Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Unlocking Reductive Hydroalkoxylation Cascade for the Stereoselective Synthesis of

Cyclic Ethers: Total Synthesis of (\pm) -Isolaurepan and (\pm) -cis-Lauthisan

Santosh J. Gharpure,* Raj K. Patel

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai

400076

India. Fax: +91-22-2576 7152; Tel: +91-22-2576 7171; E-mail: sjgharpure@iitb.ac.in

Table of Contents

- Experimental and Characterization of compounds.......S3-S26

General experimental:

Melting points are recorded using dbk programmable melting point apparatus in capillary tubes and are uncorrected. IR spectra were recorded on Nicolet 6700 spectrophotometer. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on Bruker Avance 400 spectrometer. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra were recorded on Bruker Avance 500 spectrometer. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to either internal tetramethylsilane or residual CHCl₃ (7.26 ppm for ¹H) or the central line (77.16 ppm) of CDCl₃ (for ¹³C). In the ¹³C NMR spectra, the nature of the carbons (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 experiment, and is given in parentheses.

High resolution mass measurements were carried out using Maxis impact (brucker) instrument using direct inlet mode (TOF). X-ray diffraction studies were carried out using Bruker Single Crystal Kappa Apex II. Analytical thin-layer chromatographies (TLC) were performed on glass plates (7.5 \times 2.5 and 9 \times 5.0 cm) coated with Merck or Acme's silica gel G containing 13% calcium sulfate as binder or on pre-coated 0.2 mm thick Merck 60 F₂₄₅ silica plates and various combinations of ethyl acetate and Petroleum ether were used as eluent. Visualization of spots was accomplished by either exposure to iodine vapour or KMnO₄ stain or vanillin strain. All small-scale dry reactions were carried out using standard syringe septum technique. Dry dichloromethane was prepared by refluxing over anhydrous P₂O₅ and distillation on to calcium hydride. Dry DMF was prepared by stirring on CaH and distillation on to molecular sieves. BF₃·OEt₂, Cu(OTf)₂, TMSOTf, TfOH, AgOTf, CuI, and Et₃SiH were obtained from Aldrich. All other Lewis/Bronsted acids, NaH (60% dispersion in mineral oil), benzyl bromide, cyclohexene oxide, cyclopentene oxide, propargyl bromide (80% in toluene), Mg turning, DMP, [Pd(PPh₃)₂]Cl₂, PPh₃ are commercial reagents and were used as such without further purification. All other internal envnol was prepared using literature established protocol.¹ (Note: In the cases where diastereomeric mixture of products was obtained, the isomers could not be separated and data for the major isomer is mentioned. In the cases where ca. 1:1 mixture of diastereomers was formed, all the peaks are mentioned.)

Our initial attempt for hydroalkoxylation reduction cascade:

Vinyl iodide synthesis: The vinyl iodides **II-VII** were prepared using a known protocol, and their NMR spectra were matched with those of previously reported compounds.²

(*E*)-1-iodohex-1-ene (II):

To a magnetically stirred solution of hexyne **I** (3.0 g, 36.52 mmol) in hexane (20 mL) at -78 °C was added DIBAL-H (27 mL, 40.17 mmol) and reflux for 3h at 50 °C. Then I₂ (11.3 g, 43.82 mmol) in THF (10 mL) was added drop wise in the reaction mixture at -78 °C and stirred for overnight at rt. The reaction mixture was poured carefully into separatory funnel containing 20% H₂SO₄ and extracted with EtOAc (3 × 15 mL), the combined organic layers were washed twice with aqueous saturated sodium thiosulfate, dried over anhyd. Na₂SO₄ and evaporation of the solvent and purification by silica gel column chromatography using Petroleum ether as

eluent to furnish the requisite vinyl iodide **II** (4.8 g, 65%).

Physical appearance: Pale yellow liquid.

 $\mathbf{R}_{f:}$ 0.6 (0.5:9.5, EtOAc:Petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 6.54-6.47 (m, 1H), 5.97 (dt, *J* = 14.0, 1.2 Hz, 1H), 2.06 (qd, *J* = 7.2, 1.2 Hz, 2H), 1.42-1.28 (m, 4H), 0.89 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 146.8 (CH), 74.4 (CH), 35.8 (CH₂), 30.6 (CH₂) 22.1 (CH₂), 13.9 (CH₃).

(E)-(2-iodovinyl)benzene) (IV):

To a magnetically stirred solution of cinnamic acid **III** (2.0 g, 13.49 mmol) in acetonitrile 50 mL and K₃PO₄ (2.8 g, 13.49 mmol) followed by I₂ (13.7 g, 53.96 mmol) was added successively under nitrogen and reflux at 100 °C for overnight under nitrogen atmosphere. The reaction mixture was poured carefully into saturated aqueous Na₂S₂O₃ (30 mL) and extracted with EtOAc (3 × 15 mL), the combined organic layers were washed with saturated aqueous Na₂CO₃, dried over anhyd. Na₂SO₄ and evaporation of the solvent and purification by silica gel column chromatography using Petroleum ether as eluent to furnish the requisite vinyl iodide **IV** (1.92 g, 62%).

Physical appearance: Yellow liquid.

IV

¹H NMR (400 MHz, CDCl₃): δ 7.47-7.43 (m, 1H), 7.37-7.32 (m, 5H), 6.86-6.82 (m, 1H).
¹³C NMR (100 MHz, CDCl₃, DEPT): δ 145.2 (CH), 137.8 (C), 128.9 (2 × CH), 128.6 (CH), 126.2 (2 × CH), 77.2 (CH).

2-iodohex-1-ene (V):

To a magnetically stirred solution of NaI (4.38 g, 0.856 mmol) in acetonitrile 15 mL, TMSCI (4.38 g, 29.21 mmol) and H₂O (0.26 mL, 14.61 mmol) was added and the reaction mixture was stirred at room temperature for 10 minutes. Hexyne **I** (2.0 g, 24.36 mmol) was added to the reaction mixture and stirred for 1h. The reaction mixture was poured carefully into water (10 mL) and extracted with EtOAc (3 × 15 mL), the combined organic layers were washed with saturated brine, dried over anhyd. Na₂SO₄ and evaporation of the solvent and purification by silica gel column chromatography using Petroleum ether as eluent to furnish the requisite vinyl iodide **V** (1.5 g, 60%).

Physical appearance: Yellow liquid.

R_{*f*}**:** 0.6 (1:9 ethyl acetate-petroleum ether).

l ↓ ↓ Me

¹**H NMR (500 MHz, CDCl₃):** δ 6.00 (s, 1H), 5.67 (s, 1H), 2.38 (t, *J* = 7.5 Hz, 2H), 1.51-1.45 (m, 2H), 1.35-1.28 (m, 2H), 0.92 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 125.2 (CH₂), 112.9 (C), 45.2 (CH₂), 31.3 (CH₂) 21.4 (CH₂), 13.9 (CH₃).

2-iodohex-1-ene (VII):

To a magnetically stirred solution of alkynol **VI** (5.0 g, 25.51 mmol) in THF:H₂O (1:1, 100 mL), TsNHNH₂ (9.5 g, 51.02 mmol) and NaOAc (6.43, 76.53 mmol) was added successively and reflux for overnight. The reaction was monitored by TLC, quenched with distilled water

(50 mL) at 0 °C upon completion and stirred extra for 5 minutes. The resulting mixture was extracted with EtOAc (3×20 mL) and dried over anhyd. Na₂SO₄. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-petroleum ether as eluent furnished the requisite vinyl iodide **VII** (2.56 g, 55%).

Physical appearance: Colourless liquid.

R_{*f*}: 0.2 (2:8 ethyl acetate-petroleum ether).

