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 154.5, 90.5, 72.4, 52.3, 18.4 (6C), 11.0 (3C), -0.2; FT-IR (ATR) *v* 2944, 2867, 2225, 1711, 1261, 1073 cm⁻¹; HRMS (FI) calcd for C₁₄H₂₆O₂Si (M⁺): 254.1702, found: 254.1690.

Alkynyl aldehyde 21

To a solution of **S28** (871 mg, 3.42 mmol) in CH₂Cl₂ (12.5 mL) was added DIBAH (1.0 mol/L in hexane, 4.11 mL, 4.11 mmol) at -78 °C. After stirring for 10 min, the reaction was quenched with saturated aqueous Rochelle salt solution (12.5 mL). The biphasic mixture was warmed up to room temperature and stirred vigorously for 2 h. Two layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 50:1 to 20:1) to afford **21** (687 mg, 3.06 mmol, 89% yield) as a colourless oil.

21: ¹H NMR (500 MHz, CDCl₃) δ 9.12 (s, 1H), 1.80 (s, 2H), 1.22–1.14 (m, 3H), 1.09 (d, *J* = 6.9 Hz, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 176.9, 101.4, 82.4, 18.4 (6C), 11.1 (3C), 0.9; FT-IR (ATR) *v* 2943, 2867, 2184, 1666, 822 cm⁻¹; HRMS (FI) calcd for C₁₃H₂₄OSi (M⁺): 224.1596, found: 224.1588.

Dienyne ester 6r

An LDA solution (1 mol/L in THF-hexane) was prepared by the addition of "BuLi (2.65 mol/L in hexane, 755 μ L, 2.00 mmol) to a solution of 'Pr₂NH (281 μ L, 2.00 mmol) in THF (1.25 mL) at 0 °C. The mixture was stirred for 20 min at the same temperature before the use. To another flask charged with **20** (183 mg, 1.00 mmol) in THF (5.0 mL) was added the LDA solution (1.20 mL, 1.20 mmol) via a syringe at -78 °C. After stirring for 20 min, aldehyde **21** (269 mg, 1.20 mmol) in THF (0.50 mL) was added via cannula, and the mixture was stirred for 10 min at the same temperature. The reaction was quenched with saturated aqueous NH₄Cl solution (5.0 mL), and the organic layer was diluted with EtOAc (5.0 mL). Two layers were separated, and the aqueous layer was extracted with EtOAc (5.0 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 20:1 to 3:1) to afford the product β -hydroxyester (diastereomeric mixture, 379 mg, 0.931 mmol, 93% yield).

To a solution of above β -hydroxyester (379 mg, 0.931 mmol) in CH₂Cl₂ was added Dess-Martin periodinane (473 mg, 1.12 mmol) at 0 °C. The reaction mixture was then warmed up to room temperature and stirred for 30 min. Another Dess-Martin periodinane (118 mg, 0.279 mmol) was added, and the reaction mixture was stirred for 20 min. The reaction was quenched by the addition of saturated aqueous NaHCO₃ solution (5.0 mL) and Na₂S₂O₃·5H₂O (770 mg). After stirring vigorously for 50 min, the two layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was filtered through a short plug of SiO₂ (hexane:EtOAc = 10:1) to afford the product β -ketoester.

NaH (60% dispersion in mineral oil, 74.7 mg, 1.87 mmol) was washed with hexane (4.0 mL) and suspended with THF (4.0 mL). To this suspension was added above β -ketoester in THF (1.0 mL) via cannula at 0 °C. After stirring for 15 min, TIPSOTf (375 µL, 1.40 mmol) was added, and the reaction mixture was warmed up to room temperature and stirred for 15 min. The reaction was quenched by the careful addition of saturated aqueous NaHCO₃ solution (5.0 mL), and the organic layer was diluted with EtOAc (5.0 mL). Two layers were separated, and the aqueous layer was extracted with EtOAc (5.0 mL). Two layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 100:1) to afford **6r** (458 mg, 0.817 mmol, 88% yield for 2 steps) as a yellow oil.

