# Supplementary Information

# Synthesis of Vinylidenecyclopropanes via Gold(I)-Catalyzed Cyclopropanation of Vinyl Arenes with γ-Stannylated Propargyl Esters

Hiroto Mori,<sup>a</sup> Yusuke Ono,<sup>a</sup> Shota Nakagawa,<sup>a</sup> Sota Akima,<sup>a</sup> Miki Murakami,<sup>b</sup>

Toshinobu Korenaga,\*<sup>c,d</sup> Tadashi Nakaji-Hirabayashi,<sup>b,e</sup> Mayumi Kyogoku,<sup>b</sup> and Yoshikazu Horino\*<sup>a</sup>

<sup>a</sup> Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology, Hokkaido, 066-8655, Japan

<sup>b</sup> Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan

<sup>c</sup> Department of Applied Chemistry and Bioscience, Iwate University, Iwate, 020-8551, Japan

<sup>d</sup> Soft-Path Science and Engineering Research Center (SPERC), Iwate University, 020-8551, Japan

<sup>e</sup> Faculty of Engineering, Academic Assembly, University of Toyama, Toyama 930-8555, Japan

\*E-mail: y-horino@photon.chitose.ac.jp, korenaga@iwate-u.ac.jp

# **Table of Contents**

| General                                                                            | S2  |
|------------------------------------------------------------------------------------|-----|
| Materials                                                                          | S2  |
| General Procedure for the Preparation of Propargyl Alcohols                        | S3  |
| General Procedure for the Preparation of Propargylic Acetates                      | S4  |
| Preparation of 2-Methylbut-3-yn-2-yl Pivalate (S1m)                                | S5  |
| General Procedure for the Preparation of Stannylated Propargyl Esters (1)          | S6  |
| General Procedure for Gold(I)-Catalyzed Cyclopropanation of Vinyl Arenes           | S9  |
| Screening Tables for Reaction Optimization                                         | S9  |
| Characterization of Products                                                       | S11 |
| Large Scale Reaction for Gold(I)-Catalyzed Cyclopropanation of Indene              | S20 |
| Isotope Labeling Experiments                                                       | S20 |
| Gold(I)-Catalyzed Cyclopropanation of Styrene with Silylated Propargyl Esters (1n) | S23 |
| Chirality Transfer Reaction (Scheme 4c)                                            | S23 |
| Calculations on the Mechanism                                                      | S26 |
| References                                                                         | S36 |
| NMR Spectra                                                                        |     |

## General

Unless otherwise noted, the reactions were carried out in flame-dried glassware under argon atmosphere. NMR spectra were recorded on JEOL  $\alpha$ -GX400, JNX-ECX500, and Bruker AVANCE NEO 400 spectrometer. Chemical shifts ( $\delta$ ) are reported in ppm from the solvent resonance or tetramethylsilane (TMS) as the internal standard (CDCl<sub>3</sub>: 7.26 ppm, TMS: 0.00 ppm). Peak multiplicities are designated by the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad and coupling constants are provided in (J) Hz, and coupling constants are provided in (J) Hz, and coupling constants are provided in (J) Hz. <sup>13</sup>C NMR spectra were recorded on a JEOL  $\alpha$ -GX400 (100 MHz), JNX-ECX500 (125 MHz), and Bruker AVANCE NEO 400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl<sub>3</sub>: 77.16 ppm). Some reported spectra in CDCl<sub>3</sub> include minor solvent impurities of water (1H NMR  $\delta$  1.56 ppm) and/or silicon grease (<sup>1</sup>H NMR  $\delta$  0.07 ppm, <sup>13</sup>C NMR  $\delta$  1.19 ppm), which do not impact product assignments.<sup>1</sup> Flash chromatography was performed with Fuji Silysia PSQ100B (100 µm) and KANTO silica gel 60N (63-210 µm). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). High-resolution mass (HRMS) spectral data were obtained on an Agilent 6546 LC/Q-TOF.

# Materials

Dichloromethane, diethyl ether, and tetrahydrofuran (THF) were supplied from Kanto Chemical Co., Inc. as "Dehydrated solvent system". Other solvents were purchased from commercial suppliers as dehydrated solvents and used under argon atmosphere. Triethylamine and diisopropylamine were purified by distillation from CaH<sub>2</sub>. All commercial reagents were used as received unless otherwise noted.

Tributyltin chloride (TCI), 4-chlorostyene (TCI), 4-bromostyrene (TCI), 4-methoxystyrene (TCI), 4-trifluoromethylstyrene (TCI), 2-vinylnaphtalene (TCI),  $\alpha$ -methylstyrene (TCI), *trans*-stilbene (TCI), *cis*-stilbene (TCI), indene (TCI), dihydronaphthalene (TCI), allyltrimethylsilane (TCI), cyclohexene (TCI), 2,5-norbornadiene (TCI), 3,4-dihydro-2*H*-pyran (TCI), 2,3-benzofuran (TCI), 2-cyclopentene-1-one (TCI), triethylamine (Nakarai tesque), diisopropylamine (Nacalai tesque), 4-(dimethylamino)pyridine (TCI), acetic anhydride (TCI), pivalic anhydride (TCI), 2-methylbut-3-yn-2-ol (TCI), iodomethane (TCI), *n*-BuLi (1.6 M in hexane) (Fujifilm WAKO), ethynylmagnesium chloride (Aldrcih), trimethylsilylacetylene (TCI), chlorotriisopropylsilane (TCI), (Ph<sub>3</sub>P)<sub>3</sub>AuCl (TCI), (IPr)AuCl (Aldrich), AgSbF<sub>6</sub> (Aldrich), AgBF<sub>4</sub> (Aldrich), AgNTf<sub>2</sub> (TCI), AuCl (Aldrich), AuBr<sub>3</sub> (Aldrich), JohnPhosAuSbF<sub>6</sub>.CH<sub>3</sub>CN (Aldrich), D<sub>2</sub>O (Merck KGaA), CD<sub>3</sub>OD (Merck KGaA), and CDCl<sub>3</sub> (ISOTEC) were purchased. 2-(Prop-2-en-1-yl)benzaldehyde,<sup>2</sup> 2-(but-3-en-1-yl)benzaldehyde,<sup>3</sup> (4-CF<sub>3</sub>C<sub>6</sub>H<sub>4</sub>)<sub>3</sub>PAuCl,<sup>4</sup> (4-MeOC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>PAuCl,<sup>4</sup> and 1-(3-butenyl)-2-vinylbenzene<sup>5,6</sup> were prepared according to literature procedure.

1-Phenyl-3-(trimethylsilyl)prop-2-yn-1-ol was synthesized previously.7

#### **General Procedure for the Preparation of Propargyl Alcohols**



(Adapted from a reported procedure)<sup>7</sup>: To a solution of aldehyde (1 equiv) in THF was added slowly ethynylmagnesium chloride (0.5 M in THF, 1.2 equiv) at 0 °C under argon atmosphere. The reaction mixture was allowed to warm up to room temperature, and the progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was diluted with ethyl acetate, washed with water, saturated aqueous NH<sub>4</sub>Cl, and then brine. The organic layer was dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was used for the next reaction without further purification.

#### **General Procedure for the Preparation of Propargylic Acetates**



(Adapted from a reported procedure)<sup>7</sup>: A typical procedure for the preparation of propargyl alcohols is described for the reaction using 1-(1,1'-biphenyl)-2-ylprop-2-yn-1-ol: To a solution of crude 1-phenyl-2-propyn-1-ol (**S1**) (3.4 mmol), 4-(dimethylamino)pyridine (20.8 mg, 0.17 mmol) and triethylamine (710 µL, 5.1 mmol) in DCM (15 mL) was added acetic anhydride (388 µL, 4.1 mmol) at 0 °C under argon atmosphere. After stirring at room temperature for 2 h, the reaction mixture was quenched with saturated aqueous NH<sub>4</sub>Cl (2 × 20 mL). The aqueous phase was extracted with DCM (2 × 10 mL), and the combined organic extracts were washed with brine (2 × 20 mL). After the organic layer was dried over MgSO<sub>4</sub>, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (R<sub>f</sub> = 0.50, EtOAc/hexane = 3/7) to give 1-phenyl propargyl acetate (**S1e**) as a colorless oil (0.74 g, 88% for two steps). <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.85-7.81 (m, 1H), 7.48-7.35 (m, 5H), 7.35-7.27 (m, 3H), 7.32 (d, *J* = 2.4 Hz, 1H), 2.63 (d, *J* = 2.4 Hz, 1H), 2.00 (s, 3H).; <sup>13</sup>C **NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  169.18, 141.57, 139.81, 134.31, 130.21, 129.10, 128.89, 128.36, 128.09, 127.96, 127.65, 80.94, 75.49, 63.14, 20.83.; **HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>15</sub>O<sub>2</sub>: 251.1072, found: 251.1067.

Propargyl esters: 1-phenylprop-2-yn-1-yl acetate (S1a), (R)-1-phenylprop-2-yn-1-yl acetate ((R)-S1a), 1-(4-bromophenyl)prop-2-yn-1-yl acetate (S1b), 1-(2-bromophenyl)prop-2-yn-1-yl acetate (S1c), 1-[4-(trifluoromethyl)phenyl]prop-2-yn-1-yl acetate (S1d), and 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-yl acetate

(S1n), 1-phenylprop-2-yn-1-yl pivalate (S1o), and ethyl 1-phenylprop-2-yn-1-yl carbonate (S1p) were synthesized previously.<sup>8</sup>

1-(2,6-Dimethylphenyl)prop-2-yn-1-yl acetate (S1g),<sup>9</sup> 1-(3,5-dimethoxyphenyl)prop-2-yn-1-yl acetate (S1i),<sup>10</sup> 1-(2-allylphenyl)prop-2-yn-1-yl acetate (S1j),<sup>11</sup> and 1-(2-(but-3-enyl))prop-2-ynyl acetate (S1k)<sup>11</sup> were synthesized according to the reported procedure.

Compounds S1f and S1l are new compounds.

#### 1-(2-trimethylsilylphenyl)prop-2-yn-1-yl acetate (S1f):

OAc Following the general procedures, **S1f** was purified by silica gel column chromatography (16.3 mmol scale reaction, yellow oil, 3.46 g, 80% yield over two steps,  $R_f 0.55$ , EtOAc/hexane = 1/4). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.76 (dd, J = 0.8, 8.0 Hz, 1H), 7.53 (dd, J = 0.8, 7.2 Hz, 1H), 7.46 (dt, J = 1.6, 7.6 Hz, 1H), 7.35 (dt, J = 1.2, 7.6 Hz, 1H), 6.51 (d, J = 2.0 Hz, 1H), 2.63 (d, J = 2.4 Hz, 1H), 2.12 (s, 3H), 0.38 (s, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  169.8, 142.2, 138.5, 134.7, 129.9, 128.4, 128.2, 81.4, 75.6, 65.5, 21.2, 0.4; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>18</sub>O<sub>2</sub>Si<sup>+</sup>: 246.1076, found: 246.1076.

# 1-(2-((Triisopropylsilyl)ethynyl)phenyl)prop-2-yn-1-yl acetate (S1l):

Following the general procedures, **S11** was purified by silica gel column chromatography (7.4 mmol scale reaction, brown oil, 2.0 g, 77% yield over two steps,  $R_f$ 0.63, EtOAc/hexane TIPS = 3/7); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.72 (dd, J = 1.6, 7.6 Hz, 1H), 7.52 (dd, J = 1.6, 7.2 Hz, 1H), 7.38 (dt, J = 1.6, 7.6 Hz, 1H), 7.32 (dt, J = 1.6, 7.2 Hz, 1H), 6.81 (d, J = 2.4 Hz, 1H), 2.61 (d, J = 2.4 Hz, 1H), 2.10 (s, 3H), 1.19-1.11 (m, 21H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ :169.3, 138.1, 133.2, 128.9, 127.6, 122.9, 103.3, 97.3, 80.2, 75.3, 63.9, 20.1, 18.8, 11.4; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>31</sub>O<sub>2</sub>Si<sup>+</sup>: 355.2093, found: 355.2086.

# Preparation of 2-Methylbut-3-yn-2-yl Pivalate (S1m)<sup>12</sup>



(Adapted from a reported procedure): 2-methylbut-3-yn-2-ol (4.9 mL, 50 mmol), pivalic anhydride (11.2 mL, 55 mmol, 1.1 equiv), and magnesium perchlorate (111.6 mg, 0.5 mmol, 1 mol%) were combined and the reaction mixture was stirred at 80 °C for 2 h. After cooling to room temperature, the resulting black mixture was diluted with saturated NaHCO<sub>3</sub> solution and extracted with diethyl ether. The combined organic layers were dried over MgSO<sub>4</sub>, filtered and the solvent was removed under reduced pressure. Purification by

fractionated distilling afforded 2-methylbut-3-yn-2-yl pivalate as colorless oil (3.5 g, 20.8 mmol, 42%,  $R_f = 0.68$ , EtOAc/hexane = 3/7). Spectroscopic data was consistent with the values reported in the literature.<sup>13</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.50 (s, 1H), 1.65 (s, 6H), 1.18 (s, 9H).

# General Procedure for the Preparation of Stannylated Propargyl Esters (1)<sup>8</sup>



(Adapted from a reported procedure)<sup>8</sup>: Diisopropylamine (850  $\mu$ L, 6.0 mmol) was diluted with dry THF (3.3 mL) and cooled to -78 °C. *n*-BuLi (1.6 M in hexanes, 3.7 mL, 5.9 mmol) was added dropwise under an argon atmosphere. Upon completion of the addition, the mixture was warmed to room temperature and stirred for 1 hour. A solution of tributyltin chloride (1.62 mL, 6.0 mmol) in dry THF (1.5 mL) was added to the reaction mixture at room temperature, causing an immediate color change to milky white. After it was heated to 50 °C for 4 hours in an oil bath (pale yellow cloudy suspension), the supernatant was used for the next reaction without further purification.

(Diisopropylamino)tributylstannane (0.55 M in THF, 1.36 mL, 0.75 mmol) was added to a flask charged with stannylated propargyl esters **1** (0.5 mmol) at room temperature under an argon atmosphere, and then it was stirred overnight at room temperature. After the reaction completed checked with TLC, the reaction mixture was quenched with water. The aqueous phase was extracted with diethyl ether ( $2 \times 30$  mL), and the combined organic extracts were washed with brine (30 mL). After the organic layer was dried over MgSO<sub>4</sub>, the solvent was removed under reduced pressure. The residue was purified by neutral silica gel chromatography.

Substrates: 1-phenyl-3-(tributylstannyl)prop-2-yn-1-yl 1-(4-bromophenyl)-3acetate (1a),(tributylstannyl)prop-2-yn-1-yl acetate (1b), 1-(2-bromophenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1c), 1-(4-trifluoromethylphenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1d), 1-(1,1'-biphenyl)-2-yl-3-(tributylstannyl)prop-2-yn-1-yl acetate (1e), 1-(2-trimethylsilylphenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1f), 1-(2,6-dimethylphenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1g), 1-(3,5-dimethylphenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1h), 1-(3,5-dimethoxyphenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1i), 1-(2-allylphenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1j), 1-(2-homoallylphenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1k),and 3-(tributylstannyl)-1-(2-((triisopropylsilyl)ethynyl)phenyl)prop-2-yn-1-yl acetate (11), and 3-Methyl-1-(tributylstannyl)but-1-yn-3-yl pivalate (1m), 1-phenyl-3-(tributhylstannyl)prop-2-yn-1-yl pivalate (10).ethyl (1-phenyl-3(tributylstannyl)prop-2-yn-1-yl) carbonate (1p) were known compounds and synthesized according to the general procedures.<sup>8</sup>

Compounds 1e, 1f, 1j–1l,1n, and 1q ae new compounds.

# 1-(1,1'-Biphenyl)-2-yl-3-(tributylstannyl)prop-2-yn-1-yl acetate (1e):

Following the general procedures, **1e** was purified by silica gel column chromatography (3.0 mmol scale reaction, yellow oil, 1.10 g, 68% yield, R<sub>f</sub> 0.63, EtOAc/hexane = 3/7). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.87 (dd, J = 1.6, 7.6 Hz, 1H), 7.45-7.32 (m, 7H), 7.25 (dd, J = 1.6, 7.2 Hz, 1H), 6.34 (t, J = 4.0 Hz, 1H), 1.96 (s, 3H), 1.60-1.50 (m, 6H), 1.32 (sext., J = 3.2 Hz, 6H), 0.99 (t, J = 8.0 Hz, 6H), 0.88 (t, J = 7.2 Hz, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  169.10, 141.43, 140.14, 135.56, 130.00, 129.17, 128.44, 128.21, 128.19, 127.73, 127.43, 106.63, 91.70, 64.08, 28.85 ( $J_{Sn-C}$  = 23.1 Hz), 26.93 ( $J_{Sn-C}$  = 58.5 Hz), 20.95, 13.67, 11.15 ( $J_{Sn(119)-C}$  = 379.5 Hz,  $J_{Sn(117)-C}$  = 362.9 Hz); HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>29</sub>H<sub>41</sub>O<sub>2</sub>Sn<sup>+</sup>: 541.2129, found: 541.2124.

#### 1-(2-Trimethylsilylphenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1f):

Following the general procedures, **1f** was purified by silica gel column chromatography (7.0 mmol scale reaction, yellow oil, 1.49 g, 40% yield,  $R_f 0.67$ , EtOAc/hexane = 3/7). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.30 (d, *J* = 7.6 Hz, 1H), 7.43 (dd, *J* = 1.2, 7.6 Hz, 1H), 7.30 (dt, *J* = 1.6, 7.6 Hz, 1H), 7.11 (dt, *J* = 1.2, 7.6 Hz, 1H), 7.05 (s, 1H), 1.64 (s, 3H), 1.60-1.50 (m, 6H), 1.63-1.53 (m, 6H), 1.30 (sext, *J* = 7.2 Hz, 6H), 1.05- 0.95 (m, 6H), 0.89 (t, *J* = 7.2 Hz, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  169.0, 144.5, 138.3, 134.8, 129.9, 128.6, 128.2, 108.5, 91.3, 66.6, 29.3 (*J*<sub>Sn-C</sub> = 23.3 Hz), 27.3 (*J*<sub>Sn-C</sub> = 57.9 Hz), 20.7, 13.9, 11.3 (*J*<sub>Sn(119)-C</sub> = 379 Hz, *J*<sub>Sn(117)-C</sub> = 362 Hz), 0.5; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>45</sub>O<sub>2</sub>SiSn<sup>+</sup>: 537.2211, found: 537.2209.

#### 1-(2-allylphenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1j):



Following the general procedures, **1j** was purified by silica gel column chromatography (4.0 mmol scale reaction, yellow oil, 1.73 g, 86% yield,  $R_f$  0.63, EtOAc/hexane = 3/7). **<sup>1</sup>H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.70 (dd, J = 1.6, 7.6 Hz, 1H), 7.32-7.22 (m, 2H), 7.20

(dd, J = 1.6, 7.6 Hz, 1H), 6.60 (t, J = 4.0 Hz, 1H),5.97 (ddt, J = 10.0, 16.8, 6.0 Hz, 1H) 5.07 (dq, J = 10.0, 1.7 Hz, 1H), 5.01 (dq, J = 17.1, 1.7 Hz, 1H), 3.61-3.44 (m, 2H), 2.07 (s, 3H), 1.60-1.50 (m, 6H), 1.32 (sext, J = 7.2 Hz, 6H), 0.99 (t, J = 8.0 Hz, 6H), 0.88 (t, J = 7.2 Hz, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  169.6, 137.9, 136.8, 135.7, 130.1, 128.9, 128.6, 126.6, 116.1, 106.0, 91.5, 64.0, 36.7, 29.0 ( $J_{Sn-C} = 22.9$  Hz), 27.0 ( $J_{Sn-C} = 57.4$  Hz), 21.2, 13.7, 11.1 ( $J_{Sn(119)-C} = 379.7$  Hz,  $J_{Sn(117)-C} = 362.2$  Hz); **HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>41</sub>O<sub>2</sub>Sn<sup>+</sup>: 505.2129, found: 505.2136.

## 1-(2-(but-3-enyl)phenyl)-3-(tributylstannyl)prop-2-yn-1-yl acetate (1k):



Following the general procedures, **1k** was purified by silica gel column chromatography (2.5 mmol scale reaction, yellow oil, 470.3 mg, 37% yield,  $R_10.81$ , EtOAc/hexane = 3/7). <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.68 (dd, J = 1.2, 7.2 Hz, 1H), 7.30-7.18 (m, 3H), 6.62 (s, 1H), 5.58 (ddt, J = 10.0, 16.4, 6.4 Hz, 1H), 5.06 (dq, J = 17.2, 1.6 Hz, 1H), 4.99 (dq, J = 8.0, 1.2 Hz, 1H), 2.90 (ddd, J = 6.8, 8.8, 14.4 Hz, 1H), 2.77 (ddd, J = 6.8, 8.8, 14.4 Hz, 1H), 2.34 (dm, J = 14.4 Hz, 2H), 2.09 (s, 3H),1.57-1.50 (m, 6H), 1.36-1.26 (m, 6H), 0.99 (t, J = 7.6 Hz, 6H), 0.88 (t, J = 7.3 Hz, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) & 196.7, 139.9, 138.0, 135.7, 129.8, 128.8, 128.6, 126.4, 115.2, 106.4, 91.5, 64.0, 35.3, 31.9, 28.9  $(J_{Sn-C} = 22.9 \text{ Hz}), 27.0 (J_{Sn-C} = 58.2 \text{ Hz}), 21.3, 13.8, 11.2 (J_{Sn(119)-C} = 379.4 \text{ Hz}, J_{Sn(117)-C} = 363.3 \text{ Hz});$  HRMS

#### 3-(Tributylstannyl)-1-(2-((triisopropylsilyl)ethynyl)phenyl)prop-2-yn-1-yl acetate (11):

(ESI-TOF) m/z:  $[M-Bu]^+$  Calcd for  $C_{23}H_{33}O_2Sn^+$ : 461.1503, found: 461.1503.

OAc Following the general procedures, 11 was purified by silica gel column chromatography (5.67 mmol scale reaction, pale brown oil, 731 mg, 20% yield,  $R_f 0.75$ , EtOAc/hexane = SnBu₃ 3/7). <sup>1</sup>**H NMR** (C<sub>6</sub>D<sub>6</sub>, 400 MHz)  $\delta$  8.04 (d, J = 8.0 Hz, 1H), 7.43-7.33 (m, 2H), 7.06 (td, `TIPS J = 1.2, 7.6 Hz, 1H), 6.85 (td, J = 1.2, 7.6 Hz, 1H), 1.68-1.50 (m, 9H), 1.36-1.13 (m, 27H), 0.97-0.84 (m, 15H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100 MHz) δ 168.6, 140.5, 133.2, 128.9, 128.7, 123.2, 107.1, 104.5, 96.7, 91.1, 64.8, 29.3  $(J_{\text{Sn-C}} = 23.2 \text{ Hz}), 27.3 (J_{\text{Sn-C}} = 58.8 \text{ Hz}), 20.6, 19.0, 13.9, 11.8 (J_{\text{Sn}(119)-C} = 379.2, J_{\text{Sn}(117)-C} = 362.4 \text{ Hz}), 11.3;$ **HRMS (ESI-TOF)** m/z:  $[M+H]^+$  Calcd for  $C_{34}H_{56}O_2SiSn^+$ : 645.3150, found: 645.3146.