¹**H NMR (500 MHz, CDCl₃):** δ 6.31 (d, *J* = 7.5 Hz, 1H), 6.26-6.22 (m, 1H), 3.67 (t, *J* = 6.5 Hz, 2H), 3.20-3.15 (m, 1H), 2.37 (q, *J* = 7.0 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 137.7 (CH), 84.8 (CH), 60.7 (CH₂) 38.0 (CH₂). General procedure for Sonogashira Coupling:¹

To stirred solution of terminal alkynol (1.0 equiv) and vinyl iodide (1.1 equiv) in trimethyl amine (6 ml), $Pd(PPh_3)_2Cl_2$ (0.015 equiv) and CuI (0.02 equiv) was added under N₂ atmosphere. The reaction mixture was allowed to stir overnight, the reaction mixture was quenched with aqueous sat. NH₄Cl (5 mL) and product was extracted with EtOAC (3 × 5 mL) and dried over anhyd. Na₂SO₄. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-petroleum ether (10:90) as eluent furnished corresponding enynol.

(2S*,5S*)-2-cyclohexyl-5-hexyltetrahydrofuran (7a):

To a magnetically stirred solution of enynol **6a** (60 mg, 0.26 mmol) and Et₃SiH (81.6 μ L, 0.51 mmol) in dry CH₂Cl₂ (4 mL), TMSOTf (4.6 μ L, 0.03 mmol) was added dropwise at 0 °C. Reaction was monitored by TLC, quenched with saturated aq. solution of NaHCO₃ upon completion, extracted with CH₂Cl₂ (3 × 5 mL) and dried over anhyd. Na₂SO₄. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-petroleum ether as eluent furnished THF-derivative **7a** (54 mg, 87 %) as mixture of diastereomers (dr-2:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2926, 2854, 1450, 1377, 1063, 889, 770 cm⁻¹.

Data for the major diastereomer are written:

¹**H NMR (400 MHz, CDCl₃)**: δ 3.74 (quint, *J* = 6.4 Hz, 1H), 3.48 (q, *J* = 7.2 Hz, 1H), 1.98-1.78 (m, 3H), 1.72-1.69 (m, 2H), 1.65-1.46 (m, 4H), 1.44-1.07 (m, 14H), 1.00-0.89 (m, 2H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 83.8 (CH), 79.2 (CH), 43.3 (CH), 36.2 (CH₂), 32.0 (CH₂), 31.1 (CH₂), 30.1 (CH₂), 29.6 (CH₂), 29.1 (CH₂), 28.7 (CH₂), 26.7 (CH₂), 26.3 (CH₂), 26.2 (CH₂), 26.1 (CH₂), 22.7 (CH₂), 14.2 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₆H₃₁O 239.2374, found 239.2374.

(2S*,5R*)-2-hexyl-5-methyltetrahydrofuran (7b):

Reaction of enynol **6b** (100 mg, 0.60 mmol) with Et₃SiH (192.7 μ L, 1.20 mmol) and TMSOTf (10.9 μ L, 0.06 mmol) in dry CH₂Cl₂ (5 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7b** (61 mg, 60 %) as mixture of diastereomers (dr-1:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2940, 1466, 1375, 1123, 944, 824, 670 cm⁻¹.

¹**H NMR (400 MHz, CDCl**₃): δ 4.04 (sext, J = 6.0 Hz, 1H), 3.95-3.85 (m, 2H), 3.74 (quint, J = 6.8 Hz, 1H), 2.03-1.88 (m, 4H), 1.57-1.46 (m, 2H), 1.45-1.34 (m, 8H), 1.25-1.17 (m, 20H), 0.91-0.83 (m, 6H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 79.7 (CH), 78.9 (CH), 75.2 (CH), 74.5 (CH), 36.4 (2 × CH₂), 36.3 (CH₂), 34.1 (CH₂), 32.9 (CH₂), 32.5 (CH₂), 31.9 (CH₂), 31.4 (CH₂), 29.6 (2 × CH₂), 26.3 (2 × CH₂), 22.7 (2 × CH₂), 21.5 (2 × CH₃), 14.2 (2 × CH₃).

HRMS (**ESI**, **M**+**Na**⁺): m/z calcd. for C₁₁H₂₂ONa, 193.1584, found 193.1584.

Gram scale synthesis:

(2S*,5R*)-2-hexyl-5-methyltetrahydrofuran (7b):

Reaction of enynol **6b** (1.00 gm, 6.017 mmol) with Et_3SiH (1.92 mL, 12.03 mmol) and TMSOTf (326 μ L, 1.805 mmol) in dry CH₂Cl₂ (30 mL) as described for the THF-derivative

7a followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative 7b (615 mg, 61%) as mixture of diastereomers (dr-1:1).

(2S*,5R*)-2-hexyl-5-pentyltetrahydrofuran (7c):

Reaction of enynol **6c** (70 mg, 0.31 mmol) with Et₃SiH (100.3 μ L, 0.63 mmol) and TMSOTf (5.6 μ L, 0.03 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7c** (60 mg, 85%) as a mixture of diastereomers (dr-1:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2930, 2864, 1466, 1374, 1090, 727 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 3.88 (quint, *J* = 6.4 Hz, 1H), 3.75 (quint, *J* = 6.4 Hz, 3H), 1.99-1.95 (m, 2H), 1.92-1.85 (m, 3H), 1.59-1.53 (m, 5H), 1.47-1.26 (m, 34H), 0.88-0.84 (m, 12H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 79.4 (CH), 78.8 (CH), 36.3 (2 × CH₂), 32.1 (CH₂), 31.2 (2 × CH₂), 29.6 (2 × CH₂), 26.3 (CH₂), 26.1 (CH₂), 22.7 (2 × CH₂), 14.2 (CH₃), 14.1 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₅H₃₁O, 227.2373, found 227.2373.

(2S*,5S*)-2-hexyl-5-isopropyltetrahydrofuran (7d):

Reaction of enynol **6d** (60 mg, 0.31 mmol) with Et₃SiH (98 μ L, 0.628 mmol) and TMSOTf (5.5 μ L, 0.031 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7d** (49 mg, 80%) as a mixture of diastereomers (dr-2:1)

Physical appearance: Colourless liquid.

Rf: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2956, 2872, 1467, 1382, 1072, 820, 667 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃)**: δ 3.75 (quint, *J* = 6.5 Hz, 1H), 3.49 (q, *J* = 7.0 Hz, 1H), 1.94-1.88 (m, 1H), 1.85-1.78 (m, 1H), 1.68-1.47 (m, 3H), 1.46-1.37 (m, 3H), 1.27-1.26 (m, 7H), 0.94 (d, *J* = 6.5 Hz, 3H), 0.87-0.82 (m, 6H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 84.8 (CH), 79.4 (CH), 36.2 (CH₂), 33.3 (CH), 32.0 (CH₂), 31.3 (CH₂), 29.6 (CH₂), 28.4 (CH₂), 26.3 (CH₂), 22.8 (CH₂), 19.5 (CH₃), 18.5 (CH₃), 14.2 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₃H₂₆ONa 221.1902, found 221.1902.

(2S*,5S*)-2-(tert-butyl)-5-hexyltetrahydrofuran (7e):

Reaction of enynol **6e** (60 mg, 0.29 mmol) with Et₃SiH (91 μ L, 0.58 mmol) and TMSOTf (5.2 μ L, 0.029 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7e** (52 mg, 85%) as a single *cis* diastereomer (dr \geq 19:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2929, 2858, 1466, 1362, 1073, 824, 670 cm⁻¹.

