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1. Methodology

For any binuclear system of interacting spin centres, J parametrises the energy difference between the 
coupled high-spin state (HS, all spins paired in the same direction) and the appropriate low-spin states – if 
the system is isotropic, the energy difference between different pairs of states should be proportional to J 
(Landé interval rule). Importantly, these states are eigenstates not only of the electronic Hamiltonian of the 
system but also the total spin-operator Hamiltonian ( ) and its z-component ( ). As such, the �̂�2 �̂�𝑧

wavefunctions describing these states must be spin-adapted, limiting the computational methodology to 
formalisms based on a multiconfigurational description like CASSCF. An alternative at a much lower 
computational cost, which is the one our methodology relies on, employs density functional theory (DFT) 
to calculate the so-called broken symmetry determinants (BS, as they are not spin-adapted) to recover the 
spin-adapted ones following a mapping approach.1 For systems involving more magnetic centres, the 
computation of the couplings is even more complicated but it has recently been generalised in DFT. 2
The present series of compounds implies three magnetic centres (labelled Gd1, Gd2 and σ) and their 
coupling is described by the Heisenberg-Dirac-van Vleck (HDvV) Hamiltonian 
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exchange coupling is based on successive calculations of HS and BS determinants.  The scheme starts with 
the computation of the HS state in the restricted open-shell (RO) or quasi-restricted open-shell formalism (

). This first determinant defines a set of unpolarised doubly occupied core orbitals and n 
ΦGd1 - σ - Gd2,RO

singly occupied molecular orbitals (SOMOs) associated with the n unpaired electrons of the system. The 
SOMOs are then localised to define the n magnetic orbitals. Here, the spin quantum number associated with 

the gadolinium and the electron on the  orbital are S=7/2 and S=1/2, respectively (figure 1).
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Figure S1: Schematic representation of the three spin centres (arrows) and of the σ-like orbital (red lobes)

The first contribution extracted is the direct exchange  which corresponds to the exchange integral 𝐽0

between the magnetic centres and which is ferromagnetic, favouring a parallel alignment of the spin of 
electrons. The extraction of this contribution in the case of 3-centre systems requires the computation of 
three non-optimised (NOpt) BS determinants defined from the HS RO state by flipping the spin of all 

electrons of one centre (labelled with a top bar), leading to ,  and 
Φ

Gd1 - σ - ̅Gd2,NO
Φ

Gd1 - σ̅ - Gd2,NO

. These three determinants allow for defining three energy differences with the HS RO 
Φ ̅Gd1 - σ - Gd2,NO

determinant,
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The individual contributions are then determined by solving this set of equations.
The computation of the spin polarisation  contribution is substantially similar to that of the direct Δ𝐽𝑆𝑃

exchange contribution. This mechanism corresponds to the different responses of the core orbitals to the 
spin distribution in the different spin states. To extract this contribution, the magnetic orbitals are kept 
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frozen (frozen magnetic orbitals – FroMag) whilst the core orbitals are relaxed in the different 
determinants used for the direct exchange. To extract  only, the direct exchange must be retrieved, Δ𝐽𝑆𝑃

resulting in a set of equations with two energy differences, 
𝐸[Φ

Gd1 - σ - ̅Gd2,F𝑟𝑜M𝑎𝑔] ‒ 𝐸[ΦGd1 - σ - Gd2,F𝑟𝑜M𝑎𝑔] ‒ (𝐸[Φ
Gd1 - σ - ̅Gd2,NO𝑝𝑡] ‒ 𝐸[ΦGd1 - σ - Gd2,RO])

= 4𝑆Gd1
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Δ𝐽

σ ‒ Gd2
SP

𝐸[Φ
Gd1 - σ̅ - Gd2,F𝑟𝑜M𝑎𝑔] ‒ 𝐸[ΦGd1 - σ - Gd2,F𝑟𝑜M𝑎𝑔] ‒ ( 𝐸[Φ
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solved similarly to the direct exchange. This contribution may be positive or negative depending on the 
coupling considered but in couplings based on transition metal or lanthanide ions it is expected negligible 
due to the local nature of the magnetic orbitals.
The last contribution corresponds to the kinetic exchange and results from the relaxation of the magnetic 
orbitals in the BS determinants, being then a negative contribution. Its computation relies on the extraction 
of the t and U Hubbard Hamiltonian parameters (see below), which proceeds by successively allowing the 
relaxation of one centre to another, denoted with an asterisk *. In the case of Gd to  one gets σ