# 3-Methoxy-3-phenyl-1-(tributylstannyl)prop-1-yn (1q):

Following the general procedures, 1q was prepared using (1-methoxyprop-2-ОМе vnvl)benzene<sup>14,15</sup> and purified by silica gel column chromatography (5.3 mmol scale SnBu<sub>3</sub> reaction, yellow oil, 278.0 mg, 12%,  $R_f = 0.69$ , EtOAc/hexane = 3/7). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) & 7.74-7.61 (m, 2H), 7.21-7.16 (m, 2H), 7.10-7.03 (m, 1H), 5.16 (s, 1H), 3.38 (s, 3H), 1.68-1.59 (m, 6H), 1.41-1.27 (sext, J = 7.4 Hz, 6H), 1.02-0.95 (m, 6H), 0.89 (t, J = 7.3 Hz, 9H); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 100 MHz)  $\delta$  140.3, 129.30, 129.26, 128.7, 108.4, 92.5, 74.7, 55.8, 30.1 ( $J_{Sn-C} = 24.5$  Hz), 28.0 ( $J_{Sn-C} = 56.1$  Hz), 14.1, 12.0 ( $J_{Sn(117)-C} = 386 \text{ Hz}, J_{Sn(119)-C} = 389 \text{ Hz}$ ); **HRMS (ESI-TOF)** m/z: [M–Bu]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>27</sub>OSn: 379.1084, found: 379.1101.

#### General Procedure for Gold(I)-Catalyzed Cyclopropanation of Vinyl Arenes



The cationic gold catalyst was generated in a 1 dram vial with a threaded cap by addition of (Ph<sub>3</sub>P)AuCl (5.0 mg, 0.01 mmol, 5 mol%), AgSbF<sub>6</sub> (3.4 mg, 0.01 mmol, 5 mol%), and dichloromethane (1 mL). After allowing the catalyst mixture to sit for 10 minutes at room temperature, the precipitate was filtered off. The resulting solution was added to the starting material **1** (0.2 mmol) and vinyl arenes **2** (2.0 mmol) in dichloromethane (4 mL), and stirred at 25 °C. The reaction mixture (0.04 M) was monitored by TLC until all starting material was consumed. Upon completion, the reaction mixture was concentrated and loaded directly onto a silica gel column chromatography resulted in isolation of analytically pure product **3**.

|                 | AcO                                                                                      | 5 mol% cata                                                                      | alyst                       | Ph<br>۲ |
|-----------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------|---------|
|                 | Ph <b>1a</b>                                                                             | Ph         CH <sub>2</sub> Cl <sub>2</sub> (0.2           2a         25 °C, 15 r | 2 M) Ph<br>nin <b>3aa</b>   |         |
| entry           | catalyst                                                                                 | time                                                                             | <b>3aa</b> (%) <sup>b</sup> | d.r.    |
| 1               | (Ph₃P)AuCl/AgSbF <sub>6</sub>                                                            | 15 min                                                                           | 57                          | 2:1     |
| 2 <sup>c</sup>  | (Ph₃P)AuCl/AgSbF <sub>6</sub>                                                            | 15 min                                                                           | 27                          | 2:1     |
| 3               | JohnPhosAuSbF <sub>6</sub> ·MeCN                                                         | 7 h                                                                              | 57                          | 1.3:1   |
| 4               | (4-CF <sub>3</sub> C <sub>6</sub> H <sub>4</sub> ) <sub>3</sub> PAuCl/AgSbF <sub>6</sub> | 15 min                                                                           | 50                          | 1.8:1   |
| 5               | (4-MeOC <sub>6</sub> H <sub>4</sub> ) <sub>3</sub> PAuCl/AgSbF <sub>6</sub>              | 15 min                                                                           | 47                          | 1.8:1   |
| 6               | ( <i>t</i> -Bu₃P)AuCl/AgSbF <sub>6</sub>                                                 | 1 h                                                                              | 48                          | 2:1     |
| 7               | (IPr)AuCl/AgSbF <sub>6</sub>                                                             | 24 h                                                                             | 14                          | 1.2:1   |
| 8               | (Ph <sub>3</sub> P)AuCl/AgNTf <sub>2</sub>                                               | 12 h                                                                             | 47                          | 1.7:1   |
| 9               | (Ph₃P)AuCl/AgBF₄                                                                         | 3 h                                                                              | 20                          | 2:1     |
| 10              | (Ph₃P)AuCl/NaBAr <sup>F</sup> ₄                                                          | 48 h                                                                             | 26                          | 1.5:1   |
| 11              | AuCl                                                                                     | 48 h                                                                             | 51                          | 1:1     |
| 12              | AuBr <sub>3</sub>                                                                        | 28 h                                                                             | 31                          | 1:1     |
| 13              | (Ph₃P)AuCl∕AgSbF <sub>6</sub>                                                            | 12                                                                               | 39                          | 1.2:1   |
| 14 <sup>d</sup> | (Ph₃P)AuCl/AgSbF <sub>6</sub>                                                            | 15 min                                                                           | 68                          | 2:1     |
| 15              | AgSbF <sub>6</sub>                                                                       | 24 h                                                                             | 0                           |         |

#### Table S1. Optimization of the Reaction.<sup>a</sup>

<sup>*a*</sup>Reactions were carried out using **1a** (0.2 mmol), **2a** (2 mmol), Au (5 mol%), Ag (5 mol%), solvent (1 mL) at 25 °C. <sup>*b*</sup>Isolated yield. <sup>*c*</sup>**2a** (1 mmol) was used <sup>*d*</sup>0.04 M concentration. JohnPhos = (2-biphenylyl)di-*tert*-butylphosphine. IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene.

# Table S2. Effects of Solvent.<sup>a</sup>

| AcO            | CaDu A                               | 5 mol%<br>5 mo | (Ph <sub>3</sub> P)AuCl<br>I% AgSbF <sub>6</sub> | Ph<br> |
|----------------|--------------------------------------|----------------|--------------------------------------------------|--------|
| Ph 1a          | -ShBu <sub>3</sub> + // Ph<br>a 2a   | solve          | ent (0.2 M)<br>25 °C                             | Ph 3aa |
| entry          | solvent                              | <b>3aa</b> (%) | d.r.                                             |        |
| 1              | CH <sub>2</sub> Cl <sub>2</sub>      | 57             | 2:1                                              |        |
| 2 <sup>b</sup> | CH <sub>2</sub> Cl <sub>2</sub>      | 39             | 1.9                                              | :1     |
| 3              | CICH <sub>2</sub> CH <sub>2</sub> CI | 20             | 1.6                                              | :1     |
| 4              | THF                                  | 0              |                                                  |        |
| 5              | MeNO <sub>2</sub>                    | 22             | -                                                |        |
| 6              | EtOH                                 | 0              |                                                  |        |

<sup>*a*</sup>Reactions were carried out using **1a** (0.2 mmol), **2a** (2 mmol), (Ph<sub>3</sub>P)AuCl (5 mol%), AgSbF<sub>6</sub> (5 mol%), CH<sub>2</sub>Cl<sub>2</sub> (1 mL) at 25 °C. <sup>*b*</sup>H<sub>2</sub>O (0.2 mmol, 1 equiv) was added.

# Table S3. Effects of the Leaving Group.<sup>a</sup>

|       | LG                                  |                                 | 5 mol% (Ph <sub>3</sub> P)AuCl<br>5 mol% AgSbF <sub>6</sub> | Ph     |  |
|-------|-------------------------------------|---------------------------------|-------------------------------------------------------------|--------|--|
|       | Ph <b>1</b><br>(LG = Leaving Group) | + Ph<br><b>2a</b><br>(10 equiv) | CH <sub>2</sub> Cl <sub>2</sub> (0.2 M)<br>25 °C, 15 min    | Ph 3aa |  |
| entry | <b>1</b> : LG                       | temp(°C)/time                   | <b>3aab</b> (%)                                             | d.r.   |  |
| 1     | <b>1a</b> : OAc                     | 25/15 min                       | 68                                                          | 2:1    |  |
| 2     | <b>1o</b> : OPiv                    | 25/24 h                         | 7                                                           | 1.3:1  |  |
| 3     | <b>1o</b> : OPiv                    | 50/30 h                         | 45                                                          | 1:1    |  |
| 4     | 1p: OCO2Et                          | 25/15 min                       | 10                                                          | 2:1    |  |
| 5     | <b>1q</b> : OMe                     | 25/18 h                         | 0                                                           |        |  |

<sup>*a*</sup>Reactions were carried out using **1a** (0.2 mmol), **2a** (2 mmol), (Ph<sub>3</sub>P)AuCl (5 mol%), AgSbF<sub>6</sub> (5 mol%), CH<sub>2</sub>Cl<sub>2</sub> (1 mL) at 25 °C.

When the substrate having an aryl group at the propargylic position of **1** was employed for the alkene cyclopropanation, the use of an acetoxy leaving group afforded a cyclopropanation product. On the other hand, when an alkyl substituent instead of an aryl substituent was used, a pivaloyloxy group was preferred as a leaving group. For example, although the gold(I)-catalyzed reaction of **1m** and **2c** afforded **3mc** in 20% yield, trace amount of **3mc** was observed when the substrate having an acetoxy group instead of a pivaloyloxy group of **1m** was used.

**Unsuccessful Alkenes:** 



# [2-(Phenylethenylidene)cyclopropyl]benzene (3aa)

Following the general procedures, **3aa** was purified by silica gel column chromatography (0.2 mmol scale reaction, colorless oil, 30.1 mg, 69% yield,  $R_f$  0.56, EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.24-7.09 (m, 10H), 6.31-6.27 (m, 1H), 3.11 (ddd, J = 3.2, 5.6, 8.4 Hz, 1H), 2.20 (ddd, J = 4.0, 7.6, 8.4 Hz, 1H), 1.76 (ddd, J = 4.0, 6.0, 7.6 Hz, 1H); <sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.1, 140.4, 135.7, 128.7, 128.6, 126.79, 126.76 (two peaks), 126.6, 97.6, 85.8, 25.9, 18.6. Minor isomer: <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.24-7.09 (m, 10H), 6.31-6.27 (m, 1H), 3.04 (ddd, J = 3.2, 5.6, 8.4 Hz, 1H), 2.14 (ddd, J = 4.0, 7.6, 8.4 Hz, 1H), 1.83 (ddd, J = 4.0, 6.0, 7.6 Hz, 1H); <sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.2, 140.6, 135.8, 128.7, 128.6, 126.9, 126.79, 126.76, 126.6, 97.9, 85.8, 26.3, 18.6. **HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>15</sub><sup>+</sup>: 219.1174, found: 219.1170.

# 1-Chloro-4-[2-(phenylethenylidene)cyclopropyl]benzene (3ab)



Following the general procedures, **3ab** was purified by silica gel column chromatography (0.2 mmol scale reaction, orange oil, 26.2 mg, 52% yield,  $R_f$  0.5, EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.24-7.08 (m, 9H), 6.32 (q, *J* = 3.6 Hz, 1H), 3.08 (ddd, *J* = 3.2, 5.6, 8.8 Hz, 1H), 2.23 (ddd, *J* = 4.0, 7.2, 8.4 Hz, 1H), 1.73 (ddd, *J* = 4.0,

5.6, 7.6 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 190.1, 138.9, 135.4, 132.3, 128.73, 128.71, 128.1, 126.9, 126.8, 98.2, 85.5, 25.2, 18.6.

Minor isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.40-7.36 (m, 2H), 7.24-7.08 (m, 9H), 6.31 (q, *J* = 3.6 Hz, 1H), 3.01 (ddd, *J* = 3.2, 5.6, 8.8 Hz, 1H), 2.16 (ddd, *J* = 4.0, 7.2, 8.4 Hz, 1H), 1.81 (ddd, *J* = 4.0, 5.6, 7.6 Hz, 1H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>/100 MHz)  $\delta$  190.2, 139.1, 135.5, 132.3, 128.8, 128.7, 128.3, 126.9, 126.7, 98.2, 85.7, 25.6, 18.5.

HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>14</sub>Cl<sup>+</sup>: 253.0784, found: 252.0786

# 1-Bromo-4-[2-(phenylethenylidene)cyclopropyl]benzene (3ac)



Following the general procedures, **3ac** was purified by silica gel column chromatography (0.2 mmol scale reaction, yellow oil, 23.8 mg, 40% yield,  $R_f 0.55$ , EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.40-7.36 (m, 2H), 7.26-7.20 (m, 4H), 7.13-7.02 (m, 3H), 6.34 (q, J = 3.6 Hz, 1H), 3.09 (ddd, J = 3.6, 6.0, 9.2 Hz, 1H), 2.25 (ddd, J =

4.0, 7.0, 8.8 Hz, 1H), 1.76 (ddd, *J* = 3.6, 6.0, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>/100 MHz) δ 190.1, 139.5, 135.4, 131.4, 128.7, 128.5, 126.9, 126.8, 120.3, 98.2, 85.5, 25.3, 18.5.

Minor isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.40-7.36 (m, 2H), 7.26-7.20 (m, 4H), 7.13-7.02 (m, 3H), 6.34 (q, *J* = 3.6 Hz, 1H), 3.02 (ddd, *J* = 3.6, 6.0, 9.2 Hz, 1H), 2.18 (ddd, *J* = 4.0, 7.0, 8.8 Hz, 1H), 1.83 (ddd, *J* = 3.6, 6.0, 7.2 Hz, 1H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>/100 MHz)  $\delta$  190.2, 139.7, 135.5, 131.7, 128.8, 128.6, 126.9, 126.7, 120.3, 98.2, 85.6, 25.6, 18.5.

# **HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>14</sub>Br<sup>+</sup>: 297.0279, found: 297.0268.

#### [2-(2-Naphthylethenylidene)cyclopropyl]benzene (3af)



Following the general procedures, **3af** was purified by silica gel column chromatography (0.2 mmol scale reaction, yellow oil, 38.1 mg, 71% yield,  $R_f 0.56$ , EtOAc/hexane = 1/9).

Ph' Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.82-7.70 (m, 4H), 7.48-7.40 (m, 3H), 7.35-7.26 (m, 4H), 7.20-7.15 (m, 1H) 6.41(m, 1H), 3.36 (ddd, J = 8.8, 5.6, 3.3 Hz, 1H), 2.37 (ddd, J = 8.8, 7.2, 4.0 Hz, 1H), 1.97 (ddd, J = 7.2, 5.6, 3.8 Hz, 1H);<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.45, 137.96, 135.77, 133.58, 132.48, 128.75, 128.34, 127.79, 127.62, 126.81 (two peaks), 126.35, 125.70, 125.63, 124.94, 97.98, 85.79, 26.14, 18.63.

Minor isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.82-7.70 (m, 4H), 7.48-7.40 (m, 3H), 7.35-7.26 (m, 4H), 7.20-7.15 (m, 1H) 6.41(m, 1H), 3.30 (ddd, J = 8.8, 5.6, 3.2 Hz, 1H) 2.31 (ddd, J = 8.8, 7.2, 4.0 Hz, 1H), 2.02 (ddd, J =7.2, 5.6, 3.8 Hz, 1H);<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.18, 137.84, 135.65, 133.58, 132.48, 128.72, 128.32, 127.79, 127.62, 126.82 (two peaks), 126.30, 125.59, 125.34, 125.07, 97.98, 85.74, 26.52, 18.55. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>17</sub><sup>+</sup>: 269.1330, found: 269.1332.

# 1-Triisopropylsilylethynyl-2-[2-(phenylethenylidene)cyclopropyl]benzene (3ag)

TIPS Following the general procedures, **3ag** was purified by silica gel column chromatography (0.2 mmol scale reaction, yellow oil, 44.6 mg, 56% yield, R/0.60, EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.48 (d, J = 7.6 Hz, 1H), 7.33-7.12 (m, 8H), 6.40 (m, 1H), 3.65 (ddd, J = 3.2, 5.6, 8.8 Hz, 1H), 2.33 (ddd, J = 4.0, 7.0, 8.8 Hz, 1H), 1.86 (ddd, J = 4.0, 6.0, 7.0 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.63, 142.33, 135.79, 132.76, 128.77, 128.66, 126.80, 126.78, 126.44, 125.63, 123.91, 105.33, 95.36, 97.86, 85.45, 25.37, 18.85, 18.50, 11.48. Minor isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.48 (d, J = 7.6 Hz, 1H), 7.33-7.12 (m, 8H), 6.40 (m, 1H), 3.58 (ddd, J = 3.2, 5.6, 8.8 Hz, 1H), 2.27 (ddd, J = 4.0, 7.0, 8.8 Hz, 1H), 1.82 (ddd, J = 4.0, 6.0, 7.0 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.43, 142.18, 135.66, 132.75, 128.75, 126.87, 126.77, 126.39, 125.22, 123.88,

105.33, 97.84, 95.36, 85.34, 29.86, 24.71, 18.85, 18.50, 11.45.

**HRMS (ESI-TOF)** m/z: [M-TIPS]<sup>+</sup> Calcd for  $C_{19}H_{13}^+$ : 243.1174, found: 243.1168.

#### 1-(But-3-en-1-yl)-2-[2-(phenylethenylidene)cyclopropyl]benzene (3ah)



Following the general procedures, **3ah** was purified by silica gel column chromatography (0.24 mmol scale reaction, colorless oil, 37.5 mg, 57% yield,  $R_f$  0.57, EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.35-7.26 (m, 4H), 7.22-7.11 (m, 5H), 6.43-

6.37 (m, 1H), 5.94-5.81 (m, 1H), 5.04 (dm, J = 16.8 Hz, 1H), 4.97 (dm, J = 10.0 Hz, 1H), 3.28 (ddd, J = 3.6,

6.0, 8.8 Hz, 1H), 2.93-2.83 (m, 2H), 2.41-2.35 (m, 2H), 2.31 (ddd, *J* = 3.6, 6.8, 8.4 Hz, 1H), 1.80 (ddd, *J* = 4.0, 6.4, 6.8 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 190.6, 141.3, 138.3, 137.4, 135.8, 129.1, 128.7, 127.03, 126.97, 126.7, 126.3, 115.1, 97.8, 85.0, 34.9, 32.5, 23.6, 17.7.

Minor isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.35-7.26 (m, 4H), 7.22-7.11 (m, 5H), 6.43-6.37 (m, 1H), 5.94-5.81 (m, 1H), 5.04 (dm, J = 16.8 Hz, 1H), 4.97 (dm, J = 10.0 Hz, 1H), 3.21 (ddd, J = 3.6, 6.0, 8.8 Hz, 1H), 2.93-2.83 (m, 2H), 2.41-2.35 (m, 2H), 2.24 (ddd, J = 3.6, 6.8, 8.4 Hz, 1H), 1.86 (ddd, J = 4.0, 6.4, 6.8 Hz, 1H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.7, 141.4, 138.3, 137.4, 135.8, 129.0, 128.7, 127.1 (2 C), 126.81, 126.75, 126.5, 115.1, 97.8, 85.2, 34.8, 32.4, 24.2, 17.7.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub><sup>+</sup>: 273.1643, found: 273.1652.

# [1-Methyl-2-(phenylethenylidene)cyclopropyl]benzene (3ai)

Following the general procedures, **3ai** was purified by silica gel column chromatography (0.2 mmol scale reaction, yellow oil, 7.9 mg, 17% yield,  $R_f 0.59$ , EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.44-7.35 (m, 2H), 7.35-7.27 (m, 4H), 7.26-7.10 (m, 4H), 6.38-6.31 (m, 1H), 2.05 (dd, J = 2.0, 4.0 Hz, 1H), 1.99 (ddd, J = 4.0, 9.6 Hz, 1H), 1.68 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  189.3, 143.8, 136.1, 128.7 (2 peaks), 128.5, 126.9, 126.64, 126.60, 90.4, 31.2, 25.5, 25.2. Minor isomer: <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.44-7.35 (m, 2H), 7.35-7.27 (m, 4H), 7.26-7.10 (m, 4H), 6.38-6.31 (m, 1H), 2.07 (dd, J = 2.0, 4.0 Hz, 1H), 1.98 (ddd, J = 4.0, 9.6 Hz, 1H), 1.76 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  189.2, 144.2, 136.1, 128.7 (2 peaks), 128.5, 127.2, 126.60, 126.57, 97.5, 90.5, 31.5, 25.2, 25.0. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>17</sub><sup>+</sup>: 233.1330, found: 233.1327.

# [1-Phenyl-2-(phenylethenylidene)cyclopropyl]benzene (3aj)

Following the general procedures, **3aj** was purified by silica gel column chromatography (0.2 mmol scale reaction, yellow oil, 37.1 mg, 63% yield,  $R_f$  0.67, EtOAc/hexane = 1/4). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 7.33 (dm, J = 8.0 Hz, 2H), 7.28-7.08 (m, 13H), 6.38 (t, J = 4.0 Hz, 1H), 2.38 (dd, J = 11.2 Hz, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ : 190.0, 143.1, 142.8, 135.7, 128.8, 128.5 (two peaks), 128.1, 127.0, 126.87, 126.86, 98.6, 89.9, 39.4, 25.5.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>19</sub><sup>+</sup>: 295.1487, found: 295.1480.

# [1-Cyclopropyl-2-(2-phenylethenylidene)cyclopropyl]benzene (3ak)



Following the general procedures, **3ak** was purified by silica gel column chromatography (0.25 mmol scale reaction, yellow oil, 24.0 mg, 38% yield,  $R_f 0.55$ , EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>H NMR (MeOD, 400 MHz)  $\delta$  7.52-7.42 (m, 2H), 7.36-7.28 (m, 3H), 7.28-

7.10 (m, 5H), 6.34 (t, J = 4.0 Hz, 1H), 2.10-1.98 (m, 1H), 2.03 (dd, J = 4.0, 7.2 Hz, 1H), 1.52 (dd, J = 5.2, 8.0

Hz, 1H), 0.64-0.37 (m, 3H), 0.33-0.22 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 190.0, 143.9, 136.0, 128.7, 128.4, 127.8, 126.8, 126.7, 126.6, 97.3, 86.8, 36.8, 22.8, 17.2, 4.1, 2.4.

Minor isomer: <sup>1</sup>**H NMR** (MeOD, 400 MHz)  $\delta$  7.52-7.42 (m, 2H), 7.36-7.28 (m, 3H), 7.28-7.10 (m, 5H), 6.37 (t, *J* = 4.0 Hz, 1H), 2.10-1.98 (m, 1H), 1.95 (dd, *J* = 4.0, 7.2 Hz, 1H), 1.58 (dd, *J* = 5.2, 8.0 Hz, 1H), 0.64-0.37 (m, 3H), 0.33-0.22 (m, 1H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  189.6, 143.7, 136.0, 128.8, 128.4, 127.5, 126.74, 126.65, 126.60, 97.3, 86.6, 36.6, 22.6, 16.9, 4.5, 2.8.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>19</sub><sup>+</sup>: 259.1487, found: 259.1483.