S8

(2*R**,5*S**)-2-methyl-5-phenethyltetrahydrofuran (7f):³ Reaction of enynol **6f** (80 mg, 0.43 mmol) with Et₃SiH (68.6 μL, 0.86 mmol) and TMSOTf (7.7 μL, 0.043 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed

¹**H NMR (400 MHz, CDCl₃)**: δ 3.80 (quint, J = 6.4 Hz, 1H), 3.52 (t, J = 7.2 Hz, 1H), 1.94-

1.85 (m, 1H), 1.76-1.67 (m, 1H), 1.64-1.52 (m, 2H), 1.41-1.35 (m, 2H), 1.31-1.25 (m, 8H),

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 87.3 (CH), 79.3 (CH), 36.0 (CH₂), 33.6 (C), 32.0

(CH₂), 31.5 (CH₂), 29.6 (CH₂), 26.2 (2 × CH₂), 26.0 (3 × CH₃), 22.8 (CH₂), 14.2 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₄H₂₉O 213.2216, found 213.2216.

by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7f** (60 mg, 75%) as a mixture of diastereomers (dr-2:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

0.89-0.86 (m, 12H).

IR (neat): 2941, 1717, 1454, 1375, 1088, 884, 750, 700 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 7.29 (t, *J* = 7.6 Hz, 1H), 7.24-7.17 (m, 4H), 3.98 (sext, *J* = 6.0 Hz, 1H), 3.85 (quint, *J* = 6.4 Hz, 1H), 2.82-2.69 (m, 2H), 2.10-2.02 (m, 1H), 2.01-1.90 (m, 2H), 1.83-1.74 (m, 1H), 1.61-1.48 (m, 2H), 1.28 (t, *J* = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 142.4 (C), 128.5 (2 × CH), 128.4 (2 × CH), 125.8 (CH), 78.9 (CH), 75.4 (CH), 38.0 (CH₂), 33.0 (CH₂), 32.6 (CH₂), 31.4 (CH₂), 21.6 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₃H₁₉O, 191.1433, found 191.1432.

(2S*,5S*)-2-phenethyl-5-phenyltetrahydrofuran (7g):⁴

Reaction of enynol **6g** (50 mg, 0.20 mmol) with Et₃SiH (64 μ L, 0.40 mmol) and TMSOTf (3.6 μ L, 0.02 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7g** (36 mg, 70%) as a mixture of diastereomers (dr-1.3:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 3020, 2934, 1495, 1453, 1054, 946, 754, 699 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: 7.41-7.21 (m, 10H), 4.92 (t, *J* = 7.2 Hz, 1H), 4.08 (quint, *J* = 6.8 Hz, 1H), 2.90-2.72 (m, 2H), 2.39-2.18 (m, 1H), 2.17-2.03 (m, 2H), 1.97-1.90 (m, 2H), 1.75-1.67 (m, 1H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 144.0 (C), 143.6 (C), 128.6 (2 × CH), 128.5 (2 × CH), 128.4 (2 × CH), 127.2 (CH), 125.9 (2 × CH), 125.7 (CH), 81.0 (CH), 79.3 (CH), 37.9 (CH₂), 34.6 (CH₂), 32.7 (CH₂), 31.4 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₈H₂₀ONa, 275.1408, found 275.1408.

(2S*,5S*)-2-benzyl-5-hexyltetrahydrofuran (7h):

Reaction of enynol **6h** (60 mg, 0.25 mmol) with Et₃SiH (79.2 μ L, 0.50 mmol) and TMSOTF (4.4 μ L, 0.02 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7h** (52 mg, 85%) as a mixture of diastereomers (dr-1.3:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2929, 2860, 1776, 1732, 1455, 1179, 1078, 750, 701 cm⁻¹.

¹**H NMR (500 MHz, CDCl**₃): δ 7.30-7.27 (m, 2H), 7.24-7.20 (m, 3H), 4.06 (quint, *J* = 6.5 Hz, 1H), 3.83 (quint, *J* = 6.5 Hz, 1H), 2.98 (d, *J* = 6.0 Hz, 1H), 2.73 (d, *J* = 7.5 Hz, 1H), 1.94-1.84 (m, 2H), 1.69-1.56 (m, 2H), 1.49-1.31 (m, 3H), 1.25-1.02 (m, 7H), 0.91-0.89 (m, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 139.1 (C), 129.5 (2 × CH), 128.3 (2 × CH), 126.2 (CH), 80.0 (CH), 79.8 (CH), 42.6 (CH₂), 36.4 (CH₂), 32.0 (CH₂), 31.0 (CH₂), 30.6 (CH₂), 29.6 (CH₂), 26.3 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₇H₂₇O, 247.2053, found 247.2053.

(2S*,5S*)-2-((benzyloxy)methyl)-5-hexyltetrahydrofuran (7i):

Reaction of enynol **6i** (100 mg, 0.37 mmol) with Et₃SiH (117.2 μ L, 0.73 mmol) and TMSOTf (6.6 μ L, 0.04 mmol) in dry CH₂Cl₂ (5 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7i** (86 mg, 85%) as a mixture of diastereomers (dr-1.3:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2927, 2860, 1454, 1098, 1261, 737, 699 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃)**: δ 7.36-7.32 (m, 4H), 7.29-7.26 (m, 1H), 4.58 (q, *J* = 12.5 Hz, 2H), 4.07 (quint, *J* = 6.0 Hz, 1H), 3.84 (quint, *J* = 6.0 Hz, 1H), 3.51-3.44 (m, 2H), 2.02-1.97 (m, 1H), 1.95-1.89 (m, 1H), 1.70-1.58 (m, 2H), 1.52-1.38 (m, 3H), 1.36-1.29 (m, 7H), 0.89 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 138.6 (C), 128.4 (2 × CH), 127.8 (2 × CH), 127.6 (CH), 80.2 (CH), 77.9 (CH), 73.4 (CH₂), 73.2 (CH₂), 36.0 (CH₂), 31.9 (CH₂), 30.9 (CH₂), 29.5 (CH₂), 28.3 (CH₂), 26.3 (CH₂), 22.7 (CH₂), 14.2 (CH₃).

HRMS (**ESI**, **M**+**Na**⁺): m/z calcd. for C₁₈H₂₈O₂Na, 299.1983, found 299.1983.

(2S*,5S*)-2-hexyl-5-phenyltetrahydrofuran (7j):

Reaction of enynol **6j** (50 mg, 0.22 mmol) with Et₃SiH (70.2 μ L, 0.44 mmol) and TMSOTf (3.9 μ L, 0.02 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7j** (38 mg, 74%) as a mixture of diastereomers (dr-2.1:1).

Physical appearance: Colourless liquid.

R_f: 0.6 (1:19, EtOAc: Petroleum ether).

IR (neat): 2929, 2861, 1455, 1052, 758, 699 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃)**: δ 7.38-7.25 (m, 5H), 4.89 (t, *J* = 7.5 Hz, 1H), 4.03 (quint, *J* = 6.5 Hz, 1H), 2.32-2.27 (m, 1H), 2.11-2.04 (m, 1H), 1.91-1.74 (m, 2H), 1.68-1.52 (m, 2H), 1.51-1.39 (m, 1H), 1.38-1.29 (m, 7H), 0.92 (t, *J* = 5.6 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 143.8 (C), 128.3 (2 × CH), 127.2 (CH), 125.9 (2 × CH), 80.9 (CH), 80.2 (CH), 36.2 (CH₂), 34.6 (CH₂), 32.0 (CH₂), 31.4 (CH₂), 29.6 (CH₂), 26.4 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₆H₂₅O 233.1899, found 233.1899.

(2S*,5S*)-2-(4-fluorophenyl)-5-hexyltetrahydrofuran (7m):

Reaction of enynol **6m** (50 mg, 0.20 mmol) with Et_3SiH (64.8 µL, 0.41 mmol) and TMSOTF (3.6 µL, 0.02 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the

THF-derivative **7m** (25 mg, 50%) as a mixture of diastereomers (dr-1.5:1).