6r: ¹H NMR (500 MHz, CDCl₃) δ 5.24 (s, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.15 (d, J = 16.0 Hz, 1H), 3.02 (d, J = 16.0 Hz, 1H), 2.56–2.51 (m, 1H), 2.26–2.21 (m, 1H), 2.15–2.03 (m, 2H), 1.71 (s, 2H), 1.41–1.26 (m, 4H), 1.21 (t, J = 7.2 Hz, 3H), 1.17–1.08 (m, 3H), 1.11 (d, J = 6.9 Hz, 18H), 1.06 (d, J = 6.9 Hz, 18H), 1.02 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.5, 146.8, 139.9, 123.2, 115.8, 96.0, 76.4, 59.7, 41.7, 32.9, 30.5, 30.0, 19.3, 18.51 (3C), 18.49 (3C), 18.0 (6C), 14.3, 13.1 (3C), 11.0 (3C), 0.4; FT-IR (ATR) v 2943, 2866, 2205, 1716, 1462, 1173, 881 cm⁻¹; HRMS (FD) calcd for C₃₃H₆₀O₃Si₂ (M⁺): 560.4081, found: 560.4068; $[α]_D^{21} = +30.72$ (c 1.02, CHCl₃).

Bicyclic ester 8r

An LDA solution (1 mol/L in THF-hexane) was prepared by the addition of "BuLi (2.65 mol/L in hexane, 755 μ L, 2.00 mmol) to a solution of ^{*i*}Pr₂NH (281 μ L, 2.00 mmol) in THF (1.25 mL) at 0 °C. The mixture was stirred for 20 min at the same temperature before the use. To another reaction vessel charged with **6r** (282 mg, 0.502 mmol) in THF (5.0 mL) was added the LDA solution (1.00 mL, 1.00 mmol) via a syringe at 0 °C. The reaction mixture was then warmed up to room temperature and stirred for 20 min. The reaction was quenched with saturated aqueous NaHCO₃ solution (5.0 mL), and the organic layer was diluted with EtOAc (5.0 mL). Two layers were separated, and the aqueous layer was extracted three times with EtOAc (5.0 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 100:1) to afford **8r** (dr = 4.5:1, 234 mg, 0.416 mmol, 83% yield) as a yellow semisolid. The diastereomers were inseparable even after PTLC, and the characterisation data were collected as the mixture.

8r (diasteromeric mixture): ¹H NMR (500 MHz, CDCl₃) δ 6.03 (t, J = 1.7 Hz, 0.82 × 1H), 5.92 (t, J = 2.0 Hz, 0.18 × 1H), 4.32–4.26 (m, 1H), 4.25–4.19 (m, 1H), 2.80–2.76 (m, 1H), 2.66–2.59 (m, 0.82 × 1H), 2.34–2.29 (m, 0.18 × 1H), 2.10–1.90 (m, 4H), 1.74–1.66 (m, 1H), 1.48–1.40 (m, 3H), 1.35–1.21 (m, 7H), 1.14–1.02 (m, 39H); ¹³C NMR (126 MHz, CDCl₃) δ 177.8, 177.5, 172.4, 172.3, 168.1, 167.0, 151.3, 150.8, 127.1, 125.6, 113.1, 110.9, 103.8, 103.4, 60.4, 60.3, 48.6, 48.5, 38.0, 35.9, 35.1, 28.2, 27.3, 22.0, 20.7, 20.2, 19.9, 19.7, 19.4, 19.30, 19.26, 19.22, 17.2, 14.34, 14.31, 13.6, 13.5 (only detected signals were recorded); FT-IR (ATR) v 2944, 2865, 1634, 1370, 1218, 1068, 880 cm⁻¹; HRMS (FD)

calcd for $C_{33}H_{60}O_3Si_2$ (M⁺): 560.4081, found: 560.4069; $[\alpha]_D^{22} = +81.62$ (*c* 0.99, CHCl₃).

The enantiomeric excess of **8r** was approximately estimated after conversion to a diastereomeric mixture of chiral enol ester **829** and comparing the integration values of H-7 proton (δ 5.71–5.62 ppm) of the crude product on ¹H NMR (ca. 97% ee).

To a solution of **8r** (diastereomeric mixture, 10.8 mg, 19.3 µmol) in THF (0.20 mL) was added tetrabutylammonium fluoride (1.0 mol/L in THF, 30.0 µL, 30.0 µmol) at -20 °C. After stirring for 5 min, the reaction was quenched with saturated aqueous NH4Cl solution (0.50 mL), and the organic layer was diluted with EtOAc (0.50 mL). Two layers were separated, and the aqueous layer was extracted with EtOAc (0.50 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was filtered through a short plug of SiO₂ (hexane:EtOAc = 30:1) to afford the product enol ester.

To a solution of above enol ester in THF (0.20 mL) was added NaH (60% dispersion in mineral oil, 2.6 mg, 65 μ mol) at 0 °C. After stirring for 10 min, (+)- α -methoxy- α -(trifluoromethyl)phenylacetyl chloride (7.5 μ L, 40 μ mol) was added. The reaction mixture was then warmed up to room temperature and stirred for 10 min. The reaction was quenched with saturated aqueous NH₄Cl solution (0.50 mL), and the organic layer was diluted with EtOAc (0.50 mL). Two layers were separated, and the aqueous layer was extracted with EtOAc (0.50 mL \times 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford crude **S29**.