# trans-2-Phenyl-3-(2-phenylethenylidene)cyclopropyl]benzene (3al)

Following the general procedures, **3al** was purified by silica gel column chromatography (0.25 mmol scale reaction, yellow oil, 31.4 mg, 44% yield,  $R_f 0.53$ , EtOAc/hexane = 1/9).

<sup>Ph</sup> <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.59-7.497 (m, 1H), 7.39-7.28 (m, 11H), 7.27-7.16 (m, 3H), 6.51 (t, J = 4.0 Hz, 1H), 3.24 (dd, J = 3.6, 5.2 Hz, 1H), 3.17 (dd, J = 3.6, 5.2 Hz, 1H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.86, 139.85, 139.72, 135.41, 128.81, 128.76, 128.71, 127.00, 126.96, 126.92, 126.83 (3 peaks), 98.65, 90.18, 37.06, 36.68.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>19</sub><sup>+</sup>: 295.1487, found: 295.1488.

# (2-{1H,1aH,6H,6aH-Cyclopropa[a]inden-1-yidene}ethenyl)benzen (3am)

Following the general procedures, **3am** was purified by silica gel column chromatography (0.25 mmol scale reaction, yellow oil, 46.8 mg, 82% yield,  $R_f 0.48$ , EtOAc/hexane = 1/9).

Major isomer: <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.36-7.33 (m, 1H), 7.30-7.01 (m, 7H), 6.91 (m, 1H), 6.19 (t, J = 2.8 Hz, 1H), 3.58 (dm, J = 6.0 Hz, 1H), 3.41 (t, J = 6.4 Hz, 1H), 3.30 (d, J = 13.2 Hz, 1H); <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  188.1, 143.5, 142.0, 135.8, 128.7, 126.7 (two peaks), 126.4, 126.3, 125.5, 123.9, 98.0, 89.3, 36.5, 33.9, 25.7.

Minor isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.36-7.33 (m, 1H), 7.30-7.01 (m, 7H), 6.91 (m, 1H), 6.29 (t, J = 2.8 Hz, 1H), 3.52 (dm, J = 6.0 Hz, 1H), 3.46 (t, J = 6.4 Hz, 1H), 3.26 (d, J = 13.2 Hz, 1H); <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  188.3, 144.0, 141.8, 135.8, 128.6, 126.6 (two peaks), 126.5, 126.4, 125.5, 123.8, 97.6, 90.2, 37.1, 34.3, 26.1.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>14</sub><sup>+</sup>: 231.1174, found: 231.1174.

# (2-{1H,1aH,2H,3H,7bH-Cyclopropa[a] naphthalen-1-ylidene}ethenyl)benzen (3an)



Following the general procedures, **3an** was purified by silica gel column chromatography (0.25 mmol scale reaction, light brown oil, 29.2 mg, 48% yield,  $R_f$  0.49, EtOAc/hexane = 1/9).

Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.31-7.05 (m, 9H), 6.17 (t, J = 4.0 Hz, 1H), 3.23 (dd, J = 4.0, 8.0 Hz), 2.84-2.54 (m, 3H), 2.25 (dt, J = 12.0, 4.0 Hz, 1H), 1.66 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  189.90, 135.82, 135.24, 134.79, 128.66, 128.51, 128.48, 126.64, 126.51, 126.25, 125.93, 97.55, 83.99, 26.93, 26.57, 23.80, 19.55.

Minor isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz) δ 7.31-7.05 (m, 9H), 6.28 (t, *J* = 4.0 Hz, 1H), 3.14 (dd, *J* = 4.0, 8.0 Hz, 1H), 2.84-2.54 (m, 3H), 2.27 (dt, *J* = 12.0, 4.0 Hz, 1H), 1.66 (m, 1H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz) δ 190.12, 135.92, 135.54, 134.49, 128.64, 128.57, 128.43, 126.62, 126.60, 126.28, 125.96, 97.35, 84.32, 26.70, 26.11, 24.29, 19.56.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>17</sub><sup>+</sup>: 245.1330, found: 245.1325.

# 1-Bromo-2-[2-(2-phenylcyclopropylidene)ethenyl]benzene (3ba)

Following the general procedures, **3ba** was purified by silica gel column chromatography (0.25 mmol scale reaction, yellow oil, 31.4 mg, 43% yield,  $R_f$ 0.48, EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.54-7.37 (m, 2H), 7.35-7.15 (m, 6H), 7.04-6.96 (m, 1H), 6.80 (quint, J = 4.0 Hz, 1H), 3.21 (ddd, J = 4.0, 6.0, 8.8 Hz, 1H), 2.30 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H), 1.95 (ddd, J = 4.0, 6.0, 7.2 Hz, 1H); <sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.9, 140.0, 135.1, 133.1, 128.6, 128.5, 128.0, 127.4, 126.7 (two peaks), 122.2, 96.73, 85.5, 26.4, 19.0.

Minor isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.54-7.37 (m, 2H), 7.35-7.15 (m, 6H), 7.04-6.96 (m, 1H), 6.80 (quint, J = 4.0 Hz, 1H), 3.16 (ddd, J = 4.0, 6.0, 8.8 Hz, 1H), 2.25 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H), 1.88 (ddd, J = 4.0, 6.0, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  191.1, 140.3, 135.2, 133.05, 128.6, 128.5, 128.0, 127.5, 126.8 (two peaks), 122.2, 96.8, 85.7, 26.7, 18.9.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>13</sub>Br<sup>+</sup>: 297.0279, found: 297.0293.

# 1-Bromo-4-[2-(2-phenylcyclopropylidene)ethenyl]benzene (3ca)



Following the general procedures, **3ca** was purified by silica gel column chromatography (0.25 mmol scale reaction, yellow oil, 40.3 mg, 55% yield,  $R_f 0.65$ , EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.45-7.38 (m, 2H), 7.36-7.21 (m, 5H), 7.21-7.13 (m, 2H), 6.35-6.30 (m, 1H), 3.23 (ddd, J = 3.6, 6.0, 8.8 Hz, 1H), 2.32 (ddd, J = 4.0,

7.2, 8.8 Hz, 1H), 1.89 (ddd, J = 4.0, 6.0, 7.2 Hz, 1H);<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.09, 140.09, 134.78, 131.75, 128.61, 128.28, 126.84, 126.73, 120.24, 96.95, 85.96, 26.10, 18.66.

Minor isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz) δ 7.45-7.38 (m, 2H), 7.36-7.21 (m, 5H), 7.21-7.13 (m, 2H), 6.35-6.30 (m, 1H), 3.16 (ddd, *J* = 3.6, 6.0, 8.8 Hz, 1H), 2.26 (ddd, *J* = 4.0, 7.2, 8.8 Hz, 1H), 1.97 (ddd, *J* = 4.0, 6.0, 7.2 Hz, 1H);<sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz) δ 190.24, 140.31, 134.87, 131.79, 128.66, 128.22, 126.76, 126.71, 120.24, 96.95, 86.17, 26.46, 18.59.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>13</sub>Br<sup>+</sup>: 297.0279, found: 297.0272.

## 4-(Trifluoromethyl)-4-[2-(2-phenylcyclopropylidene)ethenyl]benzene (3da)



Following the general procedures, **3da** was purified by silica gel column chromatography (0.48 mmol scale reaction, yellow oil, 23.4 mg, 17% yield,  $R_f$ 0.48, EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.53 (t, J = 8.0 Hz, 2H), 7.42-7.20 (m, 7H), 6.41-6.36 (m, 1H), 3.26 (ddd, J = 3.2, 6.0, 8.8 Hz, 1H), 2.35 (ddd, J = 4.0, 7.6, 8.8 Hz,

1H), 1.92 (ddd, J = 4.0, 6.0, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.9, 139.8, 139.6 (two peaks), 128.7, 128.3 ( $J_{C-F} = 32$  Hz), 126.7, 126.6, 125.5 ( $J_{C-F} = 3.8$  Hz), 124.4 ( $J_{C-F} = 270$  Hz), 96.9, 85.8, 26.5, 18.9 Minor isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.53 (t, J = 8.0 Hz, 2H), 7.42-7.20 (m, 7H), 6.41-6.36 (m, 1H), 3.20 (ddd, J = 3.2, 6.0, 8.8 Hz, 1H), 2.28 (ddd, J = 4.0, 7.6, 8.8 Hz, 1H), 2.00 (ddd, J = 4.0, 6.0, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  191.0, 140.0, 139.7 (two peaks), 128.7, 128.3 ( $J_{C-F} = 32$  Hz), 126.74, 126.70, 125.5 ( $J_{C-F} = 3.8$  Hz), 124.4 ( $J_{C-F} = 270$  Hz), 96.9, 86.0, 26.9, 18.8.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>14</sub>F<sub>3</sub><sup>+</sup>: 287.1048, found: 287.1045.

#### 1-Phenyl-2-[2-(2-phenylcyclopropylidene)ethenyl]benzene (3ea)

Following the general procedures, **3ea** was purified by silica gel column chromatography (0.18 mmol scale reaction, yellow oil, 11.6 mg, 22% yield, R<sub>f</sub>0.53, EtOAc/hexane = 1/9). Major isomer: **<sup>1</sup>H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.55 (d, J = 7.6 Hz, 1H),7.46-7.24 (m, 10H), 7.23-7.14 (m, 3H), 6.39-6.45 (m, 1H), 3.13 (ddd, J = 3.6, 5.6, 8.8 Hz, 1H), 2.23 (ddd, J = 4.0, 6.4, 8.4 Hz, 1H), 1.89 (ddd, J = 4.4, 6.0, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.5, 144.1, 140.5, 140.2, 133.0, 130.4, 129.9, 128.6, 128.3, 127.58, 127.56, 127.1, 126.9, 126.7, 126.6, 96.0, 85.2, 26.0, 18.81. Minor isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.55 (d, J = 7.6 Hz, 1H),7.46-7.24 (m, 10H), 7.23-7.14 (m, 3H), 6.39-6.45 (m, 1H), 3.09 (ddd, J = 3.6, 5.6, 8.8 Hz, 1H), 2.19 (ddd, J = 4.0, 6.4, 8.4 Hz, 1H), 1.78 (ddd, J = 4.4,

6.0, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 190.5, 141.1, 140.7, 140.1, 133.1, 130.4, 129.9, 128.6, 128.3, 127.6, 127.5, 127.2, 126.9, 126.6, 126.5, 96.1, 85.4, 26.3, 18.71.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>19</sub><sup>+</sup>: 295.1487, found: 294.1480.

## 1-Trimethylsilyl-2-[2-(2-phenylcyclopropylidene)ethenyl]benzene (3fa)

Ph Following the general procedures, **3fa** was purified by silica gel column chromatography (0.24 mmol scale reaction, yellow oil, 22.5 mg, 33% yield,  $R_f 0.59$ , EtOAc/hexane = 1/9).

Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.54-7.44 (m, 2H), 7.34-7.18 (m, 6H), 7.17-7.10 (m, 1H), 6.69-6.62 (m, 1H), 3.19 (ddd, J = 3.6, 6.0, 8.8 Hz, 1H), 2.27 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H), 1.85 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H), 0.36 (s, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>/100 MHz)  $\delta$  190.3, 140.9 (two peaks), 140.4, 137.3, 134.7, 129.4, 128.6, 127.2, 126.8, 126.6, 98.3, 85.2, 25.6, 18.5, 0.32.

Minor isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.55-7.44 (m, 2H), 7.34-7.18 (m, 6H), 7.17-7.10 (m, 1H), 6.69-6.62 (m, 1H), 3.13 (ddd, J = 3.6, 6.0, 8.8 Hz, 1H), 2.23 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H), 1.91 (ddd, J = 4.0, 7.2,

8.8 Hz, 1H), 0.37 (s, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 190.3, 141.0 (two peaks), 140.6, 137.3, 134.6, 129.5, 128.6, 127.2, 126.9, 125.9, 98.4, 85.4, 26.4, 18.7, 0.32.

HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>23</sub>Si<sup>+</sup>: 291.1569, found: 291.1571.

# 2-{2-[2-(4-Bromophenyl)cyclopropylidene]ethenyl}-1,2,3-trimethylbenzene (3gc)



Following the general procedures, **3gc** was purified by silica gel column chromatography (0.25 mmol scale reaction, orange oil, 33.9 mg, 40% yield,  $R_f 0.61$ , EtOAc/hexane = 1/9).

Major isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.35 (dm, J = 8.4 Hz, 2H), 7.02 (dm, J = 8.4 Hz, 2H), 6.82 (s, 2H), 6.50 (m, 1H), 3.00 (ddd, J = 4.0, 5.6, 8.8 Hz, 1H), 2.251 (s, 6H), 2.246 (s, 3H), 2.14 (m, 1H), 1.80 (ddd, J = 4.0, 5.6, 7.2 Hz, 1H); <sup>13</sup>**C NMR** 

(CDCl<sub>3</sub>, 100 MHz) δ 192.0, 139.9, 139.2 (2 peaks), 131.5, 129.3 (2 peaks), 128.5, 120.1, 93.7, 82.5, 25.3, 21.5, 21.1, 17.4.

Minor isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.41 (dm, J = 8.4 Hz, 2H), 7.10 (dm, J = 8.4 Hz, 2H), 6.85 (s, 2H), 6.50 (m, 1H), 2.95 (ddd, J = 4.0, 5.6, 8.8 Hz, 1H), 2.33 (s, 6H), 2.26 (s, 3H), 2.14 (m, 1H), 1.71 (ddd, J = 4.0, 5.6, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  191.6, 139.2, 136.3, 136.2, 131.6, 129.3, 129.2, 128.4, 120.2, 93.6, 82.7, 24.7, 21.4, 21.0, 18.2.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>20</sub>Br<sup>+</sup>: 339.0670, found: 339.0741.

# 2-{2-[2-(4-Bromophenyl)cyclopropylidene]ethenyl}-1,3-dimethylbenzene (3hc)



Following the general procedures, **3hc** was purified by silica gel column chromatography (0.5 mmol scale reaction, orange oil, 101.77 mg, 63% yield,  $R_f$ 0.53, EtOAc/hexane = 1/9).

Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.36 (dm, J = 8.4 Hz, 2H), 7.03-6.98 (m, 5H), 6.54-6.49 (m, 1H), 3.05-3.00 (m, 1H), 2.29 (s, 6H), 2.20-2.12 (m, 1H), 1.85-

1.81 (m, 1H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz) *δ* 191.7, 139.1, 136.4, 132.3, 131.5, 128.5, 128.3, 126.6, 120.1, 93.67, 82.5, 25.4, 21.5, 17.4.

Minor isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.42 (dm, J = 8.4 Hz, 2H), 7.11 (dm, J = 8.4 Hz, 2H), 7.03-6.98 (m, 3H), 6.54-6.49 (m, 1H), 2.99-2.94 (m, 1H), 2.37 (s, 6H), 2.20-2.12 (m, 1H), 1.76-1.72 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  192.0, 139.8, 136.4, 132.3, 131.6, 128.4, 128.3, 126.7, 120.2, 93.7, 82.7, 24.8, 21.5, 18.2.

HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>18</sub>Br<sup>+</sup>: 325.0592, found: 325.0588.

# 1,3-Dimethyl-5-[2-(2-phenylcyclopropylidene)ethenyl]benzene (3ia)



Ph

Following the general procedures, **3ia** was purified by silica gel column chromatography (0.5 mmol scale reaction, colorless oil, 40.5 mg, 33% yield,  $R_f 0.53$ , EtOAc/hexane = 1/9).

Me Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.31-7.28 (m, 2H), 7.25-7.18 (m, 3H), 6.92 (s, 2H), 6.82 (s, 1H), 6.32-6.29 (m, 1H), 3.20 (ddd, J = 3.6, 5.6, 8.8 Hz, 1H), 2.29 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H), 2.29 (s, 6H), 1.83 (ddd, J = 4.0, 5.6, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.0, 140.5, 138.2, 135.5, 128.57, 128.54, 126.8, 126.6, 124.6, 97.6, 85.4, 25.8, 21.4, 18.5.

Minor isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.31-7.28 (m, 2H), 7.25-7.18 (m, 3H), 6.91 (s, 2H), 6.81 (s, 1H), 6.32-6.29 (m, 1H), 3.12 (ddd, J = 3.6, 5.6, 8.8 Hz, 1H), 2.26 (s, 6H), 2.21 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H), 1.92 (ddd, J = 4.0, 5.6, 7.2 Hz, 1H).; <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.3, 140.8, 138.1, 135.6, 128.62, 128.58, 126.9, 126.6, 124.7, 97.9, 85.8, 26.1, 21.4, 18.6.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>19</sub><sup>+</sup>: 247.1487, found: 247.1490.

# 1-[2-(2-Phenylcyclopropylidene)ethenyl]-2-(prop-2-en-1-yl)benzene (3ka)

Ph Following the general procedures, **3ka** was purified by silica gel column chromatography (0.24 mmol scale reaction, colorless oil, 27.2 mg, 44% yield, R<sub>f</sub>0.62, EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.46-7.41 (m, 1H), 7.35-7.08 (m, 8H), 6.61-6.56 (m, 1H), 6.05-5.93 (m, 1H), 5.15-5.05 (m, 2H), 3.54-3.42 (m, 2H), 3.17 (ddd, *J* = 3.6, 5.6, 8.4 Hz, 1H), 2.27 (ddd, *J* = 4.0, 7.2, 8.8 Hz, 1H), 1.86 (ddd, *J* = 4.0, 5.6, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.8, 140.5, 137.0, 136.4, 133.7, 130.2, 128.6 (2 peaks), 127.7, 126.9, 126.73, 126.6, 116.0, 94.9, 84.8, 37.6, 26.0, 18.7.

Minor isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.41-7.36 (m, 4H), 7.35-7.08 (m, 8H), 6.61-6.56 (m, 1H), 6.05-5.93 (m, 1H), 5.15-5.05 (m, 2H), 3.54-3.42 (m, 2H), 3.13 (ddd, J = 3.6, 5.6, 8.4 Hz, 1H), 2.23 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H), 1.92 (ddd, J = 4.0, 5.6, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.8, 140.5, 136.9, 136.4, 133.8, 130.0, 128.6 (2 peaks), 127.7, 126.8, 126.73, 126.6, 116.1, 94.8, 85.0, 37.7, 26.4, 18.6. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>19</sub><sup>+</sup>: 259.1487, found: 259.1483.

# 1-(But-3-en-1-yl)-2-[2-(2-phenylcyclopropylidene)ethenyl]benzene (3la)

Following the general procedures, **31a** was purified by silica gel column chromatography (0.2 mmol scale reaction, colorless oil, 25.8 mg, 48% yield,  $R_f$  0.57, EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.35-7.02 (m, 9H), 6.50 (q, *J* = 4.0 Hz, 1H), 5.80 (dt, *J* = 10.8, 6.4 Hz, 1H), 4.98 (dm, *J* = 17.2 Hz, 2H), 3.08 (ddd, *J* = 3.6, 5.6, 8.8 Hz, 1H), 2.72 (t, *J* = 7.2 Hz, 2H), 2.27 (m, 2H), 2.18 (ddd, *J* = 4.0, 7.2, 8.8 Hz, 1H), 1.85 (ddd, *J* = 3.6, 6.0, 7.6 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.9, 140.5, 138.7, 138.3, 133.2, 130.0, 128.6, 127.9, 126.9, 126.7, 126.5 (two peaks), 115.0, b94.9, 84.8, 35.2, 32.9, 26.0, 18.69. Minor isomer: <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.35-7.02 (m, 9H), 6.50 (q, J = 4.0 Hz, 1H), 5.80 (dt, J = 10.8, 6.4 Hz, 1H), 4.91 (dm, J = 10.8 Hz, 2H), 3.14 (ddd, J = 3.6, 5.6, 8.8 Hz, 1H), 2.70 (t, J = 7.2 Hz, 2H), 2.27 (m, 2H), 2.24 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H) 1.92 (ddd, J = 3.6, 6.0, 7.6 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.8, 140.6, 138.5, 138.2, 133.4, 129.8, 128.6, 127.8, 126.8, 126.6, 126.4 (2 peaks), 115.1, 94.7, 85.1, 35.2, 32.9, 26.3, 18.6.

**HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub><sup>+</sup>: 273.1643, found: 273.1640.

# 1-Triisopropylsilylethynyl-2-[2-(2-phenylcyclopropylidene)ethenyl]benzene (3ma)

Following the general procedures, **3ma** was purified by silica gel column chromatography (0.25 mmol scale reaction, yellow oil, 63.1 mg, 64% yield, R<sub>f</sub>0.64, EtOAc/hexane = 1/9). Major isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.50-7.38 (m, 2H), 7.34-7.16 (m, 6H), 7.14-7.04 (m, 1H), 7.00 (quint, J = 4.0 Hz, 1H), 3.17 (ddd, J = 4.0, 6.0, 8.8 Hz, 1H), 2.26 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H), 1.96 (ddd, J = 4.0, 6.0, 7.2 Hz, 1H), 1.15 (m, 21H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.9, 140.5, 137.7, 133.1, 128.63, 128.56, 128.50, 126.9, 126.7, 126.3, 121.1, 105.2, 96.0, 95.6, 85.6, 26.7, 18.89, 18.88, 11.5. Minor isomer: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.50-7.38 (m, 2H), 7.34-7.16 (m, 6H), 7.14-7.04 (m, 1H), 7.00 (quint, J = 4.0 Hz, 1H), 3.22 (ddd, J = 4.0, 6.0, 8.8 Hz, 1H), 2.31 (ddd, J = 4.0, 7.2, 8.8 Hz, 1H), 1.87 (ddd, J= 4.0, 6.0, 7.2 Hz, 1H), 1.17-1.13 (m, 21H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  190.9, 140.2, 137.6, 133.1, 128.59, 128.56, 128.50, 126.9, 126.5, 126.4, 121.1, 105.3, 96.0, 95.8, 85.2, 26.3, 18.88, 18.80, 11.5. **HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>35</sub>Si<sup>+</sup>: 399.2508, found: 399.2500.

# 1-Bromo-4-(2-(2-methylprop-1-enylidene)cyclopropyl)benzene (3nc)



Following the general procedures, **3nc** was purified by silica gel column chromatography (0.54 mmol scale reaction, pale green oil, 37.5 mg, 28% yield,  $R_f 0.57$ , EtOAc/hexane = 1/9).

<sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.41-7.36 (m, 2H), 7.10-7.02 (m, 3H), 2.81 (dd, *J* = 4.8, 8.4 Hz, 1H), 2.00 (dd, *J* = 7.2, 8.4 Hz, 1H), 1.81 (s, 3H), 1.80 (s, 3H), 1.49 (dd, *J* = 4.8, 7.2 Hz, 1H); <sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  187.1, 140.7, 131.4, 128.1, 119.6, 100.2, 81.6, 22.9, 21.4, 21.1, 17.2; **HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>14</sub>Br<sup>+</sup>: 249.0279, found: 249.0266.