𝑡Gd1→σ = (𝐸[Φ
Gd1

∗ - σ̅ - Gd2,FC] ‒ 𝐸[Φ
Gd1 - σ̅ - Gd2,NO]) 𝛼

1 ‒ 𝛼

𝑈Gd1→σ = (𝐸[Φ
Gd1

∗ - σ̅ - Gd2,FC] ‒ 𝐸[Φ
Gd1 - σ̅ - Gd2,NO])2𝛼 ‒ 1

𝛼 ‒ 1
With,
𝛼 =  1 ‒ (⟨�̂�2⟩𝐺𝑑1 ‒ �̅� ‒ 𝐺𝑑2,𝑁𝑂 ‒ ⟨�̂�2⟩

𝐺𝑑1
∗ ‒ �̅� ‒ 𝐺𝑑2,𝐹𝐶

� )
while the expressions for the other process (  to Gd) are,σ

𝑡Gd1←σ = (𝐸[Φ
Gd1 - σ̅ ∗ - Gd2,FC] ‒ 𝐸[Φ

Gd1 - σ̅ - Gd2,NO]) 𝛼
1 ‒ 𝛼

𝑈Gd1←σ = (𝐸[Φ
Gd1 - σ̅ ∗ - Gd2,FC] ‒ 𝐸[Φ

Gd1 - σ̅ - Gd2,NO] )2𝛼 ‒ 1
𝛼 ‒ 1

 
with,
𝛼 =  1 ‒  (⟨�̂�2⟩𝐺𝑑1 ‒ �̅� ‒ 𝐺𝑑2,𝑁𝑂 ‒ ⟨�̂�2⟩

Gd1 - σ̅ ∗ ‒ 𝐺𝑑2,𝐹𝐶
� )

The kinetic exchange contribution to the Gd-  coupling may then be determined by,σ

4𝑆Gd1
𝑆σΔ𝐽

Gd1 ‒ σ
KE =‒  (𝑡Gd1→σ

2

𝑈Gd1→σ
+

𝑡Gd1←σ
2

𝑈Gd1←σ)
The on-site repulsion U parameter strongly depends on the definition of the magnetic orbitals, the more 
diffused they are, the lower the on-site repulsion is. It then results in a larger kinetic exchange. The hopping 
t integral depends more on the bridging ligand, with may ease or not the relaxation of the orbitals, regarding 
its length and its chemical nature. 3 Hence, a larger t results in a larger antiferromagnetic contribution.
Finally, the overall magnetic coupling may be defined by summing these three contributions,
𝐽Σ = 𝐽0 + Δ𝐽SP + Δ𝐽KE
The reader may refer to Ref. [2] for further details about the methodology.

2. Computational details

To perform the decomposition, the B3LYP functional4 has been employed with the 2nd order Douglas-Kroll 
Hamiltonian to account for relativistic effects, whilst the D3 scheme has been used for dispersion 
corrections. 5 DKH-def2-TZVP, DKH- def2-SVP, old-DKH-TZVP and SARC-DKH-TZVP basis sets have been 



employed for carbon, hydrogen, halogens and gadolinium, respectively.6 All calculations have been 
performed using a modified ORCA 4.2  version. 7 The local self-consistent field (LSCF) method has been 
used for the selective relaxation of the orbitals. 8 The quasi-restricted open-shell formalism9 has been 
employed due to the use of RIJCOSX  and SARC/J approximations to speed up the calculations.  

X-ray diffraction geometry has been used to perform the decomposition on the original CpiPr5Gd2I3 and 
served as a reference structure to make the three distortions (the variations of the Gd-Gd distance, the Gd- 
σ-Gd angle and the Gd-Cp angle). In addition, this structure has also been used to investigate the role of the 
halogen substitutions without geometry optimisation, where the iodine has simply been changed with 
another halogen and these structures are labelled as “constrained geometry”.

