Experimental Section

Chemical reagent

PVA (17-99) was purchased from Linyi Yiebiao Chemical Industry, Ketjen Black (ECP-600JD), stainless steel mesh, zinc flake (100 μ m) was purchased from Guangdong Canrd New Energy Technology Co. , Ltd.Zinc sulfate heptahydrate (analytically pure) was purchased from Sinopharm Chemical Reagents Co. Diaphragms (GF/D) were purchased from Chongqing olegeeino Technology Co.

Electrodes and electrolytes

Fabrication of Kb-P60 electrode

0.6 g of PVA was placed in 400 ml of water and stirred at 90° C for 4 h. 0.4 g of KB was added and stirred at 90° C until evaporation. The sample was processed in an oven at 80° for 12 h. The resulting product was KB-P60, which was mixed with KB (conductive agent) and PTFE in a mass ratio of 8:1:1, and then pressed onto a stainless-steel mesh.

Pure KB Partial Electrode Fabrication

The KB electrodes were prepared by mixing KB and PTFE binder at a mass ratio of 9:1 and then pressing the mixture onto a stainless-steel mesh. The mass loadings were all controlled to be around 20 mg cm⁻². Two electrolytes were used, which can be classified as cathode electrolyte and anode electrolyte. The cathode electrolyte was prepared by dissolving 0.2 M Znl₂ and 3 M ZnSO₄ in H₂O, and the anode electrolyte was an aqueous solution containing 3 M ZnSO₄.

Electrochemical measurements

The electrochemical performance of Zn-I₂ battery was tested using CR-2023 button cells assembled at room temperature. In Zn-I₂ battery, KB-P60 electrodes or KB electrodes were matched with Zn foils in which glass fibers were used as diaphragms. In the assembly process, 30 μ L of cathode electrolyte was first dropped into the KB-P60 electrode or KB electrode. Then an appropriate volume of anode electrolyte was dripped in to wet the glass fibers. Constant current discharge/charge measurements were performed at room temperature using a battery test system (CT-4008T, Neware, Shenzhen, China) in the potential range of 0.6-1.6 V. The battery was then charged with the electrolyte at a potential of 0.6-1.6 V. The electrode was then charged with the electrolyte at a potential of 0.6-1.6 V. Redox pairs of Γ/I_3^- were investigated using cyclic voltammetry (CV) technique in the voltage range of 0.6-1.6 V at a scan rate of 0.2 mVs⁻¹. All current densities were calculated from the mass of iodine in the cathode solution.

Materials characterization

Powder X-ray diffraction (XRD) analyses were carried out on a Rigaku smart lab se using a Cu-K α radiation source. The samples were scanned over a range of 5 to 80° with a scanning speed of 10° min⁻¹. The morphology and elemental distribution were observed with a field emission scanning electron microscope HITACHI SU 8010) equipped with energy dispersive X-ray spectroscopy (EDS). X-ray photoelectron spectroscopy (XPS) was collected by an Escalab 250Xi instrument (Thermo Fisher Scientific, USA) and Al K α monochromatic radiation was used as the X-ray source. Sputtering was carried out using an embedded argon ion gun, and the sputtering rate was standardized by SiO₂ (25 nm min⁻¹) with a sputtering area of 1 mm × 1 mm. Raman spectra were performed using a LabRAM HR Evolution confocal Raman microscope (Horiba Jobin Yvon) with a 532 nm laser. electrochemical measurements were performed on an electrochemical workstation (CHI760E, Chenhua, Shanghai) for constant-current charge/discharge testing of Zn-I₂ battery.

Fig. S2 N_2 adsorption/desorption isotherm curve and pore-size distribution of KB. Fig. S3 N_2 adsorption/desorption isotherm curve and pore-size distribution of KB-P60.

Scheme S1 Elemental C and I content on charged and discharged pole pieces as shown by EDS test

C (charge)	Ка	26.01	17.545	wt.%	1.017	.842
I (charge)	La	13.35	6.121	wt.%	.712	.884
C (discharge)	Ка	73.81	47.901	wt.%	1.916	.858
I (discharge)	La	15.14	17.093	wt.%	2.108	2.351

Fig. S4 Anode photos of KB battery (Left) and KB-P60 battery (Right) after charge and discharge cycle at 20 A g^{-1} current density.

Fig. S5 Before and after the polyiodide solution is captured by PVA