# cis-1-Bromo-4-(2-deuterio-3-(2-methylprop-1-enylidene)cyclopropyl)benzene (cis-3mc-d)



Following the general procedures, **3mc** was purified by silica gel column chromatography (0.49 mmol scale reaction, pale green oil, 24.6 mg, 20% yield,  $R_f 0.57$ , EtOAc/hexane = 1/9).

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.20 (dm, J = 8.4 Hz, 2H), 6.75 (dm, J = 8.4 Hz, 1H), 2.49 (d, J = 8.4 Hz, 1H), 1.79-1.64 (m, 7H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  187.3, 140.8, 131.5, 128.2, 119.7,

100.2, 81.6, 22.9, 21.5, 21.2, 17.0 (t, J = 25 Hz); **HRMS (ESI-TOF)** m/z:  $[M+H]^+$  Calcd for C<sub>13</sub>H<sub>13</sub>BrD<sup>+</sup>: 250.0342, found: 250.0344.

# trans-1-Bromo-4-(2-deuterio-3-(2-methylprop-1-enylidene)cyclopropyl)benzene (trans-3nc-d)

Following the general procedures, **3nc** was purified by silica gel column chromatography (0.49 mmol scale reaction, pale green oil, 24.5 mg, 20% yield,  $R_f 0.57$ , EtOAc/hexane = 1/9).

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.40-7.36 (m, 2H), 7.07-7.03 (m, 2H), 2.80 (d, J = 5.0 Hz, 1H), 1.81 (s, 3H), 1.80 (s, 3H), 1.47 (d, J = 5.0 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  187.29, 140.85, 131.51, 128.28, 119.71, 100.25, 81.59, 22.91, 21.47, 21.18, 17.01 (t, J = 25.5 Hz); HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>13</sub>BrD<sup>+</sup>: 250.0342, found: 250.0351.

### Large Scale Reaction for Gold(I)-Catalyzed Cyclopropanation of Indene



The cationic gold catalyst was generated in a 20 mL round bottom flask with a threaded cap by addition of (Ph<sub>3</sub>P)AuCl (25.0 mg, 0.01 mmol, 5 mol%), AgSbF<sub>6</sub> (17.0 mg, 0.01 mmol, 5 mol%), and dichloromethane (5 mL). After allowing the catalyst mixture to sit for 10 minutes at room temperature, the precipitate was filtered off. The resulting solution was added to the **1a** (1.0 mmol) and indene (**2m**) (20 mmol) in dichloromethane (20 mL), and stirred at 25 °C. The mixture (0.04 M) was monitored by TLC until all starting material was consumed. Upon completion, the reaction mixture was concentrated and loaded directly onto a silica gel column resulted in isolation of analytically pure product **3am** (yellow oil, 184.2 mg, 80% yield, R<sub>f</sub> 0.48, EtOAc/hexane = 1/9).

#### **Isotope Labeling Experiments**

#### Synthesis of *cis*-β-Monodeuterio-4-bromostyrene



(Adapted from a reported procedure)<sup>7</sup>: An oven-dried schlenk flask equipped with a stir bar was charged with 4-bromophenylacetylene (3.43 g, 19 mmol, 1.0 equiv.) and anhydrous THF (30 mL). The solution was cooled to -78 °C and isopropylmagnsium bromide prepared from isopropyl bromide and magnsium turnings (0.6 M in THF, 38 mL, 22.8 mmol, 1.2 equiv.) was added in a dropwise fashion over 10 min. The solution was stirred at -78 °C for 1.5 h after which point D<sub>2</sub>O (2.25 mL, 123 mmol, excess) was added. The mixture is allowed to warm to rt and stirred for 0.5 h. The reaction was quenched with 5% HCl and extracted with diethyl ether (2 × 20 mL). The combined organic extracts were dried over anhydrous MgSO<sub>4</sub>, filtered, and the solvent was carefully removed with use of a rotary evaporator to give 1-bromo-4-(2-deutrioethynyl)benzene as an orange oil (3.15 g, 17.3 mmol, 91% yield, R/0.44, CHCl<sub>3</sub>/hexane = 1/19).

<sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.46 (dm, J = 8.8 Hz, 2H), 7.35 (dm, J = 8.8 Hz, 2H).

Spectroscopic data was consistent with the values reported in the literature.<sup>16</sup>

(Adapted from a reported procedure)<sup>7</sup>: A three-necked flask under Ar atmosphere was charged with Schwartz's Reagent (5.53 g, 21.5 mmol, 1.1 equiv.) in the glove box. These were then sealed and removed from the glove box, dry CH<sub>2</sub>Cl<sub>2</sub> (15 mL) was added. The flask was covered with aluminum foil and the mixture was cooled to -10 °C. A solution of 1-bromo-4-(2-deutrioethynyl)benzene (1.43 g, 7.8 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (15 mL) was added dropwise over 10 min using an addition funnel. The mixture was allowed to stir at -10 °C for 15 min, then the cold bath was removed, and the stirring was continued at room temperature in the dark for 3 h. The flask was cooled to 0 °C, and the mixture was quenched with H<sub>2</sub>O (1.0 mL, 56 mmol, 7 equiv.) and stirred vigorously at room temperature for 12 h. The mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL), followed by the addition of anhydrous MgSO<sub>4</sub>, and filtration, washing with CH<sub>2</sub>Cl<sub>2</sub>. The filtrate was concentrated under reduced pressure until 5–10 mL of CH<sub>2</sub>Cl<sub>2</sub> remained. Hexane (10 mL) was then added, and the mixture was filtered over a Celite<sup>®</sup> pad to remove the white precipitate; the filter cake was rinsed with hexane and the filtrate was again concentrated under reduced pressure. Purification by column chromatography on silica gel using hexane as eluent afforded the corresponding titled compound a colorless oil (920.6 mg, 65%). Approx. 99% D-incorporation.

<sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.44 (dm, J = 8.0 Hz, 2H), 7.27 (dm, J = 12.0 Hz, 2H), 6.64 (dt, J = 8.0, 4.0 Hz, 1H), 5.72 (d, J = 16.0 Hz, 0.01H), 5.26 (d, J = 8.0 Hz, 1H); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 100 MHz)  $\delta$  136.6, 135.8, 131.7, 127.9, 121.7, 114.5 (t,  $J_{C-D}$  = 24.0 Hz); **HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>8</sub>H<sub>6</sub>DBr<sup>+</sup>: 183.9872, found: m/z 183.9863.

#### Synthesis of *trans*-β-Monodeuterio-4-bromostyrene



#### (Z)-(2-(4-Bromophenyl)-1-deuteriovinyl)trimethylsilane:

Prepared from 1-(4-bromophenyl)-2-(trimethylsilyl)acetylene according to the reported procedure.<sup>17</sup> To a flame-dried round bottom flask equipped with a stir bar was added dry hexane (15 mL) under Ar, after which DIBAL-H (1M in hexane, 36 mL, 36 mmol) was added. The resulting mixture was allowed to cool to 0 °C, and a solution of trimethyl(4-bromophenylethynyl)silane (3.31 g, 18 mmol) in dry THF (3 mL) was added using an addition funnel. The mixture was stirred for an additional 10 min at 0 °C and then allowed to stir for 15 h at room temperature. The solution was stirred at -0 °C for 10 min after which point D<sub>2</sub>O (0.75 mL, 37.5 mmol, excess) was added. The mixture was allowed to warm to rt and stirred for 0.5 h. The mixture was transferred to a separatory funnel and Rochelle's salt (40 mL) and a saturated solution of aqueous ammonium chloride (40 mL) were added. The aqueous layer was washed with Et<sub>2</sub>O (3 × 20 mL). The combined organic layers were dried over anhydrous MgSO<sub>4</sub>, filtered, and the solvent was carefully removed in reduced pressure. The resulting yellow oil was purified by silica gel chromatography (100% hexane) and Kugelrohr distillation to give titled compound (2.6 g, 10.1 mmol, 56% yield).

#### trans-β-Monodeuterio-4-bromostyrene:

To a solution of (Z)-(2-(4-bromophenyl)-1-deuteriovinyl)trimethylsilane (2.6 g, 10.1 mmol) in THF (30 mL) was added (*n*-Bu)<sub>4</sub>NF (1.0 M in THF, 15.2 mL, 15.2 mmol) at room temperature under Ar. The mixture was allowed to stir at 60 °C for 18 h after which it was transferred to a separatory funnel. The reaction was quenched with water (60 mL), and the layers separated. The aqueous layer was washed with Et<sub>2</sub>O ( $3 \times 20$  mL). The combined organic layers were dried over anhydrous MgSO<sub>4</sub> and concentrated under reduced pressure. The resulting yellow oil was purified by silica gel chromatography and Kugelrohr distillation to afford *trans*- $\beta$ -Monodeuterio-4-bromostyrene as colorless liquid (962 mg, 5.2 mmol, 52% yield, 97% D, >98% *trans*).

<sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 7.44 (dm, J = 8.0 HZ, 2H), 7.27 (dm, J = 8.4 Hz, 2H), 6.65 (d, J = 17.6 Hz, 2H), 5.73 (d, J = 17.6 Hz, 1H), 5.27 (dd, J = 0.6, 10.8 Hz, 0.012H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  136.6, 135.8, 131.8, 127.9, 121.7, 114.5 (t,  $J_{C-D}$  = 25.0 Hz); **HRMS (ESI-TOF)** m/z: [M+H]<sup>+</sup> Calcd for C<sub>8</sub>H<sub>6</sub>DBr<sup>+</sup>: 183.9872, found: 183.9865.

#### Gold(I)-Catalyzed Cyclopropanation of Styrene with Silylated Propargyl Esters (1n)



The cationic gold catalyst was generated in a 1 dram vial with a threaded cap by addition of (Ph<sub>3</sub>P)AuCl (6.2 mg, 0.0125 mmol, 5 mol%), AgSbF<sub>6</sub> (4.3 mg, 0.0125 mmol, 5 mol%), and dichloromethane (1 mL). After allowing the catalyst mixture to sit for 10 minutes at room temperature, the precipitate was filtered off. The resulting solution was added to the starting material **1n** (61.9 mg, 0.25 mmol) and styrene (**2a**) (290  $\mu$ L, 2.5 mmol) in dichloromethane (5 mL), and stirred at 25 °C for 0.5 h. The mixture (0.04 M) was monitored by TLC until all starting material was consumed. Upon completion, the reaction mixture was concentrated and loaded directly onto a silica gel column resulted in complex mixture.

#### Gold(I)-Catalyzed Cyclopropanation of 2-Bromostyrene (2c) with (R)-1a

The cationic gold catalyst was generated in a 1 dram vial with a threaded cap by addition of (Ph<sub>3</sub>P)AuCl (5.0 mg, 0.01 mmol, 5 mol%), AgSbF<sub>6</sub> (3.4 mg, 0.01 mmol, 5 mol%), and dichloromethane (1 mL). After allowing the catalyst mixture to sit for 10 minutes at room temperature, the precipitate was filtered off. The resulting solution was added to the starting material (*R*)-**1a** (0.2 mmol) and 2-bromostyrene (**2c**) (2.0 mmol) in dichloromethane (4 mL), and stirred at 25 °C. The reaction mixture (0.04 M) was monitored by TLC until all starting material was consumed. Upon completion, the reaction mixture was concentrated and loaded directly onto a silica gel column chromatography resulted in isolation of analytically pure product **3ac** (yellow oil, 23.7 mg, 40% yield,  $R_f 0.55$ , EtOAc/hexane = 1/9).



# Racemic sample of **3ac**





| No. | Rt    | Area    | Area(%) | Height |
|-----|-------|---------|---------|--------|
| 1   | 9.52  | 2040213 | 20.8118 | 109172 |
| 2   | 11.16 | 2055084 | 20.9635 | 101456 |
| 3   | 13.7  | 2861402 | 29.1885 | 125442 |
| 4   | 23.76 | 2846475 | 29.0363 | 78703  |
|     |       | 9803174 | 100     | 414773 |

# **Chirality Transfer Reaction (Scheme 4c)**





| HPLC: CHIRALPAK IJ | $(0.46 \text{ cm} \times 25)$ | cm), MeOH= | 100, flow: 1.0 | $M mL/min, \lambda =$ | = 254 nm (UV) |
|--------------------|-------------------------------|------------|----------------|-----------------------|---------------|
|--------------------|-------------------------------|------------|----------------|-----------------------|---------------|



| No. | Rt    | Area     | Area(%) | Height |
|-----|-------|----------|---------|--------|
| 1   | 9.52  | 603703.4 | 13.6814 | 34161  |
| 2   | 11.18 | 603903.6 | 13.686  | 30341  |
| 3   | 13.72 | 1605776  | 36.3909 | 70411  |
| 4   | 23.86 | 1599188  | 36.2416 | 44029  |
|     |       | 4412572  | 100     | 178942 |

#### Calculations

All structures for mechanism studies were optimized and characterized using frequency calculations at the at the  $\omega$ B97XD functional with the 6-31+G(d) basis set for the organic molecules and the Def2TZVP basis set (with effective core potentials) for Au with the SCRF method based on CPCM (dichloromethane) using Gaussian 16, revision C.01.<sup>18</sup> It was confirmed that there is only one imaginary frequency in the vibrational spectra of all transition states. Gibbs free energies (298.15 K, 1 atm) was taken from the frequency calculation above. The natural bonding orbitals (NBO) calculations were performed at the same level of optimization using NBO 7.0 program (version 7.0.10) installed in Gaussian 16.

The generating mechanism of product **3aa** was targeted in the calculational study.

Although the reaction giving **3aa** afforded *syn-* or *anti-*isomers in a ratio of 2:1 (Table 1, entry 8), their absolute structures in both diastereomers could not be identified by instrumental analyses. Therefore, the experimental chemical shifts of both diastereomers of **3ac**, whose *dr* was 2.7:1 (scheme 2), were compared with the calculated chemical shifts. Structures of *syn-* and *anti-***3ac** were optimized at the SMD(CHCl<sub>3</sub>)/B97D3/6-311+G(2d,p) level, and the chemical shifts were calculated using the GIAO method at the SMD(CHCl<sub>3</sub>)/mPW1PW91/6-311+G(2d,p) level. From the correlation between calculated and experimental chemical shifts (Figure S1), it was assumed that the major isomer of **3ac** was *syn-*form, and the minor isomer was *anti-*form. Therefore, we next conducted mechanistic studies on the formation of *syn-***3aa**.



Figure S1. Correlation between calculated and experimental NMR chemical shifts of 3ac.

Computational studies were performed at the CPCM(CH<sub>2</sub>Cl<sub>2</sub>)/ $\omega$ B97XD/6-31+G(d) with Def2TZVP(Au) level on pathways from C or D to *syn*-3aa (Scheme 5).

It was evaluated whether the structure of starting complex was **C** or **D**. The NBO calculation revealed that gold(I)-coordinated allenylidene species have one C–C triple bond (Figure S2), and p orbital at the C $\gamma$  carbon in LUMO was observed (Figure S3). Thus, it was found that gold(I)-stabilized propargyl cation species **D** is generated rather than gold(I)-coordinated allenylidene species **C** in the present system.



sp hybrid bond orbital of Cα-Cβ Cα s(51.21%) p(48.71%), Cβ s(49.29%) p(50.61%)





2<sup>nd</sup> p bond orbital of Cα-Cβ Cα s(0.00%) p(100.00%), Cβ s(0.00%) p(99.84%)

 $1^{st}$  p bond orbital of Ca-C $\beta$  $2^{nd}$  p boCa s(0.01%) p(99.93%), C $\beta$  s(0.00%) p(99.85%)Ca s(0.0Figure S2. NBO analysis of gold(I)-stabilized propargyl cation.



Figure S3. LUMO orbitals of gold(I)-stabilized propargyl cation.

Next, the transition state for cyclopropanation was searched.

In a first attempt, based on a previous report on the reaction of gold(I)-coordinated benzylidene species with styrene, transition states for cyclopropanation by concerted mechanisms were explored, but could not be found. Therefore, the transition state was searched using Reaction plus Pro 2 program<sup>19</sup> at the CPCM(CH<sub>2</sub>Cl<sub>2</sub>)/B97D3/SDD level. Exploration using a model complex with the phosphine ligand changed from PPh<sub>3</sub> to PH<sub>3</sub> revealed a two-step cyclopropanation mechanism (Figure S4).



Figure S4. Transition states search of cyclopropanation.

According to the result, the transition states of cyclopropanation in real complexes having PPh<sub>3</sub> ligand were calculated at the CPCM(CH<sub>2</sub>Cl<sub>2</sub>)/ $\omega$ B97XD/6-31+G(d) with Def2TZVP(Au). The mechanistic pathway from **D** to the Au-coordinated product (**3---Au**) was connected using the IRC calculations (Figure S5).



**Figure S5.** DFT calculations on the mechanism of gold(I)-mediated cyclopropanation of styrene (2a) with 1-phenyl-3-(tributylstannyl)propargyl acetates (1a). The geometric features of key transition structures leading to *syn*-vinylidenecyclopropane (*syn*-**3aa**) are shown.

The styrene (**2a**) attacks to C $\alpha$  carbon of the gold(I)-stabilized propargyl cation species **D** to produce carbonium intermediate **F** (1<sup>st</sup> step). From the direction of the styrene attack, the reaction branches into two channels (channel-a and channel-b), giving **F**<sup>a</sup> or **F**<sup>b</sup> through transition states **TS**<sup>C-C1-a</sup> or **TS**<sup>C-C1-b</sup>, respectively. The next carbon-carbon bond formation (2<sup>nd</sup> step) gives cyclopropane products **3**---**Au**<sup>a</sup> through **TS**<sup>C-C2-a</sup> (channel-a) or **3**---**Au**<sup>b</sup> through **TS**<sup>C-C2-b</sup> (channel-b). The activation free energies of 1<sup>st</sup> step are 10.0 kcal mol<sup>-1</sup> (**2a**+**D**→**TS**<sup>C-C1-b</sup>), and those of 2<sup>nd</sup> step are 1.5 kcal mol<sup>-1</sup> (**F**<sup>a</sup>→**TS**<sup>C-C2-a</sup>) or 4.1 kcal mol<sup>-1</sup> (**F**<sup>b</sup>→**TS**<sup>C-C2-b</sup>). The irreversible reactions from **F** to **Ini** do not occur due to significantly higher activation free energies (15.7 for **F**<sup>a</sup>→**TS**<sup>C-C1-a</sup> or 13.2 kcal mol<sup>-1</sup> for **F**<sup>b</sup>→**TS**<sup>C-C1-b</sup>). Although there is a possibility of equilibrium between **F**<sup>a</sup> and **F**<sup>b</sup> through TS<sup>rot</sup>, higher activation free energies (10.1 or 7.8 kcal mol<sup>-1</sup>) than the energies of 2<sup>nd</sup> step make this equilibrium impossible. Therefore, the reaction proceeds straightforwardly without branching along the way. From these energies relationship, the 1<sup>st</sup> step step step in both channels are almost the same (10.0 vs. 9.8 kcal mol<sup>-1</sup>), either route can proceed and give *syn*-**3aa**.

## Cartesian coordinates and energies of optimized structures

All structures were optimized at the CPCM( $CH_2Cl_2$ )/ $\omega$ B97XD/6-31+G(d) with Def2TZVP(Au) level, except for *syn*- and *anti*-**3ac**, which were optimized at the SMD(CHCl<sub>3</sub>)/B97D3/6-311+G(2d,p) level.

#### Styrene (2a)

E(RwB97XD) = -309.550007941

Thermal correction to Gibbs Free Energy= 0.103040 Sum of electronic and thermal Free Energies= -309.447025

| 1  | 6 | 0 | -0. 405706 | -1. 280450 | -0. 000010 |
|----|---|---|------------|------------|------------|
| 2  | 6 | 0 | 0.511936   | -0. 220663 | 0.000112   |
| 3  | 6 | 0 | 0.010334   | 1.090146   | 0.000190   |
| 4  | 6 | 0 | -1.360327  | 1. 328202  | 0.000062   |
| 5  | 6 | 0 | -2. 262300 | 0. 262242  | -0. 000112 |
| 6  | 6 | 0 | -1.779282  | -1.044695  | -0.000129  |
| 7  | 1 | 0 | -0. 037263 | -2. 303836 | -0. 000020 |
| 8  | 1 | 0 | 0.691718   | 1.935996   | 0.000383   |
| 9  | 1 | 0 | -1.727446  | 2.350730   | 0.000120   |
| 10 | 1 | 0 | -3. 331875 | 0. 451485  | -0. 000198 |
| 11 | 1 | 0 | -2. 470482 | -1.882754  | -0. 000244 |
| 12 | 6 | 0 | 1.956178   | -0. 532039 | 0.000220   |
| 13 | 1 | 0 | 2. 191142  | -1.596371  | 0.000751   |
| 14 | 6 | 0 | 2.971834   | 0.337796   | -0.000294  |
| 15 | 1 | 0 | 2.829108   | 1. 415449  | -0. 000883 |

