Supporting Information

Carboxylative cyclization of atmospheric CO_2 with alkynol catalyzed by 1-methylhydantoin anion-functionalized ionic liquid via chelative interactions

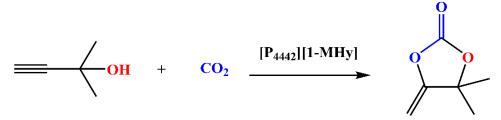
Yujun Guo, Tingting Chen and Yingjie Xu*

Department of Chemistry, Shaoxing University, Shaoxing, Zhejiang Province, 312000, China.

Email: xuyj@usx.edu.cn

1. Experimental section: preparation of [P₄₄₄₂][1-MHy] and the reaction of MBY with CO₂ to prepare 4,4-dimethyl-5-methylidene-1,3-dioxolan-2-one

1.1 Materials


Tributylphosphine (P₄₄₄, >98%), bromoethane (C₂H₅Br, >99%), sodium hydroxide (NaOH, >99%), ethanol (>99%) 2-methyl-3-butyn-2-ol (MBY, >98%), n-hexane (>99%) and a basic anion-exchange resin (Amberlite 717, AR) were purchased from Aladdin Reagent Co. Ltd., Shanghai, China. 1-Methylhydantoin (1-MHy, >99%) was purchased from Tokyo Chemical Industry Co., Ltd. CO₂ (>99.9%) and N₂ (>99.999%) were purchased from Hangzhou Jingong Gas Factory. All chemicals were used as received and obtained in highest purity grade possible.

1.2 Synthesis and characterization of [P₄₄₄₂][1-MHy]

The synthesis process of [P₄₄₄₂][1-MHy] is similar to the literature.¹ Firstly, P₄₄₄ and C₂H₅Br were reacted under N₂ protection to obtain the tributylethylphosphonium bromide ([P₄₄₄₂]Br). Secondly, [P₄₄₄₂]Br was passed through the basic anion-exchange resin activated by NaOH to obtain the tributylethylphosphonium hydroxide ([P₄₄₄₂][OH]) ethanol solution. Finally, [P₄₄₄₂][1-MHy] was synthesized via the neutralization by [P₄₄₄₂][OH] with 1-MHy in a 1:1 molar ratio at 50 °C for 24 h. The specific reaction equations are shown in Scheme S1. Ethanol and water were removed from the [P₄₄₄₂][1-MHy] under vacuum at 70 °C. Trace amount of water was removed from [P₄₄₄₂][1-MHy] by a freeze dryer. The water content in [P₄₄₄₂][1-MHy] determined by Karl Fisher titration (Mettler Toledo C20S) was 1001.6 ppm. The structure of [P₄₄₄₂][1-MHy] was characterized by ¹H NMR and ¹³C NMR spectra with Bruker AVANCE III spectrometer (Fig. S2).

Scheme S1 Synthesis of [P₄₄₄₂][1-MHy]

1.3 The [P₄₄₄₂][1-MHy]-catalyzed reaction of MBY and CO₂ to 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one and reusability of [P₄₄₄₂][1-MHy]

Scheme S2 [P₄₄₄₂][1-MHy]-catalyzed reaction of CO₂ and MBY to 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one

The typical reaction process at 0.1 MPa CO₂ is as follows: MBY (12 mmol) and [P₄₄₄₂][1-MHy] (1.2 mmol) were added to a round-bottomed flask fitted with a condenser, and CO₂ was slowly and continuously drummed into the reaction system, which was stirred at 60 $^{\circ}$ C for 15 h. Other atmospheric pressure reaction procedures were similar to those described above. The reaction equation was shown in Scheme S2. The yield of product was determined by 1 H NMR spectroscopy using [P₄₄₄₂][1-MHy] as an internal standard. The effect of the temperature on the reaction at 0.1 MPa CO₂ for 15 h was shown in Fig. S3.