Geometry optimisations for the F, Cl and Br analogues were performed in gas-phase with Gaussian09d10 
suite of programs. Given the impossibility of optimising these structures with gadolinium ions, they have 
been substituted by yttrium, which is justified by their similar ionic radii and the fact that these derivatives 
are widely found to be structural analogues. B3LYP4 hybrid functional has been employed with cc-pVTZ11 
basis set for all coordinating atoms, cc-pVDZ4 for the rest of non-metal atoms, the Stuttgart RSC 199712 
effective core potential (ECP) for the 28 core electrons of yttrium and the corresponding valence basis set 
for the remaining valence electrons, and Grimme’s dispersion corrections.13-14 Calculation of normal modes 
was performed by explicit calculation of the Hessian at the optimized geometry, making sure that the forces 
and displacements are zero and that all frequencies are positive.

3. Results

Table S1: Decomposition ( ,  and ) and the total coupling  for the constrained and optimised 𝐽0 Δ𝐽KE Δ𝐽SP 𝐽Σ

CpiPr5Gd2X3 with X=Iodine, Bromine, Chlorine, and Fluorine in cm-1.

X 𝐽0 Δ𝐽𝐾𝐸 Δ𝐽𝑆𝑃 𝐽Σ

I 350 -17 0 333

Br 374 -17 -4 365

Cl 388 -17 -8 375Constrained 
geometry

F 418 -25 -13 398

Br 389 -37 -6 347Relaxed 
geometry Cl 406 -41 -8 356

Table S2: Decomposition ( ,  and ) and the total coupling  (in cm-1) for the distortion of (CpiPr5)2Gd2I3 according 𝐽0 Δ𝐽KE Δ𝐽SP 𝐽Σ

to the Gd-Gd distance, the CpGd-σ-GdCp angle and the Gd-x-Cp angle. a Initial (CpiPr5)2Gd2I3 values.

Gd-Gd distance CpGd-σ-GdCp angle Gd-x-Cp angle
Dist (Å) 𝐽0 Δ𝐽𝐾𝐸 Δ𝐽𝑆𝑃 𝐽Σ Angle ( )° 𝐽0 Δ𝐽𝐾𝐸 Δ𝐽𝑆𝑃 𝐽Σ Angle ( )° 𝐽0 Δ𝐽𝐾𝐸 Δ𝐽𝑆𝑃 𝐽Σ

3.4 390 -34 1 357 180a 350 -17 0 334 90 353 -18 0 336

3.6 367 -26 0 342 176 351 -17 1 334 88 353 -18 0 336

3.8a 350 -17 0 333 172 352 -19 0 334 86 354 -19 0 336

4 338 -11 0 327 168 353 -20 1 333 84 354 -19 0 335

4.2 330 -8 -1 321 164 354 -22 1 333 82 354 -19 0 335

4.4 323 -5 -1 317 160 356 -24 1 333 80 354 -20 0 335

4.6 317 -3 -2 312 156 357 -26 2 333 78 353 -20 0 333

4.8 312 -2 -2 308 152 358 -28 2 332 76 352 -20 0 331

5 309 -2 -2 306 148 359 -30 3 332 74 351 -21 0 330



5.2 306 -2 -2 303 144 361 -32 3 332 72 349 -21 0 327

5.4 302 -1 -2 298 140 362 -35 4 331 70 347 -22 0 325

Table S3: Mulliken charge and spin populations of the gadolinium and halogen atoms for the original CpiPr5Gd2I3, 
constrained CpiPr5Gd2F3 and relaxed CpiPr5Gd2Cl3 structures for the high spin determinants in the quasi-restricted open-shell 
formalism.

CpiPr5Gd2I3 Constrained CpiPr5Gd2F3 Relaxed CpiPr5Gd2Cl3

Atoms Charge Pop Spin Pop Charge Pop Spin Pop Charge Pop Spin Pop

Gd 0.879 7.422 1.333 7.455 0.834 7.443

Gd 0.851 7.425 1.321 7.457 0.832 7.441

X -0.262 0.022 -0.651 0.003 -0.326 0.018

X -0.229 0.024 -0.642 0.003 -0.330 0.019

X -0.233 0.024 -0.641 0.003 -0.330 0.019

4. Orbitals

 

Figure S2: Localised molecular orbitals. Isosurface = 0.05 a.u.
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