Physical appearance: Yellow liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2947, 2929, 1604, 1466, 1501, 1225, 1051, 833 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 7.32-7.26 (m, 2H), 7.02-6.98 (m, 2H), 4.83 (t, *J* = 7.2 Hz, 1H), 3.99 (quint, *J* = 6.4 Hz, 1H), 2.32-2.22 (m, 1H), 2.17-2.01 (m, 1H), 1.85-1.71 (m, 2H), 1.64-1.39 (m, 4H), 1.39-1.25 (m, 6H), 0.89-0.87 (m, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 162.2 (d, J = 245.0 Hz, C), 139.4 (d, J = 4.0 Hz, C), 127.6 (d, J = 8.0 Hz, 2 × CH), 115.1 (d, J = 21.0 Hz, 2 × CH), 80.3 (CH), 79.7 (CH), 36.2 (CH₂), 34.7 (CH₂), 32.0 (CH₂), 31.4 (CH₂), 29.6 (CH₂), 26.4 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

¹⁹F NMR (377 MHz, CDCl₃): δ -116.0 (t, J = 3.8 Hz).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₆H₂₄FO, 251.1806, found 251.1808.

(2S*,5S*)-2-(4-chlorophenyl)-5-hexyltetrahydrofuran (7n):

Reaction of enynol **6n** (50 mg, 0.22 mmol) with Et_3SiH (70.7 µL, 0.44 mmol) and TMSOTF (3.9 µL, 0.02 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7n** (37 mg, 73%) as a mixture of diastereomers (dr-1.6:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2930, 1718, 1594, 1466, 1273, 1092, 1015, 834, 761 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃)**: δ 7.30-7.25 (m, 4H), 4.84 (t, *J* = 7.0 Hz, 1H), 4.00 (quint, *J* = 6.5 Hz, 1H), 2.29-2.25 (m, 1H), 2.12-2.03 (m, 1H), 1.80-1.45 (m, 2H), 1.39-1.26 (m, 4H), 0.91-0.86 (m, 9H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 142.3 (C), 132.7 (C), 128.5 (2 × CH), 127.3 (2 × CH), 80.4 (CH), 80.1 (CH), 36.1 (CH₂), 34.6 (CH₂), 32.0 (CH₂), 31.4 (CH₂), 29.6 (CH₂), 26.4 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₆H₂₄OCl, 267.1499, found 267.1499.

(2S*,5S*)-2-hexyl-5-(4-nitrophenyl)tetrahydrofuran (70):

Reaction of enynol **60** (50 mg, 0.22 mmol) with Et₃SiH (70.9 μ L, 0.44 mmol) and TMSOTf (3.9 μ L, 0.02 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7o** (38 mg, 76%) as a mixture of diastereomers (dr-1.7:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2930, 2850, 1723, 1604, 1522, 1465, 1350, 1064, 853, 750 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 8.17 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 4.96 (t, *J* = 6.8 Hz, 1H), 4.09 (quint, *J* = 6.8 Hz, 1H), 2.81-2.32 (m, 1H), 2.10-2.07 (m, 1H), 1.83-1.53 (m, 5H), 1.39-1.24 (m, 7H), 0.91-0.86 (m, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 152.1 (C), 147.2 (C), 126.5 (2 × CH), 123.7 (2 × CH), 80.0 (CH), 79.8 (CH), 36.1 (CH₂), 34.7 (CH₂), 31.9 (CH₂), 31.3 (CH₂), 29.5 (CH₂), 26.4 (CH₂), 22.7 (CH₂), 14.2 (CH₃).

HRMS (**ESI**, **M**+**Na**⁺): m/z calcd. for C₁₆H₂₃NO₃Na, 300.1579, found 300.1579.

4-((2S*,5S*)-5-hexyltetrahydrofuran-2-yl)benzonitrile (7p):

Reaction of enynol **6p** (50 mg, 0.20 mmol) with Et_3SiH (63 µL, 0.39 mmol) and TMSOTf (3.57 µL, 0.02 mmol) in dry CH_2Cl_2 (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the

THF-derivative **7p** (39 mg, 78%) as a mixture of diastereomers (dr-1.7:1).

Physical appearance: Yellow liquid.

R_f: 0.65 (1:9, EtOAc: Petroleum ether).

IR (neat): 2960, 2929, 2857, 2227, 1464, 1065, 833, 756 cm⁻¹.

¹**H NMR (500 MHz, CDCl**₃): δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 4.90 (t, *J* = 7.0 Hz, 1H), 4.03 (quint, *J* = 7.0 Hz, 1H), 2.37-2.30 (m, 1H), 2.11-2.03 (m, 1H), 1.78-1.66 (m, 2H), 1.62-1.41(m, 2H), 1.35-1.30 (m, 8H), 0.89 (t, *J* = 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 149.5 (C), 132.2 (2 × CH), 126.4 (2 × CH), 119.1 (C), 110.8 (C), 80.7 (CH), 79.9 (CH), 36.0 (CH₂), 34.6 (CH₂), 31.9 (CH₂), 31.3 (CH₂), 29.5 (CH₂), 26.3 (CH₂), 22.7 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₇H₂₄NO 258.1852, found 258.1851.

(2S*,5S*)-2-(2-bromophenyl)-5-hexyltetrahydrofuran (7q):

Reaction of enynol **6q** (60 mg, 0.20 mmol) with Et₃SiH (62.3 μ L, 0.39 mmol) and TMSOTf (4.3 μ L, 0.02 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7q** (46 mg, 75%) as a mixture of diastereomers (dr-1.5:1).

Physical appearance: Yellow liquid.

R*f***:** 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2929, 1716, 1466, 1273, 1051, 755, 670 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 7.58 (dd, J = 8.0, 1.6 Hz, 1H), 7.49

(dd, *J* = 8.0, 1.2 Hz, 1H), 7.30 (td, *J* = 7.2, 1.2 Hz, 1H), 7.09 (dd, *J* = 7.6, 1.6 Hz, 1H), 5.15 (t, *J* = 6.8 Hz, 1H), 4.02 (quint, *J* = 6.4 Hz, 1H), 2.55-2.48 (m, 1H), 2.08-2.01 (m, 1H), 1.84-1.77 (m, 3H), 1.71-1.51 (m, 2H), 1.51-1.33 (m, 7H), 0.93-0.89 (m, 3H).

S13

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.4 (C), 132.5 (CH), 128.4 (CH), 127.5 (CH), 127.1 (CH), 121.5 (C), 80.5 (CH), 79.7 (CH), 35.9 (CH₂), 33.4 (CH₂), 32.0 (CH₂), 31.2 (CH₂), 29.6 (CH₂), 26.5 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₆H₂₃BrNa, 333.0825, found 333.0825.

(2S*,5S*)-2-hexyl-5-(m-tolyl)tetrahydrofuran (7r):

Reaction of enynol **6r** (50 mg, 0.20 mmol) with Et₃SiH (64.8 μ L, 0.40 mmol) and TMSOTf (3.7 μ L, 0.20 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7r** (26 mg, 52%) as a mixture of diastereomers (dr-1.5:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2956, 2927, 2856, 1463, 1063, 885, 784, 701 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.22 (t, J = 7.6 Hz, 1H), 7.17 -

7.12 (m, 2H), 7.05 (d, *J* = 7.5 Hz, 1H), 4.83 (t, *J* = 7.2 Hz, 1H), 4.00 (quint, *J* = 6.8 Hz, 1H), 2.35 (s, 3H), 2.32-2.23 (m, 1H), 2.10-2.01 (m, 1H), 1.84-1.76 (m, 2H), 1.67-1.59 (m, 1H), 1.49-1.37 (m, 1H), 1.36-1.27 (m, 8H), 0.92-0.89 (m, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.6 (C), 137.9 (C), 128.3 (CH), 128.0 (CH), 126.7 (CH), 123.1 (CH), 80.9 (CH), 80.2 (CH), 36.2 (CH₂), 34.5 (CH₂), 32.0 (CH₂), 31.5 (CH₂), 29.6 (CH₂), 26.4 (CH₂), 22.8 (CH₂), 21.6 (CH₃), 14.2 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₇H₂₇O 247.2056, found 247.2051.