The typical reaction process at CO₂ pressure higher than 0.1 MPa: MBY (12 mmol) and [P₄₄₄₂][1-MHy] (1.2 mmol) were added to a miniature reactor containing a magneton (YZQR-100), and CO₂ was injected into the reactor through a stainless steel vent tube to ensure that the CO₂ pressure was 1.0 MPa, and stirred at 60 °C for 6 h. The reaction at other pressures were similar to those described above. The effect of the amount of [P₄₄₄₂][1-MHy] on the reaction at 1.0 MPa CO₂ and 60 °C for 6 h was shown in Fig. S4.

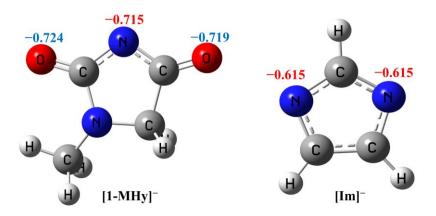
The separation and purification of the product and the recovery of $[P_{4442}][1-MHy]$: after finishing the reaction, n-hexane was added to the reaction system in batches (4×12 mL) and stirred, and the system was stratified at rest, with n-hexane containing the product in the upper layer, and $[P_{4442}][1-MHy]$ in the lower layer. The upper solution was collected, the pure product was obtained by evaporation to remove n-hexane, and the isolated product was freeze-dried and the structure was characterized by NMR spectra (Fig. S5), and finally the isolated yield was calculated. The melting and boiling points of the product were determined by DSC (Fig. S6). In addition, after vacuum drying the lower layer $[P_{4442}][1-MHy]$ to remove trace amounts of n-hexane, it was placed in a freeze dryer to remove trace amounts of water, and then the recovered $[P_{4442}][1-MHy]$ was used for the next catalytic reaction (Fig. S7). Finally, the structure of the recycled $[P_{4442}][1-MHy]$ after five cycles was characterized by ^{1}H NMR spectra (Fig. S8).

1.4 Measurement of ¹H NMR Spectra of [P₄₄₄₂][1-MHy] + MBY mixtures

The binary mixtures of $[P_{4442}][1\text{-MHy}] + \text{MBY}$ were prepared by mass using a Mettler Toledo AL204 analytical balance with a stated precision of ± 0.0001 g. The concentration-dependent ^1H NMR chemical shifts of the binary mixtures were measured at 25 °C with the Bruker AVANCE

III 400MHz using the internal reference method, which was described in previous works.^{2,3} The specific measurement process was as follows: to avoid the influence of deuterated reagents on the 1 H NMR chemical shifts of the sample, the deuterium oxide (D₂O) was sealed in a 2 mm capillary tube, which was placed at the center of a 5 mm sample tube filled with the sample and chemical shift reference of tetramethylsilane (TMS). It is necessary to keep the inner capillary tube parallel to the exterior sample tube. The concentration-dependent 1 H NMR spectra of [P₄₄₄₂][1-MHy] + MBY mixtures are plotted in Fig. S9. As shown in Fig. S9, the peak at about 4.5 ppm of pure MBY can be assigned to -OH, and its chemical shift (δ) gradually shifts to the lower field with increasing molar fraction of IL ($x_{\rm IL}$), accompanied by a change from a sharp peak to a broad peak, suggesting the formation of a strong hydrogen bond interaction (H-bond) with [1-MHy]⁻. The peak at 2.5 ppm of pure MBY is C=C-H and its δ remains essentially unchanged in the range of 0 < $x_{\rm IL}$ < 0.2 and increases slightly when $x_{\rm IL}$ > 0.2, indicating that the H-bond of [1-MHy]⁻ with C=C-H is much weaker than that of [1-MHy]⁻ with -OH. δ of the methyl (-CH₃) of MBY remains essentially constant with increasing $x_{\rm IL}$, indicating that the weak physical interaction is dominant between [1-MHy]⁻ and -CH₃.