#### D

E(RwB97XD) = -1518.11994555 Thermal correction to Gibbs Free Energy= 0.335866 Sum of electronic and thermal Free Energies= -1517.784080

| 1  | 6  | 0 | 8. 431250  | -0. 096553 | -0. 029954 |
|----|----|---|------------|------------|------------|
| 2  | 6  | 0 | 7.373404   | -0. 987797 | 0.018134   |
| 3  | 6  | 0 | 6.041826   | -0. 506137 | 0.004212   |
| 4  | 6  | 0 | 5.797468   | 0.888200   | -0. 058826 |
| 5  | 6  | 0 | 6.860736   | 1.768873   | -0. 106386 |
| 6  | 6  | 0 | 8.172996   | 1.276425   | -0. 091952 |
| 7  | 1  | 0 | 9.453247   | -0. 459128 | -0. 019691 |
| 8  | 1  | 0 | 7.555260   | -2. 057357 | 0.066539   |
| 9  | 1  | 0 | 4.774402   | 1.251804   | -0. 069183 |
| 10 | 1  | 0 | 6.682992   | 2.837636   | -0. 154770 |
| 11 | 1  | 0 | 9.004056   | 1.974133   | -0. 129605 |
| 12 | 6  | 0 | 4.979794   | -1. 445362 | 0.054299   |
| 13 | 1  | 0 | 5. 248118  | -2. 501543 | 0.101902   |
| 14 | 6  | 0 | 3.646714   | -1.140919  | 0.047803   |
| 15 | 6  | 0 | 2. 433824  | -0. 884504 | 0.040679   |
| 16 | 79 | 0 | 0.491038   | -0. 457130 | 0. 028137  |
| 17 | 15 | 0 | -1.803289  | 0. 038682  | 0.012243   |
| 18 | 6  | 0 | -2. 190179 | 1.624801   | -0. 800313 |
| 19 | 6  | 0 | -3. 166155 | 2, 490253  | -0. 297039 |
| 20 | 6  | 0 | -1.511092  | 1.954545   | -1.980008  |
| 21 | 6  | 0 | -3.461128  | 3.674432   | -0.971319  |
| 22 | 1  | 0 | -3. 697865 | 2. 247033  | 0.618250   |
| 23 | 6  | 0 | -1.813248  | 3, 134581  | -2.653508  |
| 24 | 1  | 0 | -0.746300  | 1. 290488  | -2.375749  |
| 25 | 6  | 0 | -2. 788026 | 3, 996170  | -2. 148646 |
| 26 | 1  | 0 | -4.218265  | 4, 344050  | -0. 574767 |
| 27 | 1  | 0 | -1. 283881 | 3. 383822  | -3.568054  |
| 28 | 1  | 0 | -3.019340  | 4, 919390  | -2.671533  |
| 29 | 6  | 0 | -2.511706  | 0.157840   | 1. 688773  |
| 30 | 6  | 0 | -3, 765741 | -0.377628  | 1, 996809  |
| 31 | 6  | 0 | -1.784532  | 0.836233   | 2.675325   |
| 32 | 6  | 0 | -4. 288382 | -0.232419  | 3. 281313  |
| 33 | 1  | 0 | -4.338076  | -0.908245  | 1, 241594  |
| 34 | 6  | 0 | -2.313001  | 0.984533   | 3.954318   |
| 35 | 1  | 0 | -0.805880  | 1.251804   | 2.447116   |
| 36 | 6  | 0 | -3.565235  | 0.448848   | 4, 258629  |
| 37 | 1  | 0 | -5. 261796 | -0.652564  | 3, 515430  |
| 38 | 1  | 0 | -1.745194  | 1.512558   | 4, 714293  |
| 39 | 1  | 0 | -3.974456  | 0.559969   | 5. 258331  |
| 40 | 6  | 0 | -2 799370  | -1 216627  | -0 857798  |
| 41 | 6  | Ő | -3. 885018 | -0.862449  | -1.664517  |
| 42 | 6  | 0 | -2 482238  | -2 568350  | -0 674161  |
| 43 | 6  | õ | -4 648340  | -1 853983  | -2 279148  |
| 44 | 1  | Ő | -4 139085  | 0 182395   | -1 817305  |
| 45 |    | õ | -3 251062  | -3 555311  | -1 284344  |
| 46 | ĩ  | õ | -1. 635454 | -2. 852862 | -0.054184  |
| 47 | 6  | õ | -4 334281  | -3 198505  | -2 088441  |
| 48 | 1  | õ | -5 488766  | -1 573093  | -2 906568  |
| 49 | 1  | õ | -3 000732  | -4 601472  | -1 137145  |
| 50 | 1  | 0 | -4 930224  | -3 968709  | -2 568946  |
| 50 |    | 0 | 7. 300224  | 5. 500705  | 2.000040   |

Е

E(RwB97XD) = -1827.68942779 Thermal correction to Gibbs Free Energy= 0.459016 Sum of electronic and thermal Free Energies= -1827.230412

| 1  | 6      | 0 | 7. 755381             | 1.150834   | 0.065096   |
|----|--------|---|-----------------------|------------|------------|
| 2  | 6      | 0 | 6.784028              | 0.980354   | -0.906960  |
| 3  | 6      | 0 | 5. 417299             | 1.100949   | -0. 567541 |
| 4  | 6      | 0 | 5 046620              | 1 402549   | 0 763768   |
| 5  | 6      | Ô | 6 023903              | 1 569982   | 1 727887   |
| 6  | 6      | 0 | 0.020300              | 1 442002   | 1 270515   |
| 7  | 0      | 0 | 7.374067              | 1.442003   | 1.3/0010   |
| /  | 1      | 0 | 8.805733              | 1.05/533   | -0. 188824 |
| 8  | 1      | 0 | 7.062868              | 0. /45034  | -1.930089  |
| 9  | 1      | 0 | 3. 994871             | 1. 496073  | 1.018015   |
| 10 | 1      | 0 | 5.746842              | 1.798998   | 2.751350   |
| 11 | 1      | 0 | 8. 137101             | 1.574564   | 2.139649   |
| 12 | 6      | 0 | 4. 437777             | 0.879695   | -1.577313  |
| 13 | 1      | 0 | 4 792234              | 0 647960   | -2 581528  |
| 14 | 6      | Ô | 3 089112              | 0 939075   | -1 376312  |
| 15 | 6      | õ | 1 072200              | 0.007025   | _1 120060  |
| 16 | 70     | 0 | 0.040601              | 0.007333   | 0 660005   |
| 10 | /9     | 0 | -0.042031             | 0.052692   | -0.009000  |
| 17 | 15     | 0 | -2.258459             | 0.242903   | -0.024118  |
| 18 | 6      | 0 | -3. 1003/5            | -1.022439  | -1.029850  |
| 19 | 6      | 0 | -4. 497462            | -1.110722  | -1.050563  |
| 20 | 6      | 0 | -2. 338141            | -1.941471  | -1.759186  |
| 21 | 6      | 0 | -5. 121739            | -2.114603  | -1.786010  |
| 22 | 1      | 0 | -5. 101609            | -0. 398118 | -0. 495747 |
| 23 | 6      | 0 | -2.966017             | -2.946891  | -2.491562  |
| 24 | 1      | 0 | -1 253569             | -1 872969  | -1 761714  |
| 25 | 6      | Ô | -4 357071             | -3 034751  | -2 504183  |
| 26 | 1      | 0 | -6 205574             | -2 177207  | _1 709025  |
| 20 | 1      | 0 | -0.200074             | -2. 177207 | -1. /90933 |
| 21 | 1      | 0 | -2.36/4/0             | -3. 050052 | -3.055170  |
| 28 | 1      | 0 | -4.846595             | -3.816132  | -3.077782  |
| 29 | 6      | 0 | -3. 343664            | 1. /0/449  | -0.065408  |
| 30 | 6      | 0 | -4. 319316            | 1.928335   | 0.911748   |
| 31 | 6      | 0 | -3. 215109            | 2.603369   | -1.133848  |
| 32 | 6      | 0 | -5.160839             | 3.035488   | 0.817898   |
| 33 | 1      | 0 | -4. 425557            | 1.242842   | 1.747753   |
| 34 | 6      | 0 | -4.061435             | 3, 704859  | -1.226723  |
| 35 | 1      | 0 | -2.454076             | 2.443210   | -1.893736  |
| 36 | 6      | 0 | -5 034172             | 3 922168   | -0 250202  |
| 37 | 1      | Ô | -5 915274             | 3 202810   | 1 580602   |
| 20 | 1      | 0 | -2 056001             | 1 206222   | -2 057227  |
| 20 | 1      | 0 | 5. 500351<br>E 600104 | 4. 330332  | 2.037227   |
| 39 | 1      | 0 | -5. 090104            | 4. /04/04  | -0. 320279 |
| 40 | 6      | 0 | -2.311158             | -0. 358285 | 1.698291   |
| 41 | 6      | 0 | -2.868885             | -1.590/13  | 2.042517   |
| 42 | 6      | 0 | -1. /18622            | 0.43/110   | 2.68/863   |
| 43 | 6      | 0 | -2. 835752            | -2. 024010 | 3. 368637  |
| 44 | 1      | 0 | -3. 323346            | -2. 221667 | 1.284580   |
| 45 | 6      | 0 | -1.697732             | 0.007576   | 4.010231   |
| 46 | 1      | 0 | -1.268313             | 1.391722   | 2. 425335  |
| 47 | 6      | 0 | -2.254147             | -1.226901  | 4.351903   |
| 48 | 1      | 0 | -3.265706             | -2.986353  | 3.629242   |
| 49 | 1      | 0 | -1 239314             | 0 630300   | 4 772396   |
| 50 | 1      | Ô | -2 229407             | -1 566757  | 5 382027   |
| 50 | ſ      | 0 | 1 222006              | 2 70071    | 0. 252020  |
| 51 | 0      | 0 | 1. 332060             | -2. 769071 | -0. 352620 |
| 52 | 6      | 0 | 0.404919              | -2.693231  | 0.682612   |
| 53 | 6      | 0 | 0. /55936             | -2.0/282/  | 1.880197   |
| 54 | 6      | 0 | 2.039378              | -1.5461/2  | 2.032036   |
| 55 | 6      | 0 | 2.967864              | -1.651749  | 1.001178   |
| 56 | 6      | 0 | 2.632733              | -2. 283307 | -0. 206747 |
| 57 | 1      | 0 | 1.049182              | -3. 269496 | -1.286911  |
| 58 | 1      | 0 | -0. 596113            | -3.095774  | 0.552534   |
| 59 | 1      | 0 | 0.030404              | -1.988619  | 2.683928   |
| 60 | 1      | 0 | 2, 316710             | -1.048010  | 2,956789   |
| 61 | 1      | õ | 3 960962              | -1 233036  | 1 138823   |
| 62 | 6      | n | 3 586044              | -2 430087  | -1 310477  |
| 63 | 1      | 0 | 3 1/610/              | _9 799511  | -9 960609  |
| 64 | I<br>C | 0 | 3. 143104             | -2. 132011 | -2. 200093 |
| 04 | 0      | U | 4. 910998             | -2. 230200 | -1. 208088 |
| 00 | 1      | U | 5.4306/2              | -1.9094/4  | -0. 354415 |
| 00 | 1      | 0 | 5. 526051             | -2.3/0980  | -2. 153513 |

# Ini<sup>a</sup>

E(RwB97XD) = -1827.68876550

Thermal correction to Gibbs Free Energy= 0.459059 Sum of electronic and thermal Free Energies= -1827.229706

| 1 | 6 | 0 | -7.878946 | -0.960759 | 0.265723 |
|---|---|---|-----------|-----------|----------|

| 2   | 6      | 0  | -6. 880546 | -1. 420899 | -0. 576156 |
|-----|--------|----|------------|------------|------------|
| 2   | 6      | 0  | -5 522448  | -1 267452  | -0 210150  |
|     | 0      | 0  | 5. 522440  | 1.207432   | 0.210133   |
| 4   | 6      | 0  | -5. 190020 | -0.652144  | 1.021600   |
| 5   | 6      | 0  | -6 194029  | -0 197026  | 1 854619   |
|     | 0      |    | 0.154025   | 0. 157020  | 1.004013   |
| 6   | 6      | 0  | -7.534438  | -0.350347  | 1.4/5624   |
| 7   | 1      | 0  | -8 921678  | -1 072717  | -0 010525  |
| ,   |        | ő  | 7 101054   | 1.005750   | 1 500000   |
| 8   | 1      | 0  | -7.131054  | -1.895/58  | -1. 520209 |
| 9   | 1      | 0  | -4. 145661 | -0. 543523 | 1.298982   |
| 10  | 1      | 0  | E 047700   | 0 075016   | 0 700250   |
| 10  | I      | 0  | -0.947702  | 0.275010   | Z. 199332  |
| 11  | 1      | 0  | -8. 319121 | 0.009364   | 2. 134217  |
| 12  | 6      | 0  | -1 516200  | -1 72/30/  | -1 103002  |
| 12  | 0      | 0  | 4.010233   | 1.724094   | 1. 100332  |
| 13  | 1      | 0  | -4.8422/1  | -2.202665  | -2.028108  |
| 14  | 6      | 0  | -3 174632  | -1 589226  | -0 896275  |
| 1.5 | 0      | ő  | 1.000010   | 1.0000220  | 0.000044   |
| 15  | 0      | 0  | -1.900213  | -1.390268  | -0. 099044 |
| 16  | 79     | 0  | -0. 075802 | -0. 919177 | -0. 310900 |
| 17  | 15     | 0  | 2 120100   | _0 272440  | 0 157006   |
| 17  | 10     | 0  | 2.129100   | -0. 273449 | 0. 157690  |
| 18  | 6      | 0  | 2. 420860  | 0. 151849  | 1.905112   |
| 10  | 6      | 0  | 3 711677   | 0 132920   | 2 446217   |
| 10  | 0      |    | 0.711077   | 0. 102320  | 2. 440217  |
| 20  | 6      | 0  | 1.341142   | 0.5489/2   | 2. /01268  |
| 21  | 6      | 0  | 3 917883   | 0 516206   | 3 768928   |
| 0.0 | 1      | -  | 4 557445   | 0 100714   | 1 040000   |
| 22  | 1      | 0  | 4. 55/445  | -0.180714  | 1.840660   |
| 23  | 6      | 0  | 1.552011   | 0.936943   | 4. 022571  |
| 24  | 1      | 0  | 0 334927   | 0 561008   | 2 201/118  |
| 05  | 1      |    | 0.004527   | 0.001000   | 2.251410   |
| 25  | 6      | 0  | 2.839614   | 0.921237   | 4. 556627  |
| 26  | 1      | 0  | 4.920876   | 0.497959   | 4. 184189  |
| 27  | 1      | 0  | 0 700160   | 1 246078   | 1 633364   |
| 21  |        | 0  | 0.709100   | 1.240070   | 4.000004   |
| 28  | 1      | 0  | 3.003505   | 1.219511   | 5.58/869   |
| 29  | 6      | 0  | 3. 386162  | -1.522206  | -0.270541  |
| 20  | 6      | 0  | 1 620002   | -1 162000  | _0 707127  |
| 50  | 0      | 0  | 4. 000032  | 1.102003   | 0. 737137  |
| 31  | 6      | 0  | 3. 101309  | -2.8/0319  | -0. 021562 |
| 32  | 6      | 0  | 5 582260   | -2 143526  | -1 069480  |
| 22  | 1      | 0  | 1 061001   | _0 110074  | -0.000255  |
| 33  |        | 0  | 4.001004   | -0.119974  | -0. 999200 |
| 34  | 6      | 0  | 4.056637   | -3.846915  | -0. 289658 |
| 35  | 1      | 0  | 2 133525   | -3 160658  | 0 380360   |
| 20  | ,<br>c | ő  | E 007040   | 0. 404010  | 0.014000   |
| 30  | 0      | 0  | 5. 297240  | -3. 404213 | -0.014932  |
| 37  | 1      | 0  | 6. 545915  | -1.858178  | -1. 480423 |
| 38  | 1      | 0  | 3 829583   | -4 890634  | -0.095017  |
| 20  |        | ő  | 0.020000   | 4 047100   | 1 0000000  |
| 39  | 1      | 0  | 6. 039649  | -4. 24/100 | -1.029350  |
| 40  | 6      | 0  | 2. 563197  | 1.215622   | -0. 802981 |
| 41  | 6      | 0  | 2 936054   | 2 412912   | -0 190306  |
| 40  | 0      | ő  | 2.000001   | 1 150000   | 0.100000   |
| 4Z  | 0      | 0  | Z. 443004  | 1.150293   | -2.19/699  |
| 43  | 6      | 0  | 3. 177109  | 3. 547005  | -0.966459  |
| 11  | 1      | 0  | 3 029866   | 2 472776   | 0 889894   |
|     | 1      |    | 0.020000   | 2. 172770  | 0.000001   |
| 45  | 6      | 0  | 2. 696349  | 2. 285444  | -2.969134  |
| 46  | 1      | 0  | 2. 145237  | 0. 229270  | -2. 682322 |
| 47  | 6      | 0  | 3 056528   | 3 485674   | -2 352754  |
|     |        |    | 0.000020   | 0.400074   | 2.002704   |
| 48  | 1      | 0  | 3.45/408   | 4.4//989   | -0.483196  |
| 49  | 1      | 0  | 2.601172   | 2. 232748  | -4.049495  |
| 50  | 1      | 0  | 2 241602   | 1 270200   | -2 054415  |
| 50  |        | 0  | 3. 241093  | 4. 370300  | -2. 904410 |
| 51  | 6      | 0  | -2. 992036 | 1.946126   | -0. 190447 |
| 52  | 6      | 0  | -2 810933  | 2 231871   | 1 161139   |
| 50  | ĉ      | ő  | 1 570150   | 0.000004   | 1 017000   |
| 55  | 0      | 0  | -1.570156  | 2.090234   | 1.01/239   |
| 54  | 6      | 0  | -0. 531441 | 2.869402   | 0. 708948  |
| 55  | 6      | 0  | -0 713220  | 2 580991   | -0 639758  |
| 50  | ĉ      | ő  | 1 044000   | 0.000000   | 1 100000   |
| 50  | 0      | 0  | -1.944909  | 2.099232   | -1.109000  |
| 57  | 1      | 0  | -3. 957577 | 1. 586424  | -0. 539865 |
| 58  | 1      | 0  | -3.634952  | 2.100323   | 1.857292   |
| 50  |        | ň  | _1 /00007  | 2 010007   | 2 670200   |
| 29  |        | U  | -1.428UZ/  | 2. 912331  | 2.070308   |
| 60  | 1      | 0  | 0. 432239  | 3. 233901  | 1.053575   |
| 61  | 1      | 0  | 0.112525   | 2,732429   | -1.329717  |
| 60  |        | ő  | 0 171604   | 1 706775   | 0 510007   |
| 02  | O      | U  | -2.1/1024  | 1. /20//5  | -2.01922/  |
| 63  | 1      | 0  | -3. 216296 | 1.592001   | -2.799359  |
| 64  | 6      | 0  | -1, 228733 | 1.511305   | -3.442743  |
| 65  | 1      | ů. | _0 167252  | 1 507605   | -2 224105  |
| 00  |        | U  | -0.10/252  | 1. 09/095  | -3. 224100 |
| 00  |        | 0  | -1 /07660  | 1 2200220  | -4 466206  |

# TS<sup>C-C1-a</sup>

E(RwB97XD) = -1827.67698582

Thermal correction to Gibbs Free Energy= 0.461780 Sum of electronic and thermal Free Energies= -1827.215206

| 1  | 6  | 0 | 7.713370   | 1. 426561  | 0. 623542  |
|----|----|---|------------|------------|------------|
| 2  | 6  | 0 | 6.802595   | 1.627097   | -0. 407503 |
| 3  | 6  | 0 | 5. 493183  | 1. 127270  | -0. 302449 |
| 4  | 6  | 0 | 5. 110603  | 0. 429640  | 0.858614   |
| 5  | 6  | 0 | 6. 023151  | 0.232910   | 1.884972   |
| 6  | 6  | 0 | 7. 325168  | 0.729373   | 1.768434   |
| 7  | 1  | 0 | 8. 723917  | 1.812867   | 0.536415   |
| 8  | 1  | 0 | 7.100924   | 2.168989   | -1. 300773 |
| 9  | 1  | 0 | 4. 095079  | 0.054300   | 0.949832   |
| 10 | 1  | 0 | 5. 724191  | -0. 304731 | 2.779338   |
| 11 | 1  | 0 | 8.036563   | 0.573943   | 2.573934   |
| 12 | 6  | 0 | 4. 569771  | 1.334615   | -1. 404386 |
| 13 | 1  | 0 | 4. 931740  | 1.904768   | -2. 259826 |
| 14 | 6  | 0 | 3. 315460  | 0.876258   | -1. 433863 |
| 15 | 6  | 0 | 2. 133453  | 0.417476   | -1.417654  |
| 16 | 79 | 0 | 0.214001   | 0. 425976  | -0. 779072 |
| 17 | 15 | 0 | -1.949308  | 0. 473447  | 0. 100362  |
| 18 | 6  | 0 | -2. 481305 | 2.141903   | 0.611066   |

| 19       | 6      | 0      | -3. 207232 | 2.357725   | 1.786286   |
|----------|--------|--------|------------|------------|------------|
| 20       | 6      | 0      | -2.179743  | 3, 222471  | -0.227214  |
| 21       | 6      | 0      | -3. 629665 | 3. 644470  | 2.117564   |
| 22       | 1      | 0      | -3.444643  | 1.528085   | 2.446011   |
| 23       | 6      | 0      | -2 608801  | 4 504524   | 0 103987   |
| 24       | 1      | Ő      | -1 609262  | 3 064591   | -1 139512  |
| 25       | 6      | Ő      | -3 333091  | 4 716630   | 1 277817   |
| 26       | ş<br>1 | ů<br>0 | -4 191270  | 3 806389   | 3 032645   |
| 20       | 1      | 0      | -2 372041  | 5 338001   | -0 550285  |
| 29       | 1      | 0      | -3 662351  | 5 718031   | 1 538748   |
| 20       | 6      | 0      | -2 002331  | -0 562460  | 1.506624   |
| 29       | 6      | 0      | -2.007222  | -0. 302400 | 1. 390024  |
| 21       | 0      | 0      | -3. 130030 | -1.474020  | 1. ///240  |
| 20       | 6      | 0      | -1.100914  | -0. 421924 | 2. 000000  |
| 3Z<br>22 | 0      | 0      | -3. 196458 | -2. 233802 | 2. 944858  |
| 33       | I      | 0      | -3.890982  | -1.599744  | 1.012951   |
| 34       | 6      | 0      | -1. 182242 | -1.1/64/1  | 3. /546/5  |
| 35       | 1      | 0      | -0.284977  | 0.2/4539   | 2.450820   |
| 36       | 6      | 0      | -2. 226684 | -2.0844/2  | 3. 933995  |
| 37       | 1      | 0      | -4.00/543  | -2.943505  | 3.0//869   |
| 38       | 1      | 0      | -0. 419536 | -1.062672  | 4. 519021  |
| 39       | 1      | 0      | -2. 279712 | -2. 678698 | 4.841462   |
| 40       | 6      | 0      | -3. 239119 | -0. 120673 | -1.042732  |
| 41       | 6      | 0      | -4. 554253 | 0.350316   | -0. 962891 |
| 42       | 6      | 0      | -2. 910592 | -1.098599  | -1.988353  |
| 43       | 6      | 0      | -5. 530066 | -0. 159295 | -1.816839  |
| 44       | 1      | 0      | -4. 821594 | 1. 114414  | -0. 238426 |
| 45       | 6      | 0      | -3. 889221 | -1.609463  | -2. 837216 |
| 46       | 1      | 0      | -1.889242  | -1.460229  | -2. 066459 |
| 47       | 6      | 0      | -5. 199794 | -1.140441  | -2. 751424 |
| 48       | 1      | 0      | -6. 548348 | 0.211777   | -1.751446  |
| 49       | 1      | 0      | -3. 626010 | -2.367837  | -3. 568294 |
| 50       | 1      | 0      | -5.962175  | -1.534999  | -3. 416503 |
| 51       | 6      | 0      | 2.646318   | -2.092271  | -1.535014  |
| 52       | 6      | 0      | 2.369384   | -1.476773  | -2.717329  |
| 53       | 1      | 0      | 3, 172266  | -1.118786  | -3.351202  |
| 54       | 1      | 0      | 1.371547   | -1.464461  | -3. 145304 |
| 55       | 6      | 0      | 1.664022   | -2.684744  | -0.629887  |
| 56       | 6      | 0      | 1 993528   | -2 824437  | 0 726860   |
| 57       | 6      | Ő      | 0 377694   | -3 053487  | -1 056780  |
| 58       | 6      | 0      | 1 050622   | -3 285508  | 1 640852   |
| 59       | 1      | Ő      | 2 988641   | -2 548512  | 1 066814   |
| 60       | 6      | ů<br>0 | -0 561175  | -3 517953  | -0 143702  |
| 61       | 1      | 0      | 0 114471   | -2 985571  | -2 108396  |
| 62       | 6      | ñ      | -0 220125  | -3 626803  | 1 207710   |
| 63       | 1      | 0      | 1 310253   | -3 360301  | 2 601754   |
| 64       | 1      | 0      | -1 556020  | -3 702054  | _0 /82620  |
| 65       | 1      | 0      | -0.070522  | -2 071260  | 1 021070   |
| 66       | 1      | 0      | -0.9/0033  | -3. 9/1200 | 1.9219/9   |
| 00       | 1      | U      | 3.010100   | -2. 090044 | -1.190009  |