(2S*,5S*)-2-hexyl-5-(3-methoxyphenyl)tetrahydrofuran (7s):

Reaction of enynol **6s** (50 mg, 0.19 mmol) with Et₃SiH (62 μ L, 0.39 mmol) and TMSOTf (3.5 μ L, 0.02 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7s** (23 mg, 55%) as a mixture of diastereomers (dr-1.5:1).

Physical appearance: Colourless liquid.

R_f: 0.65 (1:9, EtOAc: Petroleum ether).

IR (neat): 2933, 2870, 1612, 1491, 1261, 1049, 774 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃)**: δ 7.24 (t, J = 8.0 Hz, 1H), 6.94-

6.91 (m, 2H), 6.80-6.78 (m, 1H), 4.87 (t, *J* = 7.0 Hz, 1H), 4.02 (quint, *J* = 7.0 Hz, 1H), 3.82 (s, 3H), 2.32-2.25 (m, 1H), 2.07-2.02 (m, 1H), 1.87-1.73 (m, 1H), 1.68-1.58 (m, 2H), 1.57-1.40 (m, 1H), 1.37-1.27 (m, 8H), 0.90 (t, *J* = 6.5 Hz, 3H).

Me

7r

Mé

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 159.7 (C), 145.6 (C), 129.4 (CH), 118.3 (CH), 112.5 (CH), 111.5 (CH), 80.7 (CH), 80.3 (CH), 55.3 (CH₃), 36.2 (CH₂), 34.6 (CH₂), 32.0 (CH₂), 31.4 (CH₂), 29.6 (CH₂), 26.4 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₇H₂₇O₂ 263.2006, found 263.1999.

(2S*,5S*)-2-hexyl-5-(naphthalen-1-yl)tetrahydrofuran (7t):

Reaction of enynol **6t** (50 mg, 0.18 mmol) with Et₃SiH (57.4 μ L, 0.35 mmol) and TMSOTf (3.24 μ L, 0.02 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7t** (25 mg, 50%) as a mixture of diastereomers (dr-1.3:1).

Physical appearance: Yellow liquid.

R_f: 0.7 (1:9, EtOAc: Petroleum ether).

IR (neat): 2925, 2848, 1599, 1217, 1069, 776, 698 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃)**: δ 7.99-7.97 (m, 1H), 7.87 (d, J =

7.5 Hz, 1H), 7.77-7.74 (m, 2H), 7.52-7.46 (m, 3H), 5.63 (t, *J* = 7.0

Hz, 1H), 4.12 (quint, *J* = 6.0 Hz, 1H), 2.60-2.53 (m, 1H), 2.16-2.09 (m, 1H), 1.97-1.87 (m, 2H), 1.79-1.64 (m, 2H), 1.61-1.51 (m, 1H), 1.48-1.35 (m, 7H), 0.93 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 139.7 (C), 133.8 (C), 130.4 (C), 128.9 (CH), 127.4 (CH), 125.8 (CH), 125.7 (CH), 125.4 (CH), 123.5 (CH), 122.3 (CH), 80.4 (CH), 77.9 (CH), 36.0 (CH₂), 34.0 (CH₂), 32.0 (CH₂), 31.5 (CH₂), 29.6 (CH₂), 26.6 (CH₂), 22.8 (CH₂), 14.3 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for 283.2056, found 283.2054.

(2S*,6R*)-2-hexyl-6-methyltetrahydro-2H-pyran (9a):

Reaction of enynol **8a** (60 mg, 0.33 mmol) with Et₃SiH (106.2 μ L, 0.40 mmol) and TMSOTf (60.1 μ L, 0.33 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THP-derivative **9a** (40 mg, 65%) as single diastereomer.

Physical appearance: Yellow liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2928, 1466, 1217, 1040, 770, 591 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 3.42-3.36 (m, 1H), 3.26-3.21 (m, 1H), 1.80-1.76 (m, 1H), 1.56-1.44 (m, 4H), 1.37-1.35 (m, 2H), 1.28-1.26 (m, 9H), 1.15 (d, *J* = 4.8 Hz, 3H), 0.87 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 78.1 (CH), 73.9 (CH), 36.8 (CH₂), 33.6 (CH₂), 32.0 (CH₂), 31.4 (CH₂), 29.6 (CH₂), 25.8 (CH₂), 23.9 (CH₂), 22.8 (CH₂), 22.4 (CH₃), 14.2 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₂H₂₅O, 185.1889, found 185.1889.

(2S*,6S*)-2-hexyl-6-phenyltetrahydro-2H-pyran (9b):

Reaction of enynol **8b** (70 mg, 0.29 mmol) with Et₃SiH (92.5 μ L, 0.58 mmol) and TMSOTf (52.2 μ L, 0.29 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THP-derivative **9b** (35 mg, 50 %) as a single diastereomer.

Physical appearance: Yellow liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2932, 2859, 1717, 1451, 1315, 1275, 1111, 1027, 758 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 7.38-7.31 (m, 4H), 7.26-7.22 (m, 1H), 4.36 (dd, *J* = 11.2, 2.0 Hz, 1H) 3.47 (quint, *J* = 4.8 Hz, 1H), 1.98-1.91 (m, 1H), 1.87-1.84 (m, 1H), 1.70-1.60 (m, 3H), 1.54-1.41 (m, 3H), 1.31-1.30 (m, 8H), 0.89 (t, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.9 (C), 128.3 (2 × CH), 127.1 (CH), 126.0 (2 × CH), 79.7 (CH), 78.5 (CH), 36.7 (CH₂), 33.8 (CH₂), 32.0 (CH₂), 31.3 (CH₂), 29.6 (CH₂), 25.6 (CH₂), 24.3 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₇H₂₇O, 247.2057, found 247.2057.

(2S*,6S*)-2-(chloromethyl)-6-hexyltetrahydro-2H-pyran (9c):

Reaction of enynol **8c** (60 mg, 0.28 mmol) with Et₃SiH (89.2 μ L, 0.56 mmol) and TMSOTf (50.4 μ L, 0.28 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THP-derivative **9c** (36 mg, 60%) as a single diastereomer.

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2934, 1440, 1664, 1466, 824, 777, 670 cm⁻¹.

¹**H NMR** (**500 MHz, CDCl₃**): δ 3.53-3.47 (m, 2H), 3.45-3.40 (m, 1H), 3.31-3.27 (m, 1H), 1.89-1.84 (m, 1H), 1.73-1.71 (m, 1H), 1.61-1.60 (m, 1H), 1.57-1.46 (m, 2H), 1.41-1.36 (m, 2H), 1.28-1.22 (m, 8H), 1.21-1.13 (m, 1H), 0.87 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 78.5 (CH), 77.6 (CH), 47.7 (CH₂), 36.5 (CH₂), 32.0 (CH₂), 31.4 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 25.6 (CH₂), 23.4 (CH₂), 22.8 (CH₂), 14.2 (CH₃). HRMS (ESI, M+Na⁺): m/z calcd. for C₁₂H₂₃ClNaO, 241.1346, found 241.1346.

(2S*,6S*)-2-hexyl-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran (9d):

Reaction of enynol **8d** (60 mg, 0.29 mmol) with Et_3SiH (93.7 µL, 0.587 mmol) and TMSOTF (53.0 µL, 0.29 mmol) in dry CH_2Cl_2 (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished

the THP-derivative **9d** (40 mg, 66%) as a single diastereomer.

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2933, 2857, 2349, 1456, 1373, 1071, 637 cm⁻¹.