2. Computation method


The geometry optimizations and frequency calculations of MBY and [1-MHy]⁻ were obtained by DFT calculations at the wB97XD/6-31++G(d, p) basis set with the Gaussian 09 D.01 program.⁴ The optimized geometries of MBY, [1-MHy]⁻, [Im]⁻, and H-bond complexes of the anion with -OH or C \equiv C-H were recognized as local minima with no imaginary frequency, then the bond length was obtained. The interaction energy (ΔE) of the H-bond was calculated as the difference between the energy of the complex and the energy sum of the optimized monomers. The NBO charges of MBY, [1-MHy]⁻, [Im]⁻, and H-bond complexes were obtained using natural bond orbital (NBO) analysis. The energies for the conversion of TS2 into product processes such ΔG and ΔH were calculated at the wB97XD/6-31++G(d, p) basis set with the Gaussian 09 D.01 program. The optimized geometries and NBO charges of [1-MHy]⁻ and [Im]⁻ anions were shown in Fig. S1.

3. In situ FT-IR spectra experiment

To determine the attribution of the functional group peaks of pure MBY, [P₄₄₄₂][1-MHy] and the product, FT-IR spectra were recorded on a Nicolet 6700 Fourier transform infrared spectrometer equipped with a DTGS detector and ATR accessory. ATR-IR spectrum was recorded with a resolution of 2 cm⁻¹ and 16 parallel scans, and the wavenumber was in the range from 4000 to 600 cm⁻¹. ^{5,6} The FT-IR spectra of pure MBY, [P₄₄₄₂][1-MHy] and the product were shown in Fig. S17.

In situ FT-IR spectra were recorded using a ReactIR 702L (Mettler Toledo) equipped with a 9.5 mm diameter DiComp ATR probe with a 1.5-meter fiber. ** In situ FT-IR spectra were collected at

4 cm⁻¹ resolutions and 64 scans with a range of 3000–800 cm⁻¹. Diamond transmits IR over most of this region apart from absorption regions of 2200–1900 cm⁻¹ and below 650 cm⁻¹. This does not affect probe performance as the fingerprint region (1850–650 cm⁻¹) was used to monitor catalytic conversion of CO₂ and MBY to 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one by [P₄₄₄₂][1-MHy]. The ATR probe equipped with RTO sensor was submerged in the reaction vessel and spectra and temperature data collected throughout the reaction (the molar ratio of [P₄₄₄₂][1-MHy] to MBY as 1:10, 80 °C with stirring and bubbling CO₂. It should be noted that the background spectrum was collected at actual reaction conditions at the same data collection parameters and the same optical bench as subsequent reaction spectra, and was subtracted from the experimental data.

 $\textbf{Fig. S1} \ \text{The optimized geometries and NBO charges of } [1\text{-MHy}]^- \text{and } [\text{Im}]^- \ \text{anions.}$

Fig. S2 NMR spectra of [P₄₄₄₂][1-MHy] (chloroform-*d*). (a) ¹H NMR chemical shift of cation, δ/ppm: 0.93-0.97 (m, 9H, CH₃), 1.24-1.29 (m, 3H, CH₃), 1.49-1.53 (m, 12H, CH₂), 2.36-2.42 (m, 8H, PCH₂); anion, δ/ppm: 2.87 (s, 3H, CH₃), 3.63 (s, 2H, CH₂). (b) ¹³C NMR chemical shift of cation, δ/ppm: 5.87-23.9 (CH₃, CH₂); anion, 29.4 (CH₃), 55.6 (CH₂), 173.9 and 186.3 (C=Os).

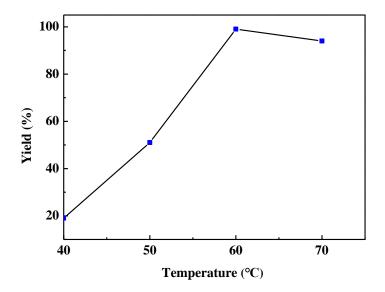


Fig. S3 The effect of the temperature on the reaction at 0.1 MPa CO_2 for 15 h.