#### F<sup>a</sup>

E(RwB97XD) = -1827.70628257 Thermal correction to Gibbs Free Energy= 0.466097 Sum of electronic and thermal Free Energies= -1827.240186

| 1  | 6  | 0 | 6.048066   | 2. 294808  | 0.908718   |
|----|----|---|------------|------------|------------|
| 2  | 6  | 0 | 5. 531391  | 2.069600   | -0. 365873 |
| 3  | 6  | 0 | 4. 335412  | 1.360006   | -0. 529656 |
| 4  | 6  | 0 | 3.657616   | 0.897648   | 0.608009   |
| 5  | 6  | 0 | 4. 177928  | 1. 119133  | 1.878560   |
| 6  | 6  | 0 | 5. 376801  | 1.817232   | 2.034260   |
| 7  | 1  | 0 | 6.977871   | 2.844578   | 1.021642   |
| 8  | 1  | 0 | 6.059986   | 2.442429   | -1. 239341 |
| 9  | 1  | 0 | 2.714410   | 0.367932   | 0.498506   |
| 10 | 1  | 0 | 3.643478   | 0.749382   | 2.749132   |
| 11 | 1  | 0 | 5. 781846  | 1.992201   | 3. 026496  |
| 12 | 6  | 0 | 3.802064   | 1.119342   | -1.886668  |
| 13 | 1  | 0 | 4. 195958  | 1.708176   | -2.713600  |
| 14 | 6  | 0 | 2.872109   | 0. 229841  | -2. 134755 |
| 15 | 6  | 0 | 1.866386   | -0. 626805 | -2. 244854 |
| 16 | 79 | 0 | 0.071868   | -0.064048  | -1. 330855 |
| 17 | 15 | 0 | -1.748268  | 0. 431339  | 0.031421   |
| 18 | 6  | 0 | -3. 274539 | -0. 488318 | -0. 353332 |
| 19 | 6  | 0 | -4. 540809 | 0.051352   | -0. 106246 |
| 20 | 6  | 0 | -3. 163591 | -1. 785352 | -0.868962  |
| 21 | 6  | 0 | -5. 683333 | -0. 702414 | -0.369305  |
| 22 | 1  | 0 | -4. 641820 | 1.058129   | 0. 288749  |
| 23 | 6  | 0 | -4. 306446 | -2. 538585 | -1. 123558 |
| 24 | 1  | 0 | -2. 183416 | -2. 208153 | -1.073787  |
| 25 | 6  | 0 | -5.567658  | -1.996861  | -0. 874326 |
| 26 | 1  | 0 | -6.663704  | -0. 276344 | -0. 178975 |
| 27 | 1  | 0 | -4. 212029 | -3. 544033 | -1. 522425 |
| 28 | 1  | 0 | -6. 459596 | -2. 581587 | -1.078742  |
| 29 | 6  | 0 | -2. 223456 | 2. 189041  | 0.097937   |
| 30 | 6  | 0 | -2. 629805 | 2.799141   | 1.289084   |
| 31 | 6  | 0 | -2. 207673 | 2. 928233  | -1.090909  |
| 32 | 6  | 0 | -3. 020313 | 4. 137137  | 1.288012   |
| 33 | 1  | 0 | -2. 641239 | 2. 236127  | 2. 218171  |
| 34 | 6  | 0 | -2. 605104 | 4. 262664  | -1.089138  |
| 35 | 1  | 0 | -1.882468  | 2. 463131  | -2. 018445 |

| 36 | 6 | 0 | -3. 010491 | 4.868075   | 0.100725   |
|----|---|---|------------|------------|------------|
| 37 | 1 | 0 | -3. 332527 | 4.606776   | 2.215893   |
| 38 | 1 | 0 | -2. 590788 | 4.830980   | -2.014163  |
| 39 | 1 | 0 | -3.314079  | 5.910736   | 0. 102865  |
| 40 | 6 | 0 | -1.318267  | -0.026129  | 1.748175   |
| 41 | 6 | 0 | -2. 130348 | -0. 852794 | 2. 527258  |
| 42 | 6 | 0 | -0. 116357 | 0.462319   | 2. 277881  |
| 43 | 6 | 0 | -1.745293  | -1.184699  | 3.826411   |
| 44 | 1 | 0 | -3.062012  | -1.243201  | 2. 128626  |
| 45 | 6 | 0 | 0.260214   | 0.135635   | 3. 575944  |
| 46 | 1 | 0 | 0. 526802  | 1. 101401  | 1.676895   |
| 47 | 6 | 0 | -0. 553662 | -0. 691079 | 4. 351877  |
| 48 | 1 | 0 | -2. 380149 | -1.830650  | 4. 425549  |
| 49 | 1 | 0 | 1.191608   | 0. 520006  | 3.980591   |
| 50 | 1 | 0 | -0. 255317 | -0. 952757 | 5.362809   |
| 51 | 6 | 0 | 2. 724587  | -2. 424925 | 0.938942   |
| 52 | 6 | 0 | 2.091084   | -2. 736227 | 2. 134787  |
| 53 | 6 | 0 | 0. 788203  | -3. 235054 | 2. 120320  |
| 54 | 6 | 0 | 0. 125991  | -3. 443809 | 0.909386   |
| 55 | 6 | 0 | 0.755949   | -3. 134842 | -0. 288462 |
| 56 | 6 | 0 | 2.058280   | -2. 602660 | -0. 285733 |
| 57 | 1 | 0 | 3. 732580  | -2. 019598 | 0.947008   |
| 58 | 1 | 0 | 2.605264   | -2. 579468 | 3.077574   |
| 59 | 1 | 0 | 0. 286029  | -3. 462088 | 3. 055402  |
| 60 | 1 | 0 | -0. 883561 | -3. 842551 | 0.902727   |
| 61 | 1 | 0 | 0. 236154  | -3. 311076 | -1. 224812 |
| 62 | 6 | 0 | 2. 720818  | -2. 170017 | -1. 502829 |
| 63 | 1 | 0 | 3. 784432  | -1.961104  | -1. 432649 |
| 64 | 6 | 0 | 2. 122378  | -2.061916  | -2. 811082 |
| 65 | 1 | 0 | 2.809068   | -2. 072222 | -3. 653020 |
| 66 | 1 | 0 | 1. 194881  | -2. 589817 | -3. 006044 |
|    |   |   |            |            |            |

# TS<sup>C-C2-a</sup>

E(RwB97XD) = -1827.70399082 Thermal correction to Gibbs Free Energy= 0.466175 Sum of electronic and thermal Free Energies= -1827.237816

| 1  | 6  | 0 | 5.723250   | 2.878241   | 0.847151   |
|----|----|---|------------|------------|------------|
| 2  | 6  | 0 | 5.157922   | 2. 627381  | -0. 401463 |
| 3  | 6  | 0 | 4.084125   | 1.737138   | -0. 526059 |
| 4  | 6  | 0 | 3.575893   | 1.116314   | 0.624621   |
| 5  | 6  | 0 | 4. 144151  | 1.366979   | 1.869425   |
| 6  | 6  | 0 | 5. 221612  | 2.246967   | 1.985316   |
| 7  | 1  | 0 | 6.557038   | 3. 569228  | 0.930103   |
| 8  | 1  | 0 | 5. 552472  | 3. 122063  | -1.285170  |
| 9  | 1  | 0 | 2.723765   | 0.444794   | 0.549038   |
| 10 | 1  | 0 | 3.739827   | 0.878743   | 2.751641   |
| 11 | 1  | 0 | 5.663090   | 2. 443830  | 2.957735   |
| 12 | 6  | 0 | 3. 494605  | 1.481490   | -1.856817  |
| 13 | 1  | 0 | 3.714891   | 2.174390   | -2.667571  |
| 14 | 6  | 0 | 2.708576   | 0.463122   | -2. 102658 |
| 15 | 6  | 0 | 1.841224   | -0. 537761 | -2. 196644 |
| 16 | 79 | 0 | 0.038941   | -0. 202923 | -1.193975  |
| 17 | 15 | 0 | -1.832922  | 0. 333230  | 0.082647   |
| 18 | 6  | 0 | -3. 307491 | 0.793778   | -0. 884265 |
| 19 | 6  | 0 | -4. 182675 | 1.800321   | -0. 464548 |
| 20 | 6  | 0 | -3.577925  | 0.085851   | -2.061880  |
| 21 | 6  | 0 | -5. 320455 | 2.091679   | -1.215326  |
| 22 | 1  | 0 | -3, 981431 | 2.360755   | 0.443771   |
| 23 | 6  | 0 | -4.719397  | 0.374412   | -2.804898  |
| 24 | 1  | 0 | -2.896863  | -0.691549  | -2.400112  |
| 25 | 6  | 0 | -5, 590992 | 1.378651   | -2.382360  |
| 26 | 1  | 0 | -5, 994533 | 2.876798   | -0.886433  |
| 27 | 1  | 0 | -4.924105  | -0.179305  | -3.716146  |
| 28 | 1  | 0 | -6. 477883 | 1.608226   | -2.965460  |
| 29 | 6  | 0 | -1 493783  | 1 738855   | 1 197277   |
| 30 | 6  | 0 | -2.080110  | 1.826504   | 2.464549   |
| 31 | 6  | 0 | -0.638768  | 2.757761   | 0.759054   |
| 32 | 6  | 0 | -1.815655  | 2,924192   | 3. 281430  |
| 33 | 1  | 0 | -2.740074  | 1.040178   | 2.820146   |
| 34 | 6  | 0 | -0.378990  | 3.854448   | 1.576779   |
| 35 | 1  | 0 | -0.168685  | 2.695150   | -0.219510  |
| 36 | 6  | 0 | -0.966684  | 3.938047   | 2.839039   |
| 37 | 1  | 0 | -2. 272588 | 2.984934   | 4. 264566  |
| 38 | 1  | 0 | 0.287938   | 4, 638298  | 1.230721   |
| 39 | 1  | 0 | -0, 758928 | 4, 790255  | 3. 479257  |
| 40 | 6  | 0 | -2.365778  | -1.019140  | 1.186330   |
| 41 | 6  | 0 | -3. 702508 | -1.410709  | 1.296056   |
| 42 | 6  | 0 | -1.389257  | -1.658425  | 1.960523   |
| 43 | 6  | 0 | -4.059339  | -2. 432123 | 2.176658   |
| 44 | 1  | 0 | -4.469022  | -0.924235  | 0.700028   |
| 45 | 6  | 0 | -1.750673  | -2.669842  | 2.844335   |
| 46 | 1  | 0 | -0. 344500 | -1.368264  | 1.873678   |
| 47 | 6  | 0 | -3. 086632 | -3. 059183 | 2.952717   |
| 48 | 1  | 0 | -5. 099411 | -2. 733761 | 2. 255786  |
| 49 | 1  | 0 | -0. 988890 | -3, 159181 | 3, 443850  |
| 50 | 1  | Ō | -3. 366956 | -3, 852709 | 3, 639065  |
| 51 | 6  | 0 | 3. 335924  | -2. 424914 | 0.716195   |
| 52 | 6  | 0 | 2. 955909  | -3. 012112 | 1.916884   |
|    |    |   |            |            |            |

| 53 | 6 | 0 | 1. 781434 | -3. 762964 | 1.979846   |
|----|---|---|-----------|------------|------------|
| 54 | 6 | 0 | 0.988198  | -3. 927573 | 0.842801   |
| 55 | 6 | 0 | 1.362532  | -3. 339314 | -0. 357884 |
| 56 | 6 | 0 | 2. 542182 | -2. 578856 | -0. 432281 |
| 57 | 1 | 0 | 4. 247150 | -1.835099  | 0.664516   |
| 58 | 1 | 0 | 3. 572784 | -2. 886117 | 2.800906   |
| 59 | 1 | 0 | 1. 484982 | -4. 224794 | 2.917041   |
| 60 | 1 | 0 | 0.075003  | -4. 511500 | 0.895196   |
| 61 | 1 | 0 | 0.738403  | -3. 478902 | -1. 234742 |
| 62 | 6 | 0 | 2.979318  | -1.937709  | -1.663619  |
| 63 | 1 | 0 | 4. 000661 | -1.569033  | -1.680190  |
| 64 | 6 | 0 | 2.248196  | -1.868216  | -2. 903890 |
| 65 | 1 | 0 | 2.837860  | -1.714813  | -3. 803180 |
| 66 | 1 | 0 | 1.397845  | -2. 525638 | -3. 048595 |
|    |   |   |           |            |            |

**3---Au<sup>a</sup>** E(RwB97XD) = -1827.72652700 Thermal correction to Gibbs Free Energy= 0.467599 Sum of electronic and thermal Free Energies= -1827.258928

| 1        | 6      | 0 | 5.084028   | -1. 236628 | -0. 237666             |
|----------|--------|---|------------|------------|------------------------|
| 2        | 6      | 0 | 4. 184604  | -2. 264810 | -0. 513356             |
| 3        | 6      | 0 | 3. 031494  | -2. 416632 | 0. 263787              |
| 4        | 6      | 0 | 2.814453   | -1.550534  | 1.342237               |
| 5        | 6      | 0 | 3.713357   | -0. 521248 | 1.614117               |
| 6        | 6      | 0 | 4.846138   | -0. 357940 | 0.819509               |
| 7        | 1      | 0 | 5.968391   | -1. 116147 | -0. 856575             |
| 8        | 1      | 0 | 4. 366241  | -2. 939172 | -1. 345955             |
| 9        | 1      | 0 | 1.943847   | -1.698029  | 1.976292               |
| 10       | 1      | 0 | 3. 528227  | 0. 151701  | 2. 446593              |
| 11       | 1      | 0 | 5. 541986  | 0. 450468  | 1.022694               |
| 12       | 6      | 0 | 2.035373   | -3. 469044 | -0.06/014              |
| 13       | 1      | 0 | 2.3595/2   | -4.509/69  | -0.08891/              |
| 14       | 6      | 0 | 0. 771506  | -3. 229573 | -0.351453              |
| 15       | 6      | 0 | -0.515111  | -3. 228428 | -0.685/4/              |
| 10       | /9     | 0 | 0.000205   | -1.075400  | -0.440511              |
| 10       | 15     | 0 | -0.017300  | 1. 239040  | -0. 103043             |
| 10       | 6      | 0 | -0. 912404 | 2.009940   | -1.000007              |
| 20       | 6      | 0 | -0.012404  | 1 422400   | -1. 900007             |
| 20       | 6      | 0 | -2. 330978 | 1.432499   | -1.073041              |
| 21       | 1      | 0 | 0 12/702   | 2 700500   | _1 655750              |
| 22       | 6      | 0 | -3 230508  | 2 056526   | -2 531510              |
| 20       | 1      | Ő | -2 577921  | 0 461544   | -1 248695              |
| 25       | 6      | Ő | -2 920593  | 3 301240   | -3 081625              |
| 26       | 1      | 0 | -1 469550  | 4 890373   | -3 197574              |
| 27       | 1      | 0 | -4. 169602 | 1. 568248  | -2. 774270             |
| 28       | 1      | 0 | -3.619905  | 3. 784589  | -3.757254              |
| 29       | 6      | 0 | 1. 624609  | 2.007060   | -0. 308867             |
| 30       | 6      | 0 | 2.042976   | 3.015016   | 0. 564518              |
| 31       | 6      | 0 | 2.479725   | 1.564046   | -1. 324985             |
| 32       | 6      | 0 | 3.311570   | 3. 574601  | 0. 419879              |
| 33       | 1      | 0 | 1.388598   | 3.362080   | 1.358903               |
| 34       | 6      | 0 | 3.740445   | 2. 132555  | -1. 470858             |
| 35       | 1      | 0 | 2.167968   | 0.767576   | -1.996398              |
| 36       | 6      | 0 | 4. 158441  | 3. 135841  | -0. 596484             |
| 37       | 1      | 0 | 3. 635934  | 4. 353692  | 1. 103015              |
| 38       | 1      | 0 | 4. 402360  | 1.780780   | -2. 256078             |
| 39       | 1      | 0 | 5. 147753  | 3.570709   | -0. 703602             |
| 40       | 6      | 0 | -0. 654747 | 1.657508   | 1. 491516              |
| 41       | 6      | 0 | -1. /11//3 | 2.551962   | 1.669838               |
| 42       | 6      | 0 | -0.080091  | 1.029461   | 2.603388               |
| 43       | 6      | 0 | -2. 191322 | 2.813957   | 2. 953216              |
| 44       | I      | 0 | -2.1/11/2  | 3.040405   | 0.815881               |
| 45       | 6      | 0 | -0.554289  | 1. 299893  | 3.882065               |
| 40       | I<br>c | 0 | 0. 737690  | 0.320480   | 2.4/1101               |
| 47       | 0      | 0 | -1.014904  | 2. 190000  | 4.007093<br>2.005055   |
| 40       | 1      | 0 | -0.102002  | 0 000050   | 3. 000000<br>4. 720451 |
| 49<br>50 | 1      | 0 | -1 992181  | 2 305208   | 5 055225               |
| 51       | 6      | 0 | -2 464773  | -1 866555  | 1 510073               |
| 52       | 6      | 0 | -3 225942  | -0 800880  | 1 982736               |
| 52       | 6      | Ő | -4 324260  | -0 348828  | 1 250742               |
| 54       | 6      | 0 | -4 661737  | -0 974654  | 0 051982               |
| 55       | 6      | 0 | -3 891064  | -2 035075  | -0 426629              |
| 56       | 6      | 0 | -2. 781046 | -2. 482308 | 0. 292634              |
| 57       | 1      | 0 | -1.601519  | -2.207869  | 2.077172               |
| 58       | 1      | 0 | -2.949629  | -0. 310668 | 2.911960               |
| 59       | 1      | 0 | -4. 910542 | 0. 491022  | 1.612219               |
| 60       | 1      | 0 | -5. 517208 | -0. 629608 | -0. 521696             |
| 61       | 1      | 0 | -4. 149162 | -2. 507254 | -1.370748              |
| 62       | 6      | 0 | -1.898647  | -3. 576077 | -0. 241045             |
| 63       | 1      | 0 | -1.984753  | -4. 545559 | 0. 247455              |
| 64       | 6      | 0 | -1. 520646 | -3. 586108 | -1.717849              |
| 65       | 1      | 0 | -1.378847  | -4. 542246 | -2. 214153             |
| 66       | 1      | 0 | -1.921240  | -2. 792906 | -2. 343178             |

| <b>Ini<sup>b</sup></b><br>E(RwB97<br>Thermal c | XD) = -1<br>orrection | 827.68759<br>to Gibbs | 9756<br>Free Energ   | gy= 0.4582 | 289        |
|------------------------------------------------|-----------------------|-----------------------|----------------------|------------|------------|
| Sum of ele                                     | ectronic a            | and therma            | al Free Ene          | rgies= -18 | 327.229308 |
| 1                                              | 6                     | 0                     | -7. 783124           | 1. 549435  | 0. 094968  |
| 2                                              | 6                     | 0                     | -6.799556            | 1.053567   | 0.935245   |
| 3                                              | 6                     | 0                     | -5.440/53            | 1. 140393  | 0.558930   |
| 4                                              | 6                     | 0                     | -5.066310            | 1.734247   | -0.074564  |
| 6                                              | 6                     | õ                     | -7. 420456           | 2. 132297  | -1. 122756 |
| 7                                              | 1                     | 0                     | -8. 828002           | 1. 484402  | 0.378608   |
| 8                                              | 1                     | 0                     | -7.065238            | 0.592046   | 1.881983   |
| 9                                              | 1                     | 0                     | -4. 042232           | 1.791535   | -0. 960437 |
| 10                                             | 1                     | 0                     | -5.814203            | 2.680350   | -2. 456683 |
| 12                                             | 6                     | 0                     | -8.192422            | 2.518236   | -1. /81605 |
| 12                                             | 1                     | 0                     | -4 799681            | 0. 132127  | 2 353383   |
| 14                                             | 6                     | Ő                     | -3. 108365           | 0. 618402  | 1. 204961  |
| 15                                             | 6                     | 0                     | -1.889450            | 0.590077   | 0.979522   |
| 16                                             | 79                    | 0                     | 0.050052             | 0. 483447  | 0. 557523  |
| 17                                             | 15                    | 0                     | 2. 320352            | 0. 297904  | 0.002264   |
| 18                                             | 6                     | 0                     | 2. 624348            | 0.589508   | -1.772351  |
| 19                                             | 6                     | 0                     | 3. /11891            | 1.341003   | -2.22014   |
| 20                                             | 6                     | 0                     | 3 921970             | 1 506465   | -3 593913  |
| 22                                             | 1                     | Ő                     | 4. 396798            | 1. 799469  | -1. 517701 |
| 23                                             | 6                     | 0                     | 1.965686             | 0. 168536  | -4. 062463 |
| 24                                             | 1                     | 0                     | 0.897408             | -0. 576094 | -2. 352939 |
| 25                                             | 6                     | 0                     | 3.053003             | 0.919843   | -4. 511804 |
| 26                                             | 1                     | 0                     | 4. /66980            | 2.093849   | -3.940125  |
| 27                                             | 1                     | 0                     | 3 219532             | -0.207427  | -4.774400  |
| 29                                             | 6                     | Ő                     | 3 402856             | 1 460332   | 0 894732   |
| 30                                             | 6                     | Ő                     | 4. 685471            | 1. 091877  | 1. 312590  |
| 31                                             | 6                     | 0                     | 2.943731             | 2.762755   | 1. 126659  |
| 32                                             | 6                     | 0                     | 5. 502032            | 2.020980   | 1.955167   |
| 33                                             | 1                     | 0                     | 5.0508/4             | 0.083423   | 1.141429   |
| 34<br>35                                       | 0                     | 0                     | 3. 705125            | 3.009000   | 0 811694   |
| 36                                             | 6                     | Ő                     | 5. 044475            | 3. 318733  | 2. 178210  |
| 37                                             | 1                     | 0                     | 6. 495925            | 1. 728730  | 2. 280265  |
| 38                                             | 1                     | 0                     | 3.404056             | 4. 698180  | 1.939129   |
| 39                                             | 1                     | 0                     | 5. 682413            | 4. 040509  | 2.679539   |
| 40                                             | 6                     | 0                     | 2.982525             | -1.367463  | 0.337700   |
| 41                                             | 6                     | 0                     | 3.842302<br>2.597369 | -2.010339  | -0.000942  |
| 42                                             | 6                     | 0                     | 4 306628             | -3 294687  | -0 276118  |
| 44                                             | 1                     | 0                     | 4. 144100            | -1. 520672 | -1. 478137 |
| 45                                             | 6                     | 0                     | 3.065070             | -3. 295730 | 1.796222   |
| 46                                             | 1                     | 0                     | 1.920682             | -1.526817  | 2.214594   |
| 4/                                             | 6                     | 0                     | 3.916814             | -3.938/63  | 0.896/41   |
| 48                                             | 1                     | 0                     | 4.909210             | -3.791709  | -0.978041  |
| 50                                             | 1                     | Ő                     | 4 273070             | -4 942221  | 1 109605   |
| 51                                             | 6                     | Ő                     | -2. 896052           | -2. 953294 | 0. 993699  |
| 52                                             | 6                     | 0                     | -4. 267884           | -2. 717390 | 0. 932628  |
| 53                                             | 6                     | 0                     | -4. 824578           | -2. 118489 | -0. 198243 |
| 54                                             | 6                     | 0                     | -3.998108            | -1.742742  | -1.258168  |
| 55                                             | 6                     | 0                     | -2.628450            | -1.9/499/  | -1. 193069 |
| 50                                             | 0<br>1                | 0                     | -2.009079            | -3 422194  | 1 876521   |
| 58                                             | 1                     | 0                     | -4. 903210           | -3. 003709 | 1. 766163  |
| 59                                             | 1                     | Ō                     | -5. 893863           | -1. 933364 | -0. 248135 |
| 60                                             | 1                     | 0                     | -4. 421390           | -1. 251794 | -2. 130002 |
| 61                                             | 1                     | 0                     | -1.990722            | -1.653035  | -2.011938  |
| 62                                             | 6                     | 0                     | -0.616427            | -2.912591  | 0.005325   |
| 64                                             | l<br>F                | 0                     | -0.209054            | -3.000800  | 1.012309   |
| 65                                             | 0<br>1                | 0                     | -0. 151140           | -3. 081251 | -2. 064562 |
| 66                                             | 1                     | Õ                     | 1. 250463            | -3. 338147 | -0. 880872 |
|                                                |                       |                       |                      |            |            |