¹**H NMR** (**400 MHz, CDCl**₃): δ 3.47-3.40 (m, 1H), 3.30-3.24 (m, 1H), 2.49-2.43 (m, 1H), 2.31-2.24 (m, 1H), 1.98 (t, *J* = 2.8 Hz, 1H), 1.87-1.80 (m, 2H), 1.59-1.43 (m, 4H), 1.39-1.33 (m, 2H), 1.27-1.23 (m, 6H), 1.22-1.10 (m, 2H), 0.87 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 81.5 (C), 78.4 (CH), 76.2 (CH), 69.7 (CH), 36.6 (CH₂), 32.0 (CH₂), 31.4 (CH₂), 31.0 (CH₂), 29.5 (CH₂), 26.4 (CH₂), 25.7 (CH₂), 23.6 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₄H₂₅O, 209.1900, found 209.1900.

(2S*,6S*)-2-hexyl-6-vinyltetrahydro-2H-pyran (9e):

Reaction of enynol **8e** (50 mg, 0.26 mmol) with Et₃SiH (83.0 μ L, 0.52 mmol) and TMSOTf (46.9 μ L, 0.26 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THP-derivative **9e** (31 mg, 62%) as a single diastereomer.

Physical appearance: Colourless liquid.

R_{*f*}: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2930, 2871, 1736, 1464, 1281, 1134, 972, 712, 670 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃): δ 5.87 (ddd, J = 16.8, 10.8, 5.6 Hz, 1H), 5.30 (d, J = 17.2 Hz, 1H), 5.04 (d, J = 10.8 Hz, 1H), 3.80 (dd, J = 11.2, 5.2 Hz, 1H), 3.31 (quint, J = 5.6 Hz, 1H), 1.86-1.81 (m, 1H), 1.64-1.47 (m, 5H), 1.41-1.40 (m, 2H), 1.31-1.14 (m, 8H), 0.87 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 139.9 (CH), 114.4 (CH₂), 78.4 (CH), 78.0 (CH), 36.7 (CH₂), 32.0 (CH₂), 31.7 (CH₂), 31.4 (CH₂), 29.6 (CH₂), 25.7 (CH₂), 23.8 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₃H₂₄ONa, 219.1746, found 219.1746.

₩5^{Me}

`0´ **≬** 9e

Н

((2S*,4aS*,8aR*)-2-hexyloctahydro-2H-chromene (9f):

Reaction of enynol **8f** (50 mg, 0.23 mmol) with Et_3SiH (72.0 µL, 0.45 mmol) and TMSOTF (41.1 µL, 0.23 mmol) in dry CH_2Cl_2 (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished

the THP-derivative 9f (35 mg, 70%) as a single diastereomer.

Physical appearance: Yellow liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2928, 2856, 1452, 1373, 1112, 1088, 830, 670 cm⁻¹.

¹**H NMR (500 MHz, CDCl**₃): δ 3.26 (quint, *J* = 5.5 Hz, 1H), 2.88 (td, *J* = 9.5, 4.0 Hz, 1H), 1.88-1.85 (m, 1H), 1.76-1.75 (m, 1H), 1.70-1.67 (m, 1H), 1.62-1.51 (m, 3H), 1.50-1.49 (m, 1H), 1.38-1.32 (m, 2H), 1.30-1.21 (m, 11H), 1.18-1.11 (m, 2H), 0.96-0.92 (m, 1H), 0.86 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 82.0 (CH), 78.1 (CH), 42.0 (CH), 36.7 (CH₂), 32.8 (CH₂), 32.4 (CH₂), 32.0 (CH₂), 31.9 (CH₂), 31.2 (CH₂), 29.6 (CH₂), 26.0 (CH₂), 25.8 (CH₂), 25.3 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₅H₂₉O, 225.2214, found 225.2214.

(2S*,4aS*,7aR*)-2-hexyloctahydrocyclopenta[b]pyran (9g):

Reaction of enynol **8g** (100 mg, 0.48 mmol) with Et₃SiH (154.8 μ L, 0.97 mmol) and TMSOTf (87.6 μ L, 0.48 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished

the THP-derivative **9g** (65 mg, 65%) as a single diastereomer.

Physical appearance: Yellow liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2930, 2850, 1455, 1342, 1114, 824, 670 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃)**: δ 3.34 (quint, *J* = 4.0 Hz, 1H), 3.05 (td, *J* = 10.0, 7.0 Hz, 1H), 1.94-1.85 (m, 2H), 1.72-1.54 (m, 5H), 1.51-1.39 (m, 3H), 1.30-1.19 (m, 10H), 1.10-1.03 (m, 1H), 0.86 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 84.5 (CH), 79.0 (CH), 43.5 (CH), 36.4 (CH₂), 32.0 (CH₂), 31.9 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.0 (CH₂), 26.8 (CH₂), 25.9 (CH₂), 22.8 (CH₂), 19.3 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₄H₂₇O, 211.2058, found 211.2058.

2-hexyltetrahydro-2H-pyran (9h):

Reaction of enynol **8h** (60 mg, 0.36 mmol) with Et₃SiH (115.3 μ L, 0.72 mmol) and TMSOTf (65.2 μ L, 0.36 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THP-derivative **9h** (42 mg, 71%).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2928, 2883, 1652, 1518, 1461, 1046, 826, 709, 604 cm⁻¹.

¹**H NMR (500 MHz, CDCl**₃): δ 3.94 (d, *J* = 11.0 Hz, 1H), 3.39 (t, *J* = 11.0 Hz, 1H), 3.24-3.18 (m, 1H), 1.79 (d, *J* = 11.5 Hz, 1H), 1.55 (t, *J* = 7.0 Hz, 2H), 1.48-1.41 (m, 3H), 1.37-1.31 (m, 2H), 1.26-1.21 (m, 8H), 0.86 (t, *J* = 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 78.1 (CH), 68.6 (CH₂), 36.8 (CH₂), 32.1 (CH₂), 32.0 (CH₂), 29.6 (CH₂), 26.4 (CH₂), 25.6 (CH₂), 23.8 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₁H₂₃O 171.1742, found 171.1742.

2-phenethyltetrahydro-2H-pyran (9i):

Reaction of enynol **8i** (32 mg, 0.17 mmol) with Et₃SiH (55.0 μ L, 0.34 mmol) and TMSOTF (31.0 μ L, 0.17 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THP-derivative **9i** (18 mg, 55%) yield.

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2934, 2857, 1463, 1254, 1217, 1100, 832, 760 cm⁻¹.

¹**H NMR** (**400 MHz**, **CDCl**₃): δ 7.30-7.26 (m, 2H), 7.21-7.16 (m, 3H), 4.01 (dt, *J* = 9.2, 2.0 Hz, 1H), 3.42 (td, *J* = 7.6, 2.4 Hz, 1H), 3.28-3.21 (m, 1H), 2.81-2.74 (m, 1H), 2.69-2.62 (m, 1H), 1.87-1.77 (m, 2H), 1.72-1.63 (m, 1H), 1.61-1.41 (m, 4H), 1.35-1.25 (m, 1H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 142.6 (C), 128.6 (2 × CH), 128.4 (2 × CH), 125.8 (CH), 77.1 (CH), 68.6 (CH₂), 38.4 (CH₂), 32.1 (CH₂), 31.9 (CH₂), 29.4 (CH₂), 23.7 (CH₂).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₃H₁₉O, 191.1430, found 191.1430.

((2S*,5S*)-5-hexyltetrahydrofuran-2-yl)methanol (7u):⁵

Reaction of enynol **6u** (60 mg, 0.33 mmol) with Et₃SiH ((105.1 μ L, 0.66 mmol) and TMSOTf (59.4 μ L, 0.33 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7u** (53 mg, 88%) as a mixture of diastereomers (dr-2.3:1).

Physical appearance: Colourless liquid.