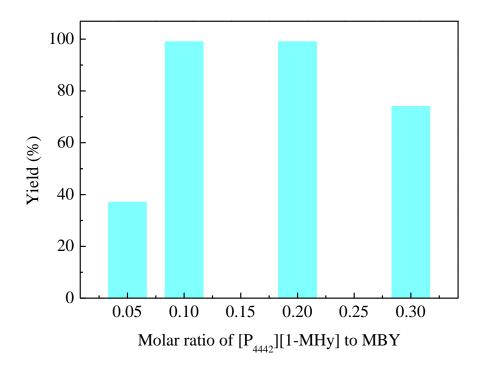
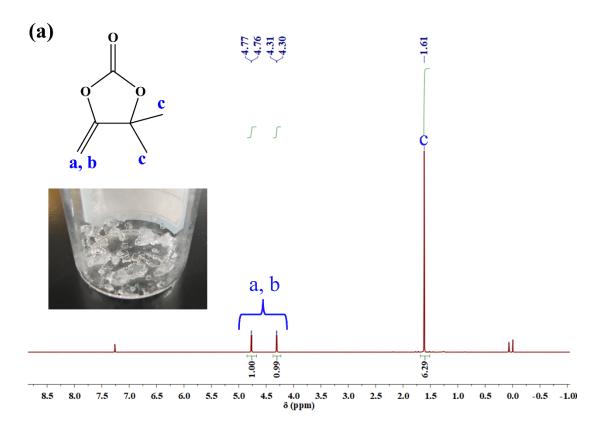
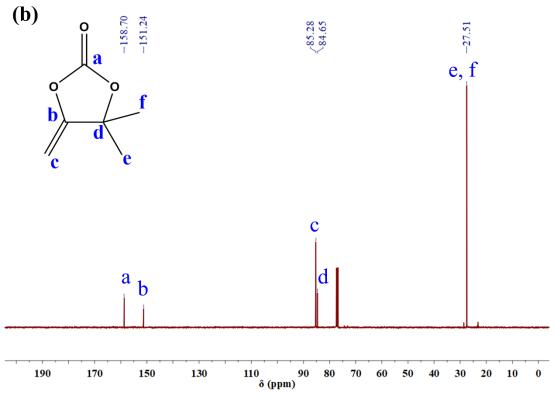
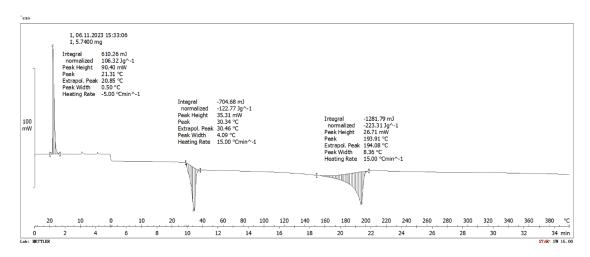
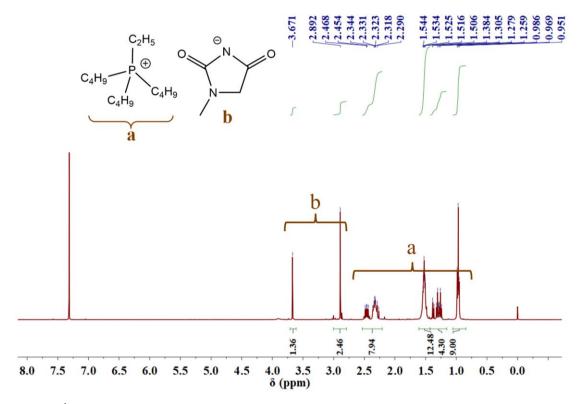
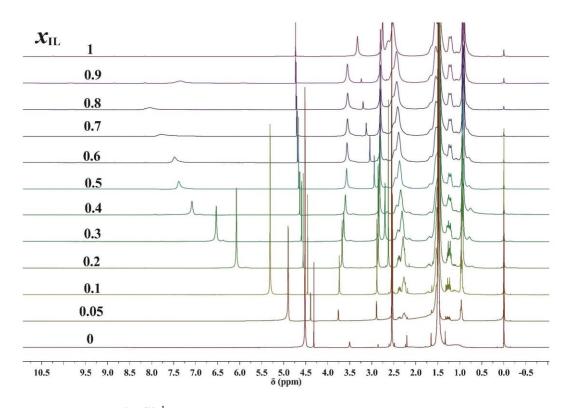