¹H NMR spectrum of crude *rac*-**S29** (500 MHz, CDCl₃)

¹H NMR spectrum of crude **S29** (500 MHz, CDCl₃)

Bicyclic ester 7r

To a suspension of **8r** (84.5 mg, 0.151 mmol) in EtOH (0.75 mL) was added KO'Bu (1.0 mol/L in THF, 150 μ L, 0.150 mmol) at room temperature. After stirring for 1.5 h, the reaction was quenched with saturated aqueous NH₄Cl solution (1.0 mL), and the resulting mixture was extracted with Et₂O (1.0 mL × 4). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 100:1) to afford **7r** (dr = 4.6:1, 81.4 mg, 0.145 mmol, 97% yield) as a yellow oil. The diastereomers were inseparable even after PTLC, and the characterisation data were collected as the mixture.

7r (diasteromeric mixture): ¹H NMR (500 MHz, CDCl₃) δ 6.24 (s, 0.82 × 1H), 6.13 (s, 0.18 × 1H), 5.71 (s, 1H), 4.31–4.25 (m, 1H), 4.19–4.13 (m, 1H), 2.82–2.75 (m, 0.82 × 1H), 2.44–2.39 (m, 0.18 × 1H), 2.35 (dd, *J* = 6.9, 6.9 Hz, 0.18 × 1H), 2.28 (d, *J* = 8.0 Hz, 0.82 × 1H), 2.19 (dd, *J* = 13.8, 6.3 Hz, 0.82 × 1H), 2.09–1.95 (m, 1H + 0.18 × 2H), 1.88–1.79 (m, 1H + 0.82 × 1H), 1.67 (d, *J* = 14.3 Hz, 0.82 × 1H), 1.62 (d, *J* = 13.7 Hz, 0.18 × 1H), 1.40–1.29 (m, 4H), 1.26–1.15 (m, 6H), 1.11–1.06 (m, 39H); ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 169.0, 155.1, 154.7, 144.4, 143.7, 142.2, 120.1, 119.4, 117.7, 117.1, 115.2, 114.1, 60.2, 47.0, 46.6, 38.8, 38.5, 35.9, 35.2, 27.6, 26.4, 20.2, 18.7, 18.3, 18.04, 18.00, 15.3, 14.4, 13.8, 13.7, 13.4, 11.53, 11.48 (only detected signals were recorded); FT-IR (ATR) *v* 2942, 2865, 1717, 1462, 1213, 881 cm⁻¹; HRMS (FD) calcd for C₃₃H₆₀O₃Si₂ (M⁺): 560.4081, found: 560.4080; $[\alpha]_D^{22} = -7.397$ (*c* 1.02, CHCl₃).

(-)-orobanone (18)

To a solution of **7r** (40.5 mg, 72.2 μ mol) in THF (0.72 mL) was added MeLi (1.13 mol/L in Et₂O, 0.319 mL, 0.361 mmol) at -78 °C. The reaction mixture was then warmed up to 0 °C and stirred for 10 min. To this mixture was added dropwise HF·pyridine (HF: 67%, 0.180 mL), and the resulting suspension was stirred vigorously for 30 min at 0 °C. The mixture was then warmed up to room temperature and

stirred for 21 h. The reaction was quenched by the careful addition of saturated aqueous NaHCO₃ solution (1.0 mL), and the mixture was neutralised with additional NaHCO₃ (powder). EtOAc (1.0 mL) was added, the two layers were separated, and the aqueous layer was extracted with EtOAc (1.0 mL \times 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:EtOAc = 10:1 to 3:1) to afford **18** (10.3 mg, 47.6 µmol, 66% yield, 87% ee) as a pale brown solid.