 $\mathcal{W}_2^{\mathsf{Ph}}$

`0´ | 9i **R**_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 3381, 2930, 2721, 1217, 771, 670 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 3.98-3.92 (m, 1H), 3.82 (quint, *J* = 6.4

Hz, 1H), 3.64-3.58 (m, 1H), 3.47-3.42 (m, 1H), 2.53 (bs, 1H), 2.01-1.80 (m, 2H), 1.69-1.51 (m, 2H), 1.50-1.32 (m, 3H), 1.31-1.24 (m, 7H), 0.84 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 80.3 (CH), 79.4 (CH), 65.3 (CH₂), 36.0 (CH₂), 31.9 (CH₂), 31.4 (CH₂), 29.5 (CH₂), 27.1 (CH₂), 26.3 (CH₂), 22.7 (CH₂), 14.1 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₁H₂₃O₂, 187.1700, found 187.1700.

Procedure for benzyl deprotection:

((2S*,5S*)-5-hexyltetrahydrofuran-2-yl)methanol (7u):

After two vacuum/H₂ cycles to replace air inside the reaction mixture with hydrogen, the 2-((benzyloxy)methyl)-5-hexyltetrahydrofuran **7i** (45 mg, 0.163 mmol) and Pd(OH)₂/C (4.5 mg,) in methanol (3 mL) was vigorously stirred at rt under ordinary hydrogen pressure (balloon). The reaction mixture was stirred at rt until starting material was consumed (TLC control). The reaction mixture was filtered over celite bed, followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THF-derivative **7u** (15 mg, 50%) as a mixture of diastereomers (dr-1.3:1).

((2S*,6S*)-6-hexyltetrahydro-2H-pyran-2-yl)methanol (9k):⁶

Reaction of enynol **8k** (60 mg, 0.30 mmol) with Et_3SiH ((97.6 µL, 0.61 mmol) and TMSOTf (55.2 µL, 0.30 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THP-derivative **9k** (40 mg, 67%) as a single diastereomer.

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 3423, 2930, 2858, 1463, 1377, 1261, 1091, 1049, 824, 670 cm⁻¹.

¹**H NMR (500 MHz, CDCl**₃): δ 3.55-3.53 (m, 1H), 3.50-3.40 (m, 2H), 3.31-3.26 (m, 1H), 2.33 (bs, 1H), 1.84-1.81 (m, 1H), 1.59-1.58 (m, 1H), 1.53-1.43 (m, 3H), 1.38-1.32 (m, 2H), 1.28-1.22 (m, 8H), 1.21-1.11 (m, 1H), 0.86 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 78.1 (CH), 76.9 (CH), 66.4 (CH₂), 36.6 (CH₂), 31.9 (CH₂), 31.6 (CH₂), 29.5 (CH₂), 27.4 (CH₂), 25.6 (CH₂), 23.3 (CH₂), 22.7 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₂H₂₅O₂, 201.1851, found 201.1850.

2-octyltetrahydro-2H-pyran (12):⁷

Reaction of enynol **11** (50 mg, 0.26 mmol) with Et₃SiH (82.4 μ L, 0.51 mmol) and TMSOTf (46.4 μ L, 0.26 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THP-derivative **12** (38 mg, 75%).

Physical appearance: Colourless liquid.

R_{*f*}: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2927, 2854, 1464, 1134, 1091, 846, 757 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 3.98-3.93 (m, 1H), 3.40 (td, *J* = 11.2, 2.4 Hz, 1H), 3.24-3.18 (m, 1H), 1.82-1.77 (m, 1H), 1.60-1.52 (m, 2H), 1.50-1.43 (m, 3H), 1.41-1.30 (m, 1H), 1.25-1.18 (m, 13H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 78.1 (CH), 68.6 (CH₂), 36.8 (CH₂), 32.1 (CH₂), 32.0 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 29.4 (CH₂), 26.4 (CH₂), 25.7 (CH₂), 23.8 (CH₂), 22.8 (CH₂), 14.2 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₃H₂₇O 199.2057, found 199.2057.

2-(hexan-2-yl)tetrahydro-2H-pyran (16):

Reaction of enynol **15** (80 mg, 0.48 mmol) with Et₃SiH (154.2 μ L, 0.96 mmol) and TMSOTf (87 μ L, 0.48 mmol) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the THP-derivative **16** (56 mg, 70%, dr-1:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2955, 2927, 2859, 1459, 1377, 1091, 1066, 757 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 3.99-3.82 (m, 4H), 3.72-3.66 (m, 2H), 1.99-1.90 (m, 3H), 1.88-1.78 (m, 4H), 1.58-1.49 (m, 3H), 1.45-1.34 (m, 4H), 1.28-1.53 (m, 12H), 0.89-0.85 (m, 12H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 77.9 (CH), 77.4 (CH), 67.6 (2 × CH₂), 43.4 (CH₂), 43.2 (CH₂), 37.5 (CH₂), 36.9 (CH₂), 32.2 (CH₂), 31.8 (CH₂), 30.7 (CH), 30.4 (CH), 29.3 (2 × CH₂), 25.8 (CH₂), 25.7 (CH₂), 23.1 (2 × CH₂), 20.2 (CH₃), 19.6 (CH₃), 14.3 (2 × CH₃). HRMS (ESI, M+H⁺): m/z calcd. for C₁₁H₂₃O 171.1731, found 171.1731.

Non-8-yn-4-ol (19):

The stirred suspension of magnesium turnings (625 mg, 26.04 mmol) in dry Et₂O (20 mL) with mercury(II) chloride (84 mg, 0.31 mmol) and a pinch of I₂ was cooled to 0 °C. To the reaction mixture 1-bromopropane (0.95 mL, 10.41 mmol) was added drop wise. The mixture was stirred at 0 °C for 1 h and then warmed to room temperature and stirred for 1 h. Then to a solution of aldehyde **18** (500 mg, 5.20 mmol, 1 equiv) in ether (10 mL), propane magnesium bromide in ether (prepared as above) was slowly added at -78 °C. The reaction mixture was slowly warmed to room temperature and stirred overnight. The reaction was quenched at 0 °C with saturated aqueous NH₄Cl solution (20 mL) carefully as it is exothermic, extracted with Et₂O (3 × 30 mL). The combined extracts were washed with brine (30 mL), dried over anh. Na₂SO₄ and concentrated, followed by purification on a silica gel column using ethyl acetate-petroleum

ether as eluent furnished the corresponding alkynol **19** (550 mg, 74%) and NMR spectra were matched with previously reported data.^{8a}

Physical appearance: Pale yellow liquid.

[∬]_*n*Bu

OH

(¹)2 **21**

Me

R_f: 0.5 (2:8, EtOAc: Petroleum ether).

IR (neat): 3410, 2930, 2874, 1452, 1048, 757, 666 cm⁻¹.

¹**H NMR (400 MHz, CDCl**₃): δ 3.56-3.55 (m, 1H), 2.17-1.91 (m, 3H), 1.91 (s, 1H) 1.66-1.51 (m, 4H), 1.47-1.14 (m, 4H), 0.87 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 84.5 (C), 71.1 (CH), 68.5 (CH), 39.7 (CH₂), 36.4 (CH₂), 24.6 (CH₂), 18.8 (CH₂), 18.4 (CH₂), 14.1 (CH₃).

(E)-pentadec-10-en-8-yn-4-ol (21):

To a magnetically stirred solution of alkynol **19** (230 mg, 1.64 mmol) and vinyl iodide **20** (361 mg, 1.72 mmol) in Et₃N (6 mL), Pd(PPh₃)₂Cl₂ (17.2 mg, 0.024 mmol) and CuI (6.2 mg, 0.032 mmol) was added and the reaction mixture was stirred at room temperature for overnight under nitrogen atmosphere. Reaction was monitored by TLC and the Et₃N was evaporated under reduced pressure. The residue was purified by silica gel column chromatography using ethyl acetate-petroleum ether as eluent to furnish requisite enynol **21** (258 mg, 70%).

Physical appearance: Yellow liquid.