Fig. S4 The effect of the amount of $[P_{4442}][1\text{-MHy}]$ on the reaction of CO_2 with MBY at 60 $\,^{\circ}$ C and 1.0 MPa for 6 h.

Fig. S5 The state of the isolated 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one at room temperature and NMR spectra (chloroform-d). (a) ¹H NMR chemical shift, δ/ppm: 1.61 (s, 6H, CH₃), 4.30-4.77 (s, H, CH); (b) ¹³C NMR chemical shift, δ/ppm: 27.51 (CH₃), 84.65 (C-O), 85.28 (O-C=C*H₂), 151.24 (O-C*=CH₂), 158.70 (C=O).


Fig. S6 DSC curve of 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one.

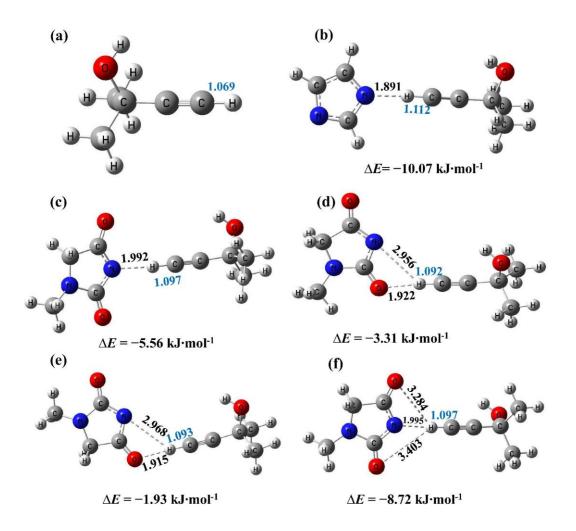
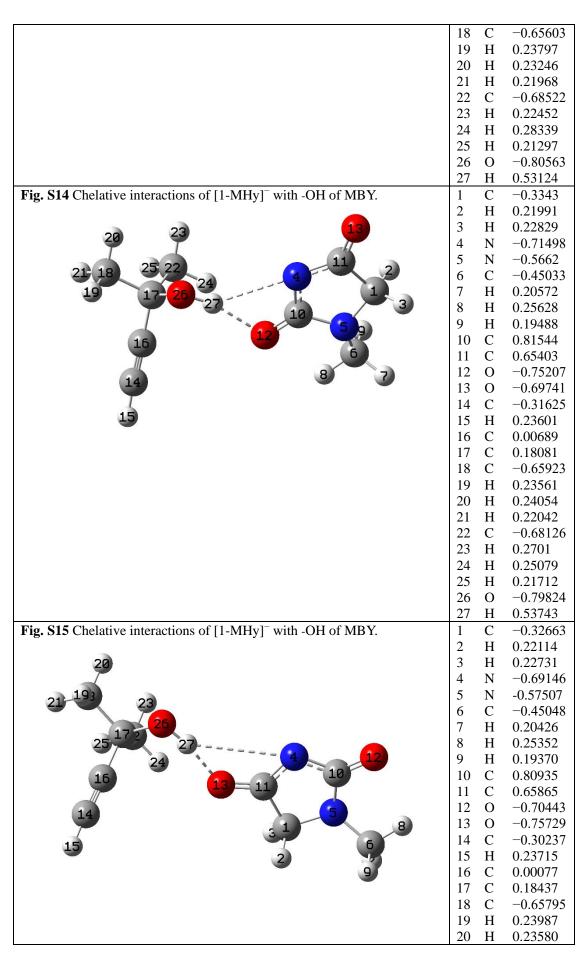

Fig. S7 Reusability of $[P_{4442}][1\text{-MHy}]$ to catalyze the reaction of MBY and CO_2 for five successive cycles. $[P_{4442}][1\text{-MHy}]$: MBY = 1:10, 1.0 MPa CO_2 , 60 °C for 6 h. The yields were determined by ^1H NMR spectra using $[P_{4442}][1\text{-MHy}]$ as an internal standard.