# TS<sup>C-C1-b</sup>

| E(RwB97XD) = -1827.67417457                               |
|-----------------------------------------------------------|
| Thermal correction to Gibbs Free Energy= 0.458615         |
| Sum of electronic and thermal Free Energies= -1827.215560 |

| 1  | 6 | 0 | -7. 214135 | 2.530011  | 0.689970   |
|----|---|---|------------|-----------|------------|
| 2  | 6 | 0 | -6. 288528 | 1.582520  | 1.113237   |
| 3  | 6 | 0 | -5. 006820 | 1.541231  | 0.541360   |
| 4  | 6 | 0 | -4. 665782 | 2.466704  | -0. 460089 |
| 5  | 6 | 0 | -5. 592311 | 3. 411801 | -0. 878727 |
| 6  | 6 | 0 | -6.867309  | 3. 443886 | -0. 305891 |
| 7  | 1 | 0 | -8. 204187 | 2. 556651 | 1.134269   |
| 8  | 1 | 0 | -6. 555303 | 0.865034  | 1.884649   |
| 9  | 1 | 0 | -3. 673393 | 2. 439370 | -0. 902371 |
| 10 | 1 | 0 | -5. 325468 | 4. 125763 | -1.651716  |

| 11  | 1      | 0 | -7. 589649 | 4. 184252  | -0. 636441 |
|-----|--------|---|------------|------------|------------|
| 12  | 6      | 0 | -4.076446  | 0.513531   | 0.979337   |
| 13  | 1      | 0 | -4 415298  | -0 161435  | 1 765866   |
| 14  | 6      | 0 | _0 007000  | 0 246964   | 0 526200   |
| 14  | 0      | 0 | -2. 02/333 | 0. 340604  | 0. 526396  |
| 15  | 6      | 0 | -1.686415  | 0.08/305   | 0.045298   |
| 16  | 79     | 0 | 0. 331989  | 0.089014   | 0. 024462  |
| 17  | 15     | 0 | 2.665765   | 0.092010   | 0.050697   |
| 18  | 6      | 0 | 3 393254   | 1 752885   | -0 144420  |
| 10  | 6      | ő | 4 520507   | 2 145502   | 0 567665   |
| 19  | 0      | 0 | 4. 000007  | 2. 140002  | 0.007000   |
| 20  | 6      | 0 | 2.809922   | 2. 635353  | -1.062399  |
| 21  | 6      | 0 | 5.080126   | 3. 410008  | 0. 360411  |
| 22  | 1      | 0 | 4.990459   | 1.471722   | 1. 284594  |
| 23  | 6      | 0 | 3.365905   | 3.894203   | -1.271563  |
| 24  | 1      | 0 | 1 921097   | 2 341334   | -1 615757  |
| 27  | 6      | 0 | 1. 521037  | 4 000047   | 0 550001   |
| 20  | 0      | 0 | 4. 001022  | 4. 202947  | -0. 000901 |
| 26  | I      | 0 | 5.961540   | 3. /10442  | 0.918/51   |
| 27  | 1      | 0 | 2.909684   | 4. 573302  | -1.985340  |
| 28  | 1      | 0 | 4. 930728  | 5.267478   | -0. 717926 |
| 29  | 6      | 0 | 3.371348   | -0.575835  | 1.594189   |
| 30  | 6      | 0 | 4 495110   | -1 407502  | 1 590569   |
| 21  | ê      | Ő | 2 782706   | _0 200104  | 2 811081   |
| 20  | 0      | 0 | Z. 702750  | 1 000100   | 2.011001   |
| 32  | 0      | 0 | 5.020144   | -1.800192  | 2. /95396  |
| 33  | 1      | 0 | 4.959216   | -1. /00985 | 0.6534/4   |
| 34  | 6      | 0 | 3. 320261  | -0. 663588 | 4.011942   |
| 35  | 1      | 0 | 1.904705   | 0. 432098  | 2.823240   |
| 36  | 6      | 0 | 4, 441748  | -1.494070  | 4.004756   |
| 37  | 1      | 0 | 5.897472   | -2.513989  | 2.786250   |
| 38  | 1      | 0 | 2 860046   | -0 374794  | 4 951967   |
| 20  | 1      | 0 | 4 056017   | 1 052100   | 4.041744   |
| 39  | 1      | 0 | 4.000917   | -1.000100  | 4. 941744  |
| 40  | 6      | 0 | 3.376998   | -0.919085  | -1.291399  |
| 41  | 6      | 0 | 4. 496401  | -0. 501463 | -2.01/069  |
| 42  | 6      | 0 | 2. 792454  | -2. 161038 | -1. 571234 |
| 43  | 6      | 0 | 5. 026878  | -1.321553  | -3. 012443 |
| 44  | 1      | 0 | 4, 957688  | 0.460239   | -1.812462  |
| 45  | 6      | 0 | 3 329171   | -2 979575  | -2 560567  |
| 16  | 1      | 0 | 1 017755   | -2 /01670  | -1 015820  |
| 40  | r<br>C | 0 | 1. 317733  | 2. 491079  | 2 002417   |
| 4/  | 0      | 0 | 4. 440040  | -Z. 55936Z | -3. 283417 |
| 48  | 1      | 0 | 5.894/99   | -0.990675  | -3.5/4/25  |
| 49  | 1      | 0 | 2.872011   | -3.941669  | -2. 770898 |
| 50  | 1      | 0 | 4.861594   | -3. 195665 | -4. 059408 |
| 51  | 6      | 0 | -4. 113109 | -3.361208  | 0.312784   |
| 52  | 6      | 0 | -5 358300  | -3 602577  | 0 874942   |
| 53  | 6      | Ő | -6 453345  | -2 808808  | 0 516343   |
| E 4 | 6      | 0 | 6 204450   | 1 774670   | 0.010040   |
| 54  | 6      | 0 | -0.294430  | -1. //40/0 | -0. 402466 |
| 55  | 6      | 0 | -5.043222  | -1.522/15  | -0.960058  |
| 56  | 6      | 0 | -3. 932766 | -2.316869  | -0. 616192 |
| 57  | 1      | 0 | -3. 262952 | -3. 978541 | 0. 591198  |
| 58  | 1      | 0 | -5. 482111 | -4. 408045 | 1.592160   |
| 59  | 1      | 0 | -7.428415  | -3.001483  | 0.953771   |
| 60  | 1      | 0 | -7 141501  | -1 156119  | -0 682524  |
| 61  | 1      | 0 | -4 042471  | _0 700000  | -1 696400  |
| 01  | 1      | 0 | -4. 942471 | -0. 722090 | -1.080490  |
| 02  | 0      | U | -2.606380  | -2.0/3631  | -1.144651  |
| 63  | 1      | 0 | -1.844018  | -2. 804440 | -0. 880584 |
| 64  | 6      | 0 | -2. 212207 | -0. 983441 | -1.867815  |
| 65  | 1      | 0 | -2. 913245 | -0. 243497 | -2. 239459 |
| 66  | 1      | 0 | -1.218764  | -0.955550  | -2. 300621 |
|     |        |   |            |            |            |
|     |        |   |            |            |            |

# $\mathbf{F}^{\mathbf{b}}$

E(RwB97XD) = -1827.69519944 Thermal correction to Gibbs Free Energy= 0.458628 Sum of electronic and thermal Free Energies= -1827.236572

| 1  | 6  | 0 | -6. 218984 | 3. 393683  | 1.018663   |
|----|----|---|------------|------------|------------|
| 2  | 6  | 0 | -5. 441280 | 2. 270232  | 1. 293973  |
| 3  | 6  | 0 | -4. 427028 | 1.875047   | 0. 413128  |
| 4  | 6  | 0 | -4. 204740 | 2. 626878  | -0. 750244 |
| 5  | 6  | 0 | -4. 981255 | 3.748062   | -1.022153  |
| 6  | 6  | 0 | -5. 992270 | 4. 135695  | -0. 139409 |
| 7  | 1  | 0 | -7. 002355 | 3. 688303  | 1.710914   |
| 8  | 1  | 0 | -5. 622301 | 1.694547   | 2. 198186  |
| 9  | 1  | 0 | -3. 418502 | 2. 332631  | -1. 441741 |
| 10 | 1  | 0 | -4. 797864 | 4. 322452  | -1.925637  |
| 11 | 1  | 0 | -6. 597296 | 5.011564   | -0. 354280 |
| 12 | 6  | 0 | -3. 633496 | 0.672688   | 0.723415   |
| 13 | 1  | 0 | -3.849376  | 0.148669   | 1.656534   |
| 14 | 6  | 0 | -2. 701657 | 0.156298   | -0. 039566 |
| 15 | 6  | 0 | -1.784466  | -0. 419761 | -0. 790959 |
| 16 | 79 | 0 | 0. 236588  | -0. 196961 | -0. 389170 |
| 17 | 15 | 0 | 2. 508271  | 0.069487   | 0.073498   |
| 18 | 6  | 0 | 3. 167386  | 1.692412   | -0. 438318 |
| 19 | 6  | 0 | 4. 437606  | 1.828589   | -1.006796  |
| 20 | 6  | 0 | 2. 381300  | 2.830342   | -0. 217234 |
| 21 | 6  | 0 | 4.917150   | 3. 092711  | -1.347342  |
| 22 | 1  | 0 | 5.056036   | 0.953926   | -1.186463  |
| 23 | 6  | 0 | 2.866361   | 4. 091446  | -0. 552141 |
| 24 | 1  | 0 | 1. 389044  | 2.733466   | 0. 217240  |
| 25 | 6  | 0 | 4. 134739  | 4. 223398  | -1.118871  |
| 26 | 1  | 0 | 5.903434   | 3. 191545  | -1.790636  |
| 27 | 1  | 0 | 2. 252093  | 4.969386   | -0. 376667 |

| 28 | 1 | 0 | 4. 510479  | 5.206794   | -1.385469  |
|----|---|---|------------|------------|------------|
| 29 | 6 | 0 | 3. 558757  | -1. 165877 | -0.764455  |
| 30 | 6 | 0 | 4. 640231  | -1.775967  | -0. 122308 |
| 31 | 6 | 0 | 3. 279045  | -1. 480389 | -2. 100546 |
| 32 | 6 | 0 | 5. 435723  | -2. 690184 | -0.812355  |
| 33 | 1 | 0 | 4.866412   | -1.543086  | 0.914165   |
| 34 | 6 | 0 | 4.079770   | -2. 387553 | -2. 788336 |
| 35 | 1 | 0 | 2. 436011  | -1.015677  | -2. 606621 |
| 36 | 6 | 0 | 5. 158452  | -2. 994865 | -2. 143734 |
| 37 | 1 | 0 | 6. 272756  | -3. 162445 | -0. 306989 |
| 38 | 1 | 0 | 3.858368   | -2. 624765 | -3.824516  |
| 39 | 1 | 0 | 5.779414   | -3. 707223 | -2. 678781 |
| 40 | 6 | 0 | 2.907241   | -0. 078161 | 1.848323   |
| 41 | 6 | 0 | 3.852298   | 0.747109   | 2.465224   |
| 42 | 6 | 0 | 2.263842   | -1.073051  | 2. 595321  |
| 43 | 6 | 0 | 4. 152394  | 0.575437   | 3.816019   |
| 44 | 1 | 0 | 4. 355773  | 1.525113   | 1.898774   |
| 45 | 6 | 0 | 2. 571330  | -1.246381  | 3.941802   |
| 46 | 1 | 0 | 1.521300   | -1.714310  | 2. 126214  |
| 47 | 6 | 0 | 3. 515403  | -0. 420809 | 4. 553817  |
| 48 | 1 | 0 | 4. 885225  | 1.221676   | 4. 289669  |
| 49 | 1 | 0 | 2.069582   | -2.020726  | 4. 514140  |
| 50 | 1 | 0 | 3.750520   | -0. 552067 | 5.605862   |
| 51 | 6 | 0 | -4. 060912 | -3. 355338 | 0.669412   |
| 52 | 6 | 0 | -5. 300729 | -3. 624699 | 1.231020   |
| 53 | 6 | 0 | -6. 444019 | -3. 014553 | 0.709618   |
| 54 | 6 | 0 | -6. 349313 | -2. 138293 | -0. 373875 |
| 55 | 6 | 0 | -5. 112187 | -1.868123  | -0. 941923 |
| 56 | 6 | 0 | -3. 951066 | -2. 478406 | -0. 428143 |
| 57 | 1 | 0 | -3. 166433 | -3. 821042 | 1.073980   |
| 58 | 1 | 0 | -5. 380140 | -4. 303913 | 2.073464   |
| 59 | 1 | 0 | -7. 414465 | -3. 223282 | 1.149707   |
| 60 | 1 | 0 | -7. 241540 | -1.667292  | -0. 773261 |
| 61 | 1 | 0 | -5. 051733 | -1. 187154 | -1. 784075 |
| 62 | 6 | 0 | -2. 641195 | -2. 233565 | -0. 972075 |
| 63 | 1 | 0 | -1.830015  | -2. 839057 | -0. 574554 |
| 64 | 6 | 0 | -2. 290635 | -1.296037  | -2.005105  |
| 65 | 1 | 0 | -1. 452264 | -1.576001  | -2. 635734 |
| 66 | 1 | 0 | -3.099419  | -0. 832522 | -2. 564577 |

# TS<sup>C-C2-b</sup>

E(RwB97XD) = -1827.68939471 Thermal correction to Gibbs Free Energy= 0.459384 Sum of electronic and thermal Free Energies= -1827.230010

| 1  | 6  | 0 | 6. 141848  | 3. 152153  | -1.032582  |
|----|----|---|------------|------------|------------|
| 2  | 6  | 0 | 5.086172   | 2. 304876  | -1.364616  |
| 3  | 6  | 0 | 4. 274036  | 1.760779   | -0.362734  |
| 4  | 6  | 0 | 4. 529684  | 2.087275   | 0.977164   |
| 5  | 6  | 0 | 5.584366   | 2.932173   | 1. 304368  |
| 6  | 6  | 0 | 6.396162   | 3. 466542  | 0.301246   |
| 7  | 1  | 0 | 6.765648   | 3.565907   | -1.819421  |
| 8  | 1  | 0 | 4. 894931  | 2.059388   | -2. 405886 |
| 9  | 1  | 0 | 3.897648   | 1.685851   | 1.765718   |
| 10 | 1  | 0 | 5.771861   | 3. 178028  | 2.345529   |
| 11 | 1  | 0 | 7.218546   | 4. 126954  | 0. 559484  |
| 12 | 6  | 0 | 3. 186063  | 0.841733   | -0. 745554 |
| 13 | 1  | 0 | 2.938208   | 0.741479   | -1.802686  |
| 14 | 6  | 0 | 2. 504650  | 0. 104434  | 0.091773   |
| 15 | 6  | 0 | 1.775327   | -0. 731608 | 0.818097   |
| 16 | 79 | 0 | -0. 256449 | -0. 321160 | 0. 410052  |
| 17 | 15 | 0 | -2. 493072 | 0.100940   | -0. 063444 |
| 18 | 6  | 0 | -2. 748287 | 1.689952   | -0. 921184 |
| 19 | 6  | 0 | -3. 689436 | 1.827980   | -1.946011  |
| 20 | 6  | 0 | -2.001510  | 2.801227   | -0. 510045 |
| 21 | 6  | 0 | -3. 883058 | 3.068949   | -2. 551211 |
| 22 | 1  | 0 | -4. 272678 | 0.973284   | -2. 276193 |
| 23 | 6  | 0 | -2. 202643 | 4. 039826  | -1. 112438 |
| 24 | 1  | 0 | -1. 261758 | 2. 701543  | 0. 280779  |
| 25 | 6  | 0 | -3. 142986 | 4. 174198  | -2. 134710 |
| 26 | 1  | 0 | -4. 613638 | 3. 169615  | -3. 348086 |
| 27 | 1  | 0 | -1.621083  | 4. 897528  | -0. 788489 |
| 28 | 1  | 0 | -3. 295247 | 5. 139442  | -2. 608356 |
| 29 | 6  | 0 | -3. 240811 | -1. 165598 | -1. 141947 |
| 30 | 6  | 0 | -4. 536940 | -1. 643932 | -0. 928825 |
| 31 | 6  | 0 | -2. 496625 | -1.637365  | -2. 230734 |
| 32 | 6  | 0 | -5. 083795 | -2. 584956 | -1.800629  |
| 33 | 1  | 0 | -5. 123301 | -1. 287889 | -0. 086795 |
| 34 | 6  | 0 | -3. 048831 | -2. 570913 | -3. 102698 |
| 35 | 1  | 0 | -1. 485184 | -1. 275125 | -2. 399364 |
| 36 | 6  | 0 | -4. 343063 | -3. 046720 | -2.887080  |
| 37 | 1  | 0 | -6. 090030 | -2.954975  | -1.628957  |
| 38 | 1  | 0 | -2. 467348 | -2. 931054 | -3.945915  |
| 39 | 1  | 0 | -4. 771357 | -3. 779574 | -3. 564355 |
| 40 | 6  | 0 | -3. 546955 | 0. 165471  | 1. 423231  |
| 41 | 6  | 0 | -4. 557365 | 1. 120722  | 1.567153   |
| 42 | 6  | 0 | -3. 350803 | -0. 794156 | 2. 424561  |
| 43 | 6  | 0 | -5. 366943 | 1.112750   | 2.702402   |
| 44 | 1  | 0 | -4. 717100 | 1.872158   | 0.799475   |

| 45 | 6 | 0 | -4. 165946 | -0. 803230 | 3. 552618  |
|----|---|---|------------|------------|------------|
| 46 | 1 | 0 | -2. 562713 | -1.536986  | 2. 324441  |
| 47 | 6 | 0 | -5. 174174 | 0.151625   | 3. 692960  |
| 48 | 1 | 0 | -6. 148336 | 1.858878   | 2.809989   |
| 49 | 1 | 0 | -4. 010346 | -1.551047  | 4. 324220  |
| 50 | 1 | 0 | -5. 805919 | 0.147629   | 4. 576174  |
| 51 | 6 | 0 | 4.061729   | -3. 042828 | -0. 885849 |
| 52 | 6 | 0 | 5. 319515  | -3. 103046 | -1. 478114 |
| 53 | 6 | 0 | 6.405460   | -2. 464696 | -0. 877337 |
| 54 | 6 | 0 | 6. 227459  | -1.774863  | 0. 321071  |
| 55 | 6 | 0 | 4.971135   | -1.723102  | 0.919423   |
| 56 | 6 | 0 | 3.874220   | -2. 356500 | 0. 321664  |
| 57 | 1 | 0 | 3.214699   | -3. 529406 | -1.363065  |
| 58 | 1 | 0 | 5. 451468  | -3. 642952 | -2. 410928 |
| 59 | 1 | 0 | 7.386443   | -2. 506001 | -1.341249  |
| 60 | 1 | 0 | 7.067763   | -1. 275538 | 0.794037   |
| 61 | 1 | 0 | 4.859782   | -1. 183344 | 1.855297   |
| 62 | 6 | 0 | 2. 507718  | -2. 259875 | 0.865637   |
| 63 | 1 | 0 | 1.782816   | -2.969834  | 0.475392   |
| 64 | 6 | 0 | 2.144948   | -1.569412  | 2.082169   |
| 65 | 1 | 0 | 2.912884   | -1. 107971 | 2. 694584  |
| 66 | 1 | 0 | 1.276952   | -1.907585  | 2.634773   |
|    |   |   |            |            |            |