18: ¹H NMR (500 MHz, CDCl₃) δ 7.10 (s, 1H), 7.00 (s, 1H), 3.47 (sept, J = 6.9 Hz, 1H), 3.22–3.15 (m, 1H), 2.92–2.85 (m, 1H), 2.80–2.74 (m, 1H), 2.22 (s, 3H), 2.21 (dddd, J = 12.6, 8.5, 8.5, 6.2 Hz, 1H), 1.59 (dddd, J = 12.6, 8.6, 6.0, 6.0 Hz, 1H), 1.24 (d, J = 7.4 Hz, 3H), 1.18 (d, J = 6.5 Hz, 3H), 1.16 (d, J = 6.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 185.4, 158.2, 149.8, 145.6, 144.7, 138.9, 129.8, 44.9, 34.5, 30.7, 29.8, 25.1, 22.6 (2C), 20.5; FT-IR (ATR) ν 2956, 2868, 1614, 1561, 1516, cm⁻¹; HRMS (FI) calcd for C₁₅H₂₀O (M⁺): 216.1514, found: 216.1525; m.p. (hexane) 48–53 °C; $[\alpha]_D^{19} = -4.114$ (c 0.25, MeOH).

lit.^[20] $[\alpha]_D^{20} = -5.21 (c \ 0.15, \text{MeOH})$

HPLC analysis of *rac*-18

HPLC analysis of 18

The slight decrease of enantiomeric excess is probably due to the racemisation at C3 position of the tropylium cation intermediate **S30** generated in the final step.

 Table S2. Comparison of ¹H NMR spectral data.

	ii wiik, o (ppiii)				
proton number	synthetic	natural ^[19]	natural ^[20]	natural ^[21]	
	(500 MHz, CDCl ₃)	(250 MHz, CHCl ₃)	(400/500 MHz, CDCl ₃)	(600 MHz, CDCl ₃)	
1	2.89 (m)	2.83	2.82 (m)	2.99 (m)	
	2.77 (m)		2.72 (m)	2.87 (m)	
2	2.21 (dddd)	-	2.14 (dddd)	2.25 (m)	
	1.59 (dddd)	1.61	1.52 (dddd)	1.62 (m)	
3	3.19 (m)	3.15	3.12 (m)	3.26 (m)	
4	7.10 (s)	7.093	7.03 (s)	7.33 (s)	
7	7.00 (s)	6.995	6.93 (s)	7.01 (s)	
9	2.22 (s)	2.225	2.15 (d)	2.30 (s)	
10	1.24 (d)	1.249	1.17 (d)	1.65 (d)	
11	3.47 (sept)	3.48	3.40 (sept)	3.39 (sept)	
12/13	1.18 (d)	1.181	1.11 (d)	1.26 (d)	
	1.16 (d)	1.165	1.09 (d)	1.18 (d)	

¹H NMR, δ (ppm)

 Table S3. Comparison of ¹³C NMR spectral data.

	¹³ C NMR, δ (ppm)					
carbon number	synthetic	natural ^[19]	natural ^[20]	natural ^[21]		
	(126 MHz, CDCl ₃)	(25.03 MHz, CDCl ₃)	(100/125 MHz, CDCl ₃)	(150 MHz, CDCl ₃)		
1	34.5	34.53	33.52	35.4		
2	30.7	30.72	29.71	31.7		
3	44.9	44.90	43.88	46.2		
3a	145.6	145.61	148.79	152.6		
4	129.8	129.78	128.78	132.7		
5	158.2	158.19	157.20	159.2		
6	185.4	185.41	184.40	187.0		
7	138.9	138.90	137.87	139.3		
8	149.8	149.78	143.68	148.5		
8a	144.7	144.72	144.59	148.6		
9	25.1	25.12	24.04	25.4		
10	20.5	20.48	19.45	20.8		
11	29.8	29.81	28.83	31.2		
12/12	22.6	22.59	21.55	22.8		
12/13			21.54	22.7		