Fig. S8 ¹H NMR spectra (chloroform-*d*) of recovered [P₄₄₄₂][1-MHy] after the fifth cycle. Cation, δ /ppm: 0.95-0.99 (m, 9H, CH₃), 1.26-1.38 (m, 3H, CH₃), 1.52-1.54 (m, 12H, CH₂), 2.29-2.47 (m, 8H, CH₂); anion, δ /ppm: 2.89 (s, 3H, CH₃), 3.67 (s, 2H, CH₂).



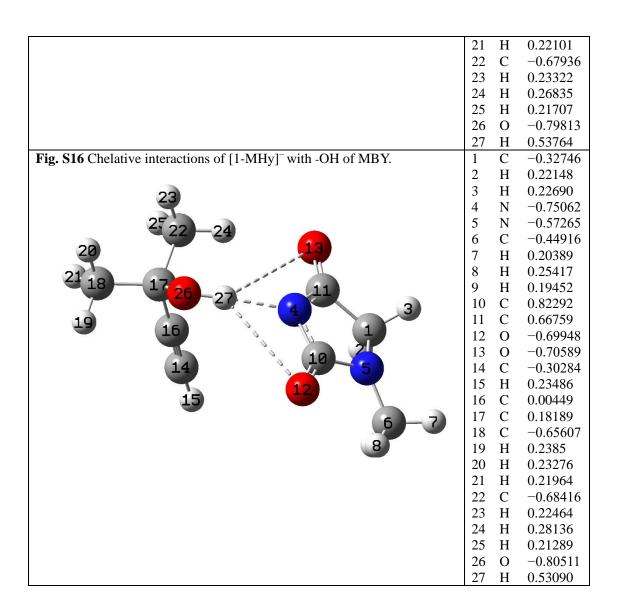

Fig. S9 1 H NMR spectra of $[P_{4442}][1-MHy] + MBY$ mixture.

Fig. S10 Optimized geometries, bond length (Å), and interaction energy (ΔE) of H-bonds between anion and C=C-H of MBY. (a) MBY. The single H-bond: (b), [IM]⁻ and C=C-H; (c), [1-MHy]⁻ and C=C-H. Chelative interactions between [1-MHy]⁻ and C=C-H: (d), (e), (f).

Figs. S11-S16 The optimized geometries and NBO charges of the	NBO charges		
interactions between the anion and -OH of MBY.			
(C atom is gray, N atom is blue, O atom is red, H atom is white)	1		0.00707
Fig. S11 MBY.	1	C	-0.22707
7)	2	H	0.24611
10	3	C	-0.05872
5	4	C	0.16068
12 0	5	C	-0.63573
4	6	Н	0.24311
1311	7	H	0.23699
14	8	Н	0.23095
3	9	C	-0.64431
	10	Н	0.23718
1	11	Н	0.22918
	12	Н	0.23277
2	13	0	-0.74279
E'. 014.0': 1 111. 1 010.0'= '4 011 024.0'	14	H	0.49165
Fig. S12 Single H-bond of [IM] ⁻ with -OH of MBY.	1	C	-0.17724
	2	C	-0.17051
18	3	C	0.10905
15	4	N	-0.59229
20 17	5	Н	0.19832
13 6	6	Н	0.20379
19	7 8	H	0.19314
14) 12	9	N	-0.64978
22 5	10	C H	-0.30707 0.23751
	11	С	-0.00108
11)	12	C	0.18412
	13	C	-0.65689
3 = 4	14	Н	0.03087
	15	Н	0.23744
	16	Н	0.23200
10	17	C	-0.67706
	18	Н	0.07700
	19	Н	0.26701
	20	Н	0.20701
	21	0	-0.82080
	22	Н	0.52553
Fig. S13 Single H-bond of [1-MHy] with -OH of MBY.	1	C	-0.33103
Tigo 220 Single II Solid of [1 milit]] with Off Of MD I.	2	Н	0.21957
23	3	Н	0.21957
25 4	4	N	-0.75143
21 20 22	5	N	-0.56927
18	6	C	-0.44951
17	7	H	0.20551
19	8	Н	0.25407
16 27 10 8	9	Н	0.19406
10	10	C	0.82243
14	11	C	0.66673
15	12	O	-0.71522
11	13	O	-0.68859
	14	C	-0.30237
	15	Η	0.23596
3	16	C	0.00198
	17	C	0.18308