# 3----Au<sup>b</sup>

E(RwB97XD) = -1827.71521680 Thermal correction to Gibbs Free Energy= 0.461217 Sum of electronic and thermal Free Energies= -1827.254000

| 1  | 6      | 0 | -5. 738635 | -3. 281455 | -1.167268  |
|----|--------|---|------------|------------|------------|
| 2  | 6      | 0 | -4. 404225 | -2. 882489 | -1.189262  |
| 3  | 6      | 0 | -3, 850882 | -2. 207902 | -0.094005  |
| 4  | 6      | 0 | -4. 643693 | -1.972771  | 1.035727   |
| 5  | 6      | 0 | -5 977305  | -2 371973  | 1 056287   |
| 6  | 6      | õ | -6. 529940 | -3.021706  | -0.047718  |
| 7  | 1      | 0 | -6 160823  | -3 795929  | -2 025471  |
| 8  | 1      | õ | -3 791111  | -3 083081  | -2 064053  |
| 9  | 1      | õ | -4 206230  | -1 496115  | 1 909334   |
| 10 | 1      | õ | -6 582203  | -2 183936  | 1 938530   |
| 11 | 1      | ő | -7 569643  | -3 334942  | -0.031178  |
| 12 | 6      | ő | -2 440761  | -1 763671  | -0 148921  |
| 12 | 1      | Ő | -1 730201  | -2 395877  | -0 676112  |
| 14 | 6      | 0 | -2 03/138  | -0 633823  | 0.300/07   |
| 15 | 6      | 0 | _1 030845  | 0.562085   | 0.0788/3   |
| 16 | 70     | 0 | 0 110121   | -0.020047  | 0. 370043  |
| 17 | 15     | 0 | 0. 110121  | -0.029947  | -0.060992  |
| 10 | 10     | 0 | 2.410321   | -0.038707  | -0.009882  |
| 10 | 0      | 0 | 2.002072   | -1.10/101  | -1.430931  |
| 19 | 6      | 0 | 3. 791000  | -0.029303  | -2.402300  |
| 20 | 6      | 0 | 2. 2000/2  | -Z. 402/00 | -1.4/1/43  |
| 21 | 0      | 0 | 4. 129709  | -1. /34555 | -3.40/4/5  |
| 22 | I<br>C | 0 | 4. 200030  | 0. 149902  | -2.381457  |
| 23 | 6      | 0 | 2. 599481  | -3. 354632 | -2.4/3330  |
| 24 | I      | 0 | 1.518939   | -2. /3/486 | -0. /22226 |
| 25 | 6      | 0 | 3. 536818  | -2.995147  | -3. 442974 |
| 26 | 1      | 0 | 4.85/822   | -1.451/31  | -4. 161563 |
| 27 | 1      | 0 | 2.13341/   | -4.334//3  | -2.500304  |
| 28 | 1      | 0 | 3.801634   | -3.69/4/5  | -4. 22/634 |
| 29 | 6      | 0 | 3. 036789  | 1.585810   | -0. 548208 |
| 30 | 6      | 0 | 4. 242262  | 2.085///   | -0.04/59/  |
| 31 | 6      | 0 | 2. 294210  | 2. 343195  | -1.463506  |
| 32 | 6      | 0 | 4. 701958  | 3. 334911  | -0. 463260 |
| 33 | 1      | 0 | 4. 825189  | 1.509105   | 0. 664368  |
| 34 | 6      | 0 | 2.760883   | 3. 585949  | -1. 880065 |
| 35 | 1      | 0 | 1.352980   | 1.964546   | -1.855053  |
| 36 | 6      | 0 | 3.964832   | 4. 083381  | -1.378772  |
| 37 | 1      | 0 | 5.637617   | 3. 720304  | -0. 069931 |
| 38 | 1      | 0 | 2. 182567  | 4. 167846  | -2. 591109 |
| 39 | 1      | 0 | 4. 325366  | 5.055867   | -1. 700287 |
| 40 | 6      | 0 | 3. 404685  | -0. 584450 | 1.365013   |
| 41 | 6      | 0 | 4. 543470  | -1. 380898 | 1.209209   |
| 42 | 6      | 0 | 3. 032417  | -0. 141966 | 2. 640386  |
| 43 | 6      | 0 | 5. 305036  | -1.728921  | 2. 323523  |
| 44 | 1      | 0 | 4.839544   | -1.732224  | 0. 225056  |
| 45 | 6      | 0 | 3. 799888  | -0. 486996 | 3.749016   |
| 46 | 1      | 0 | 2. 144774  | 0. 472365  | 2.771226   |
| 47 | 6      | 0 | 4. 935871  | -1.281839  | 3. 591113  |
| 48 | 1      | 0 | 6. 186785  | -2. 349875 | 2. 198574  |
| 49 | 1      | 0 | 3. 507508  | -0. 141000 | 4.735640   |
| 50 | 1      | 0 | 5. 530630  | -1.555576  | 4. 457375  |
| 51 | 6      | 0 | -3. 806796 | 3.372469   | -0.659435  |
| 52 | 6      | 0 | -5. 026451 | 3. 683256  | -1.260053  |
| 53 | 6      | 0 | -6. 157420 | 2.916061   | -0.986016  |
| 54 | 6      | 0 | -6.061167  | 1.838251   | -0. 104595 |
| 55 | 6      | 0 | -4. 843753 | 1.532091   | 0.496563   |
| 56 | 6      | 0 | -3. 702707 | 2. 294941  | 0. 225660  |
| 57 | 1      | 0 | -2. 928478 | 3.973968   | -0. 880636 |
| 58 | 1      | 0 | -5. 090043 | 4. 524818  | -1.943778  |
| 59 | 1      | 0 | -7. 107073 | 3. 154457  | -1. 455858 |
| 60 | 1      | 0 | -6. 934717 | 1. 230898  | 0.114690   |
| 61 | 1      | 0 | -4. 790474 | 0. 683993  | 1. 172518  |
|    |        |   |            |            |            |

| 62 | 6 | 0 | -2. 376449 | 1.982885  | 0.832525  |
|----|---|---|------------|-----------|-----------|
| 63 | 1 | 0 | -1.588126  | 2.687262  | 0.576428  |
| 64 | 6 | 0 | -2. 187803 | 1.341692  | 2. 210758 |
| 65 | 1 | 0 | -3. 064092 | 1.053217  | 2. 787285 |
| 66 | 1 | 0 | -1. 344702 | 1. 699194 | 2.794204  |

# TSrot

E(RwB97XD) = -1827.68955294Thermal correction to Gibbs Free Energy= 0.465442

Sum of electronic and thermal Free Energies= -1827.224110

| 1        | 6      | 0   | 6.035575   | 2.942859   | -0.525935  |
|----------|--------|-----|------------|------------|------------|
| 0        | ĉ      | ő   | E 107E0E   | 0.065077   | 1 200767   |
| Z        | 0      | 0   | 5. 16/525  | 2.200077   | -1. 399/07 |
| 3        | 6      | 0   | 4. 102323  | 1. 520957  | -0.914872  |
| 1        | 6      | ٥   | 3 878043   | 1 /00816   | 0 460488   |
| 7        | 0      | U U | 3.070043   | 1. 430010  | 0.403400   |
| 5        | 6      | 0   | 4. 724269  | 2.167792   | 1.341680   |
| 6        | 6      | 0   | 5 810739   | 2 894009   | 0 850012   |
| -        |        |     | 0.010700   | 2.001000   | 0.000012   |
| /        | 1      | 0   | 6.8/4219   | 3.509375   | -0.921360  |
| 8        | 1      | 0   | 5 372606   | 2 303283   | -2 470875  |
| õ        |        | ő   | 0.000470   | 0.005001   | 0.001100   |
| 9        | I      | 0   | 3.035479   | 0. 925831  | 0.801120   |
| 10       | 1      | 0   | 4. 536595  | 2.127093   | 2.411338   |
| 11       | 1      | ٥   | 6 471002   | 2 420601   | 1 522260   |
| 11       | 1      | 0   | 0.471002   | 3.420001   | 1.002009   |
| 12       | 6      | 0   | 3. 253816  | 0.767005   | -1.860315  |
| 12       | 1      | ٥   | 3 30/050   | 0 0667/1   | -2 021003  |
| 10       | 1      |     | 0.004000   | 0. 300741  | 2. 321330  |
| 14       | 6      | 0   | 2.402774   | -0.168194  | -1.481537  |
| 15       | 6      | 0   | 1 593070   | -1 079692  | -1 010969  |
| 10       | 70     | ő   | 0.040000   | 0 505504   | 0. 504055  |
| 16       | /9     | 0   | -0. 348228 | -0. 565584 | -0.504855  |
| 17       | 15     | 0   | -2.512989  | 0.086624   | 0.079548   |
| 10       | 6      | ٥   | -2 502010  | 1 752125   | 0 001046   |
| 10       | 0      | U   | -2. 362019 | 1. /00120  | 0.021040   |
| 19       | 6      | 0   | -3. 427082 | 2. 052246  | 1.894838   |
| 20       | 6      | 0   | -1 778495  | 2 760115   | 0 272001   |
| 20       | 0      | ő   | 0. 400004  | 2.700110   | 0. 272001  |
| 21       | 6      | 0   | -3. 469824 | 3.34/39/   | 2.409586   |
| 22       | 1      | 0   | -4 052779  | 1 280073   | 2 333096   |
| 00       | ć      | ő   | 1.000000   | 4 050050   | 0.700000   |
| 23       | 6      | 0   | -1.828833  | 4. 053658  | 0. 783935  |
| 24       | 1      | 0   | -1.111036  | 2.535344   | -0.556717  |
| 0        |        | -   | 0 070000   | 4 040117   | 1 054050   |
| 20       | 0      | 0   | -2.0/3930  | 4. 340117  | 1. 004000  |
| 26       | 1      | 0   | -4. 126622 | 3. 572204  | 3. 244577  |
| 27       | 1      | 0   | -1 203508  | 4 829016   | 0 351764   |
| 21       |        | 0   | 1.20000    | 4.023010   | 0. 331704  |
| 28       | 1      | 0   | -2. /08381 | 5. 355849  | 2.25/940   |
| 29       | 6      | 0   | -3 296865  | -1 017107  | 1 304282   |
| 20       | ő      | 0   | 4. 040004  | 1.000104   | 1.001202   |
| 30       | 6      | 0   | -4. 643804 | -1.382104  | 1. 221548  |
| 31       | 6      | 0   | -2.518098  | -1. 480901 | 2.372236   |
| 20       | ĉ      | ő   | E 206004   | 2 200701   | 2. 200500  |
| SZ       | 0      | 0   | -5. 200094 | -2.200791  | 2.200500   |
| 33       | 1      | 0   | -5. 258413 | -1.032354  | 0. 397158  |
| 34       | 6      | 0   | -3 084531  | -2 201453  | 3 351845   |
| 07       | 0      |     | 0.004001   | 2.201400   | 0.001040   |
| 35       | 1      | 0   | -1.46/325  | -1.208322  | 2. 439426  |
| 36       | 6      | 0   | -4. 429633 | -2.653496  | 3.265718   |
| 07       |        | -   | 0,00000    | 0 400705   | 0 100010   |
| 31       | 1      | 0   | -0. 202200 | -2.402720  | 2. 120910  |
| 38       | 1      | 0   | -2. 475116 | -2. 645291 | 4. 177948  |
| 30       | 1      | ٥   | _1 970001  | -3 201020  | 1 026636   |
| 0.5      |        |     | 4. 070001  | 0.201020   | 4. 020000  |
| 40       | 6      | 0   | -3.66/366  | 0.13//15   | -1.333389  |
| 41       | 6      | 0   | -4 628660  | 1 143680   | -1 470536  |
| 40       | 6      | 0   | 2 506670   | 0.006007   | 0 005704   |
| 4Z       | 0      | 0   | -3. 390072 | -0. 000907 | -2.200704  |
| 43       | 6      | 0   | -5. 512648 | 1. 121556  | -2. 548687 |
| 11       | 1      | 0   | -4 602120  | 1 0/6210   | -0 741402  |
|          | 1      |     | 4. 002120  | 1. 540215  | 0. 741402  |
| 45       | 6      | 0   | -4. 485559 | -0.909936  | -3.356817  |
| 46       | 1      | 0   | -2.846029  | -1.668297  | -2.192187  |
| 47       | 6      | 0   | -5 442010  | 0 005691   | _2 /00011  |
| 4/       | 0      | U   | -5. 445910 | 0.095001   | -3. 409011 |
| 48       | 1      | 0   | -6. 255055 | 1.907335   | -2. 650939 |
| 40       | 1      | 0   | -4 425409  | -1 708141  | -4 000450  |
| 50       |        |     | 1. 120100  | 0.00111    | 1. 000100  |
| 50       | I      | 0   | -6.133092  | 0.081140   | -4. 328952 |
| 51       | 6      | 0   | 5.790508   | -1.735855  | -0.657539  |
| F2       | 6      | 0   | 6 771406   | _1 210000  | 0 160095   |
| 52       | 0      | 0   | 0. //1400  | -1.210000  | 0. 100965  |
| 53       | 6      | 0   | 6. 510267  | -1.053031  | 1. 525683  |
| 54       | 6      | 0   | 5 275332   | -1 416418  | 2 084646   |
| 54       | 0      | 0   | J. 275552  | 1.410410   | 2.004040   |
| 55       | 6      | 0   | 4. 281512  | -1.919897  | 1.275141   |
| 56       | 6      | 0   | 4 520580   | -2 087431  | -0 119071  |
| 57       | ÷<br>1 | 0   | E 067600   | 1 050055   | 1 701700   |
| 57       | I      | U   | 5.90/003   | -1.009200  | -1. /21/82 |
| 58       | 1      | 0   | 7.732406   | -0. 919907 | -0.248069  |
| 50       | 1      | 0   | 7 280501   | -0 638566  | 2 169064   |
| 00       |        | 0   | 7.200001   | 0.000000   | 2.109004   |
| 60       | 1      | 0   | 5. 102477  | -1. 283782 | 3. 146714  |
| 61       | 1      | 0   | 3, 319209  | -2.184051  | 1.699336   |
| <u> </u> | ć      | ő   | 0.510200   | 0 471070   | 1 011070   |
| 62       | 6      | U   | 3.518126   | -2.4/18/9  | -1.011076  |
| 63       | 1      | 0   | 3.812426   | -2. 587093 | -2.053680  |
| 64       | 6      | 0   | 2 000701   | _2 22603E  | _0 727707  |
| 04       | U      | 0   | 2.000701   | 2.00020    | 0. 13/19/  |
| 65       | 1      | 0   | 1.571878   | -3. 221947 | -1.418757  |
| 66       | 1      | 0   | 1.834167   | -2.806392  | 0.289789   |
| 50       |        | v   | 1.001107   | 2.000002   | 5. 200700  |

| CT1 174         | 400    |  |
|-----------------|--------|--|
| \$`1/ <i>VI</i> | - 121. |  |
| 3 V I V         | Juc    |  |
|                 |        |  |

 $\dot{E}(RB97D3) = -3348.66044407$ 

Thermal correction to Gibbs Free Energy= 0.265295 Sum of electronic and thermal Free Energies= -3348.395149

1 6 0 5. 067839 -1. 408418 -0. 150434

| 2  | 6  | 0 | 4. 584367  | -0. 112846 | -0. 339575 |
|----|----|---|------------|------------|------------|
| 3  | 6  | 0 | 3. 236933  | 0.193554   | 0.010161   |
| 4  | 6  | 0 | 2. 418617  | -0. 836741 | 0.544239   |
| 5  | 6  | 0 | 2.950797   | -2. 120686 | 0.710562   |
| 6  | 6  | 0 | 4. 269857  | -2. 433199 | 0.373537   |
| 7  | 1  | 0 | 6. 100547  | -1.626455  | -0. 421731 |
| 8  | 1  | 0 | 2. 307752  | -2. 900601 | 1.117074   |
| 9  | 6  | 0 | 2.762255   | 1.563347   | -0. 216602 |
| 10 | 1  | 0 | 3. 471740  | 2.219425   | -0. 722197 |
| 11 | 6  | 0 | 1.612415   | 2. 148754  | 0.092658   |
| 12 | 6  | 0 | 0.545183   | 2.831453   | 0.314725   |
| 13 | 6  | 0 | -0.841857  | 3. 162229  | -0. 161628 |
| 14 | 6  | 0 | -0.316598  | 3.637176   | 1. 194266  |
| 15 | 1  | 0 | -0. 100200 | 4. 700792  | 1. 288602  |
| 16 | 1  | 0 | -0. 714184 | 3. 168652  | 2.093814   |
| 17 | 6  | 0 | 5. 517412  | 0.929987   | -0. 911084 |
| 18 | 1  | 0 | 5.145826   | 1.334872   | -1.861828  |
| 19 | 1  | 0 | 5.650159   | 1.778571   | -0. 227320 |
| 20 | 1  | 0 | 6. 504321  | 0. 495570  | -1.099273  |
| 21 | 6  | 0 | 0.986312   | -0. 594035 | 0. 932923  |
| 22 | 1  | 0 | 0.910884   | 0. 139632  | 1.744960   |
| 23 | 1  | 0 | 0.402490   | -0. 194060 | 0. 095592  |
| 24 | 1  | 0 | 0.513467   | -1. 523662 | 1.266747   |
| 25 | 6  | 0 | 4.826940   | -3. 820642 | 0.570953   |
| 26 | 1  | 0 | 4. 050428  | -4. 519793 | 0.899172   |
| 27 | 1  | 0 | 5. 265273  | -4. 208389 | -0. 357887 |
| 28 | 1  | 0 | 5. 624078  | -3. 822283 | 1. 327082  |
| 29 | 1  | 0 | -0.891933  | 3.929652   | -0. 933288 |
| 30 | 6  | 0 | -1.861676  | 2.088691   | -0. 301714 |
| 31 | 6  | 0 | -2. 622741 | 2.013843   | -1. 478381 |
| 32 | 6  | 0 | -2. 078242 | 1. 118779  | 0. 690285  |
| 33 | 6  | 0 | -3. 574488 | 1.009755   | -1.667494  |
| 34 | 1  | 0 | -2. 471687 | 2.752317   | -2. 263373 |
| 35 | 6  | 0 | -3. 024919 | 0.109439   | 0. 520156  |
| 36 | 1  | 0 | -1. 498321 | 1. 134913  | 1.608493   |
| 37 | 6  | 0 | -3. 763400 | 0.066693   | -0. 661070 |
| 38 | 1  | 0 | -4. 153739 | 0.969993   | -2. 585212 |
| 39 | 1  | 0 | -3. 177491 | -0. 632668 | 1. 298215  |
| 40 | 35 | 0 | -5. 072575 | -1. 332287 | -0. 905993 |
|    |    |   |            |            |            |

# anti-3ac

E(RB97D3) = -3348.65935118

Thermal correction to Gibbs Free Energy= 0.263022 Sum of electronic and thermal Free Energies= -3348.396329

| 1  | 6  | 0 | -5. 695457 | -1.546761  | -0. 197656 |
|----|----|---|------------|------------|------------|
| 2  | 6  | 0 | -4. 396125 | -1.531593  | 0.312379   |
| 3  | 6  | 0 | -3. 629876 | -0. 331412 | 0.252272   |
| 4  | 6  | 0 | -4. 213928 | 0.823711   | -0. 332534 |
| 5  | 6  | 0 | -5. 520581 | 0.755238   | -0. 829716 |
| 6  | 6  | 0 | -6. 282504 | -0. 414532 | -0. 775442 |
| 7  | 1  | 0 | -6. 268901 | -2. 471858 | -0. 142266 |
| 8  | 1  | 0 | -5.954756  | 1.650174   | -1.274496  |
| 9  | 6  | 0 | -2. 269352 | -0. 357151 | 0.802129   |
| 10 | 1  | 0 | -1.947693  | -1.320770  | 1.198436   |
| 11 | 6  | 0 | -1.358688  | 0.600931   | 0.904133   |
| 12 | 6  | 0 | -0. 390372 | 1. 437741  | 1.032271   |
| 13 | 6  | 0 | 2.929758   | 1. 499852  | -0.845140  |
| 14 | 6  | 0 | 4. 101696  | 0.765239   | -1.041010  |
| 15 | 6  | 0 | 4. 405964  | -0. 261438 | -0. 152007 |
| 16 | 6  | 0 | 3. 566189  | -0. 568312 | 0.917943   |
| 17 | 6  | 0 | 2.399063   | 0.173240   | 1.095190   |
| 18 | 6  | 0 | 2.064337   | 1. 221782  | 0. 222912  |
| 19 | 1  | 0 | 2. 688494  | 2. 303973  | -1.537671  |
| 20 | 1  | 0 | 4. 759614  | 0.995258   | -1.873872  |
| 21 | 1  | 0 | 3.810617   | -1.376168  | 1.601306   |
| 22 | 1  | 0 | 1.737061   | -0. 079304 | 1.920233   |
| 23 | 6  | 0 | 0.828716   | 2.031537   | 0. 400208  |
| 24 | 1  | 0 | 0.639553   | 2.748020   | -0. 398679 |
| 25 | 6  | 0 | 0. 339948  | 2.465093   | 1.789903   |
| 26 | 1  | 0 | 0.928397   | 2. 144633  | 2.649387   |
| 27 | 1  | 0 | -0. 102447 | 3. 457600  | 1.872255   |
| 28 | 6  | 0 | -3. 844067 | -2.801695  | 0.918207   |
| 29 | 1  | 0 | -2. 943560 | -3. 147390 | 0. 393641  |
| 30 | 1  | 0 | -3. 573300 | -2. 667747 | 1.973819   |
| 31 | 1  | 0 | -4. 587550 | -3. 603097 | 0.864755   |
| 32 | 6  | 0 | -3. 474103 | 2.130579   | -0. 439825 |
| 33 | 1  | 0 | -3. 187455 | 2.515081   | 0.547005   |
| 34 | 1  | 0 | -2. 546995 | 2.022876   | -1.016496  |
| 35 | 1  | 0 | -4. 098566 | 2.883346   | -0. 932370 |
| 36 | 6  | 0 | -7. 683885 | -0. 468853 | -1.329925  |
| 37 | 1  | 0 | -8. 035995 | 0. 525596  | -1.624423  |
| 38 | 1  | 0 | -7.732732  | -1. 118736 | -2. 214647 |
| 39 | 1  | 0 | -8. 387672 | -0. 876903 | -0. 593050 |
| 40 | 35 | 0 | 6 021041   | -1 290017  | -0 408355  |

39 40

# References

- Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* 2010, *29*, 2176–2179.
- Peacock, L. R.; Chapman, R. S. L.; Sedgwick, A. C.; Mahon, M. F.; Amans, D.; Bull, S. D. Org. Lett.
   2015, 17, 994–997.
- (3) Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z. Angew. Chem. Int. Ed. 2010, 49, 3215–3218.
- (4) Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178–6179.
- (5) Gao, B.; Zou, S.; Yang, G.; Ding, Y.; Huang, H. Chem. Commun. 2020, 56, 12198–12201.
- (6) Ikeuchi, Y.; Taguchi, T.; Hanzawa, Y. J. Org. Chem. 2005, 70, 756–759.
- Kohler, D. G.; Gockel, S. N.; Kennemur, J. L.; Waller, P. J.; Hull, K. L. *Nat. Chem.* 2018, *10*, 333–340.
- (8) Horino, Y.; Murakami, M.; Aimono, A.; Lee, J. H.; Abe, H. Org. Lett. 2019, 21, 476–480.
- (9) Hattori, G.; Sakata, K.; Matsuzawa, H.; Tanabe, Y.; Miyake, Y.; Nishibayashi, Y. J. Am. Chem. Soc.
   2010, 132, 10592–10608.
- (10) Nakanishi, Y.; Miki, K.; Ohe, K. Tetrahedron 2007, 63, 12138–12148.
- (11) Watson, I. D. G.; Ritter, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2056–2057.
- (12) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 20728–20731.
- (13) Lepronier, A.; Achard, T.; Giordano, L.; Tenaglia, A.; Buono, G.; Clavier, H. Adv. Synth. Catal.
   2016, 358, 631–642.
- (14) Yang, C.; Wang, C.; Tian, S.; Liu, R. Adv. Synth. Catal. 2010, 352, 1605–1609.
- (15) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 11019–11020.
- (16) Seo, E.; Oh, J.; Lee, S. Asian J. Org. Chem. 2020, 9, 1774–1777.
- (17) Lee, J.; Radomkit, S.; Torker, S.; del Pozo, J.; Hoveyda, A. H. Nat. Chem. 2018, 10, 99–108.
- (18) Gaussian 16, Revision C.01, Frisch, M. J. et al., Gaussian, Inc., Wallingford CT, 2019.
- (19) Reaction Plus pro 2, HPC Systems Inc., https://www.hpc.co.jp/chem/software/react2/.



















210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm





























210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm





















S63