References

- [1] T. J. O'Connor and F. D. Toste, ACS Catal., 2018, 8, 5947.
- [2] P. Maity and S. D. Lepore, J. Org. Chem., 2009, 74, 158.
- [3] J. Cossy, A. Schmitt, C. Cinquin, D. Buisson and D. Belotti, *Bioorg. Med. Chem. Lett.*, 1997, 7, 1699.
- [4] A. Lauber, B. Zelenaya and J. Cvengroš, Chem. Commun., 2014, 50, 1195.
- [5] W. Fang, F. Bauer, Y. Dong and B. Breit, Nat. Commun., 2019, 10, 4868.
- [6] E. Matoušová, R. Gyepes, I. Císařová and M. Kotora, Adv. Synth. Catal., 2016, 358, 254.
- [7] R. K. Acharyya and S. Nanda, Org. Biomol. Chem., 2018, 16, 5027.
- [8] B. Stulgies, P. Prinz, J. Magull, K. Rauch, K. Meindl, S. Rühl and A. de Meijere, *Chem. Eur. J.*, 2005, 11, 308.
- [9] A. Pons, J. Michalland, W. Zawodny, Y. Chen, V. Tona and N. Maulide, *Angew. Chem. Int. Ed.*, 2019, 58, 17303.
- [10] R. Kato, H. Saito, S. Uda, D. Domon, K. Ikeuchi, T. Suzuki and K. Tanino, Org. Lett., 2021, 23, 8878.
- [11] D. M. Cermak, D. F. Wiemer, K. Lewis and R. J. Hohl, *Bioorg. Med. Chem.*, 2000, 8, 2729.
- [12] Y. Adachi, N. Kamei, S. Yokoshima and T. Fukuyama, Org. Lett., 2011, 13, 4446.
- [13] R. Brimioulle, A. Bauer and T. Bach, J. Am. Chem. Soc. 2015, 137, 5170.
- [14] I. Tellitu, I. Beitia, M. Díaz, A. Alonso, I. Moreno and E. Domínguez, *Tetrahedron*, 2015, 71, 8251.
- [15] C. Sämann, V. Dhayalan, P. R. Schreiner and P. Knochel, Org. Lett., 2014, 16, 2418.
- [16] H.-R. Tsou, N. Mamuya, B. D. Johnson, M. F. Reich, B. C. Gruber, F. Ye, R. Nilakantan, R. Shen, C. Discafani, R. DeBlanc, R. Davis, F. E. Koehn, L. M. Greenberger, Y.-F. Wang and A. Wissner, *J. Med. Chem.*, 2001, 44, 2719.
- [17] T. Xavier, P. Tran, A. Gautreau, E. Le Gall and M. Presset, Synthesis, 2023, 55, 598.
- [18] K. Mori, Tetrahedron: Asymmetry, 2007, 18, 838.
- [19] A. Fruchier, J.-P. Rascol, C. Andary and G. Privatt, *Phytochemistry*, 1981, 20, 777.
- [20] K. P. Randau, S. Sproll, H. Lerche and F. Bracher, *Pharmazie*, 2009, 64, 350.
- [21] C. S. Jeong and S. H. Shim, Nat. Prod. Sci., 2015, 21, 147.

¹H and ¹³C NMR Spectra

S23 (¹H NMR, 500 MHz, CDCl₃)

S23 (¹³C NMR, 126 MHz, CDCl₃)

S25 (¹³C NMR, 126 MHz, CDCl₃)

6a (¹³C NMR, 126 MHz, CDCl₃)

6b (¹³C NMR, 126 MHz, CDCl₃)

6c (¹³C NMR, 126 MHz, CDCl₃)

6e (¹³C NMR, 126 MHz, CDCl₃)

6h (¹³C NMR, 126 MHz, CDCl₃)

6m (¹³C NMR, 126 MHz, CDCl₃)

6n (¹³C NMR, 126 MHz, CDCl₃)

60 (¹H NMR, 500 MHz, CDCl₃)

60 (¹³C NMR, 126 MHz, CDCl₃)

6p (¹³C NMR, 126 MHz, CDCl₃)

(*Z*)-6q (¹³C NMR, 126 MHz, CDCl₃)

(*E*)-6q (¹³C NMR, 126 MHz, CDCl₃)

6d (¹³C NMR, 126 MHz, CDCl₃)

6f (¹³C NMR, 126 MHz, CDCl₃)

6g (¹³C NMR, 126 MHz, CDCl₃)

6i (¹³C NMR, 126 MHz, CDCl₃)

6j (¹³C NMR, 126 MHz, CDCl₃)

6k (¹³C NMR, 126 MHz, CDCl₃)

6l (¹³C NMR, 126 MHz, CDCl₃)

7a (¹H NMR, 500 MHz, CDCl₃)

7a (¹³C NMR, 126 MHz, CDCl₃)

7c (¹³C NMR, 126 MHz, CDCl₃)

7d (¹³C NMR, 126 MHz, CDCl₃)

7e (¹³C NMR, 126 MHz, CDCl₃)

8b (¹³C NMR, 126 MHz, CDCl₃)

8f (¹³C NMR, 126 MHz, CDCl₃)

8g (¹³C NMR, 126 MHz, CDCl₃)

8h (¹³C NMR, 126 MHz, CDCl₃)

8i (¹³C NMR, 126 MHz, CDCl₃)

8j (¹H NMR, 500 MHz, CDCl₃)

7q (¹H NMR, 500 MHz, CDCl₃)

13 (¹³C NMR, 126 MHz, CDCl₃)

20 (¹³C NMR, 126 MHz, CDCl₃)

S28 (¹³C NMR, 126 MHz, CDCl₃)

6r (¹³C NMR, 126 MHz, CDCl₃)

8r (¹³C NMR, 126 MHz, CDCl₃)

7r (¹³C NMR, 126 MHz, CDCl₃)