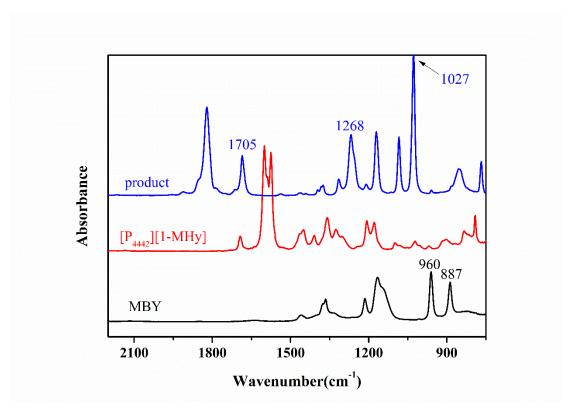
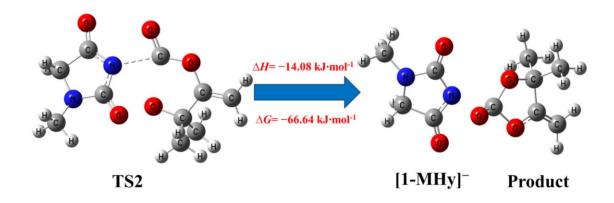



Fig. S17 FT-IR spectra of pure MBY, [P₄₄₄₂][1-MHy], and the product.

Fig. S18 Optimized structure for TS2 and the energy of its conversion to product at wB97XD/6-31++G(d, p) basis set (C atom is gray, N atom is blue, O atom is red, H atom is white).

References

- 1. C. Wang, X. Luo, H. Luo, D. E. Jiang, H. Li and S. Dai, *Angew. Chem. Int. Ed.*, 2011, **50**, 4918-4922.
- 2. J. Liu, X. Tang, H. Lu and Y. Xu, ACS Sustainable Chem. Engi., 2021, 9, 5050-5060.
- 3.Y. Xu, Y. Gao, L. Zhang, J. Yao, C. Wang and H. Li, Sci. China Chem., 2010, 53, 1561-1565.
- 4. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.
- Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
- Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
- R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
- Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
- Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.
- Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C.
- Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
- Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J.
- J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D.
- J. Fox, Gaussian 09, R. D. 01, Gaussian, Inc., Wallingford CT, 2009.
- 5. Y. Xu, T. Li, C. Peng and H. Liu, Ind. Eng. Chem. Res., 2015, 54, 9038-9045.
- 6. J. Liu, X. Tang, H. Lu and Y. Xu, ACS Sustainable Chem. Eng., 2021, 9, 5050-5060.
- 7. L. Wang, F. Zhang, Y. Liu, S. Du and J. Leng, *ACS Appl. Mater. Interfaces*, 2021, **13**, 18110-18119.
- 8. A. Castro-Ruiz, L. Grefe, E. Mej á and S. G. Suman, Dalton T., 2023, 52, 4186-4199.
- 9. A. Pintar, R. Malacea, C. Pinel and M. Besson, Vib. Spectrosc., 2007, 45, 18-26.