R_f: 0.4 (2:8, EtOAc: Petroleum ether).

IR (neat): 3460, 2957, 2934, 2873, 2352, 1457, 1251, 1120, 1015, 758 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 6.05-5.97 (m, 1H), 5.44-5.38 (m, 1H), 3.62 (bs, 1H), 2.31-2.28 (m, 2H), 2.08-2.05 (m, 2H), 1.67-1.63 (m, 1H), 1.60-1.53 (m, 2H), 1.51-1.37 (m, 4H), 1.34-1.27 (m, 5H), 0.91-0.83 (m, 6H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.6 (CH), 109.8 (CH), 88.3 (C), 79.7 (C), 71.4 (CH), 39.8 (CH₂), 36.7 (CH₂), 32.7 (CH₂), 31.0 (CH₂), 25.1 (CH₂), 22.2 (CH₂), 19.5 (CH₂), 18.9 (CH₂), 14.2 (CH₃), 14.0 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calculated for C₁₅H₂₇O 223.2056, found 223.2056.

(\pm)-Isolaurepan (3):⁸

Reaction of enynol **21** (50 mg, 0.19 mmol) with Et₃SiH (124 μ L, 0.77 mmol) and TMSOTf (52 μ L, 0.29) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the (±)-isolaurepan (**3**) (35 mg, 70%) as a mixture of diastereomers (dr-

1.5:1).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2923, 1742, 1507, 1374, 1017, 576 cm⁻¹.

¹**H NMR (400 MHz, CDCl**₃): δ 3.41-3.33 (m, 2H), 1.77-1.61 (m, 4H), 1.56-1.43 (m, 8H), 1.34-1.27 (m, 10H), 0.91-0.86 (m, 6H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 80.5 (CH), 80.2 (CH), 39.8 (CH₂), 37.6 (CH₂), 37.1 (CH₂), 37.0 (CH₂), 32.0 (CH₂), 29.5 (CH₂), 26.4 (CH₂), 25.5 (CH₂), 25.4 (CH₂), 22.8 (CH₂), 19.6 (CH₂), 14.2 (2 × CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₅H₃₁O 227.2374, found 227.2373.

This work, (δ ¹³ C [ppm], 100 MHz, CDCl ₃)	Previously reported, ^[8] (δ ¹³ C [ppm], 125 MHz, CDCl ₃)	Δδ [ppm]
80.48	80.3	0.18
80.19	80.0	0.19
39.78	39.6	0.18
37.59	37.4	0.19
37.07	36.92	0.15
37.02	36.87	0.15
32.04	31.9	0.14
29.48	29.3	0.18
26.42	26.3	0.12
25.49	25.33	0.16
25.46	25.29	0.17
22.79	22.6	0.19
19.62	19.5	0.12
14.24	14.11	0.13
14.24	14.10	0.14

Comparison of (±)-Isolaurepan (3) $^{13}\mathrm{C}$ NMR peaks with previously reported $^{13}\mathrm{C}$ NMR $^{[8]}$

Total synthesis of (±)-cis-lauthisan (4):

(E)-pentadec-10-en-8-yn-3-ol (25):

To a magnetically stirred solution of alkynol **24** (950 mg, 6.779 mmol) and vinyl iodide **20** (1.56 gm, 7.45 mmol) in Et₃N (15 mL), Pd(PPh₃)₂Cl₂ (71.2 mg, 0.102 mmol) and CuI (25.7 mg, 0.136 mmol) was added and the reaction mixture was stirred at room temperature for overnight under nitrogen atmosphere. Reaction was monitored by TLC and the Et₃N was evaporated under reduced pressure. The residue was purified by silica gel column chromatography using EtOAc: Petroleum ether as eluent to furnish

requisite enynol **25** (850 mg, 56%).

OH ⁿBu Me 25

Physical appearance: Yellow liquid.

R_f: 0.4 (2:8, EtOAc: Petroleum ether).

IR (neat): 3459, 2955, 2927, 2234, 1728, 1457, 1251, 970, 761 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃)**: δ 6.03 (dt, *J* = 15.6, 6.8 Hz, 1H), 5.43 (dt, *J* = 16.0, 1.6 Hz, 1H), 3.55-3.50 (m, 1H), 2.30-2.28 (m, 2H), 2.09-2.03 (m, 2H), 1.56-1.40 (m, 9H), 1.39-1.24 (m, 4H), 0.93 (t, *J* = 7.2 Hz, 3H), 0.87 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.6 (CH), 109.8 (CH), 88.5 (C), 79.5 (C), 73.3 (CH), 36.5 (CH₂), 32.8 (CH₂), 31.1 (CH₂), 30.3 (CH₂), 29.0 (CH₂), 25.1 (CH₂), 22.3 (CH₂), 19.5 (CH₂), 14.0 (CH₃), 10.0 (CH₃).

HRMS (ESI, M+H⁺): m/z calculated for C₁₅H₂₇O 223.2059, found 223.2059.

(\pm) -cis-lauthisan (4):⁹

Reaction of enynol **25** (30 mg, 0.14 mmol) with Et₃SiH (86.4 μ L, 0.54 mmol) and TMSOTf (36.5 μ L, 0.20) in dry CH₂Cl₂ (4 mL) as described for the THF-derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the *cis*-lauthisan (**4**) (7 mg, 23%) as a single diastereomers and hydrolysed product **26** (19 mg, 55%).

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 2955, 2924, 2853, 1456, 1363, 1136, 768 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 3.45-3.30 (m, 2H), 1.77-1.60 (m,

6H), 1.53-1.50 (m, 2H), 1.43-1.36 (m, 6H), 1.27-1.25 (m, 8H), 0.94-0.86 (m, 6H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 81.2 (CH), 79.8 (CH), 37.2 (CH₂), 33.7 (CH₂), 33.5 (CH₂), 32.0 (CH₂), 29.9 (CH₂), 29.6 (CH₂), 27.2 (CH₂), 26.4 (CH₂), 24.2 (2 × CH₂), 22.8 (CH₂), 14.2 (CH₃), 10.0 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₅H₃₁O 227.2375, found 227.2375.

Pentadecane-3,9-diol (26):

Physical appearance: Colourless liquid.

R_f: 0.5 (1:9, EtOAc: Petroleum ether).

IR (neat): 3345, 2924, 2853, 1730, 1456, 1136, 986, 824, 768, 670 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 3.59-3.49 (m, 2H), 1.67-1.25 (m, 24H), 0.96-0.86 (m, 6H). ¹³C NMR (125 MHz, CDCl₃, DEPT): δ 73.5 (CH), 72.1 (CH), 37.7 (CH₂), 37.5 (CH₂), 37.0 (CH₂), 32.0 (CH₂), 30.3 (CH₂), 29.9 (CH₂), 29.5 (CH₂), 25.8 (3 × CH₂), 22.8 (CH₂), 14.3 (CH₃), 11.0 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₅H₃₃O₂ 245.2447, found 245.2447.

Comparison of (\pm) -cis-lauthisan	(4): ¹³ C NMR	peaks with	previously re	ported ¹³ C NMR ^[9]
I I I I I I I I I I				I

This work, (δ ¹³ C [ppm], 125 MHz, CDCl ₃)	Previously reported, ^[9] (δ ¹³ C [ppm], 75 MHz, CDCl ₃)	Δδ [ppm]
81.22	81.06	0.16
79.78	79.61	0.17
37.17	37.01	0.16
33.73	33.57	0.16
33.46	33.29	0.17
32.05	31.90	0.15
29.92	29.76	0.16
29.63	29.48	0.15
27.22	27.06	0.16
26.45	26.29	0.16
24.16	23.99	0.17
22.80	22.64	0.16
14.26	14.11	0.15
11.03	10.88	0.15

REFERENCE:

- 1. S. J. Gharpure, D. S. Vishwakarma, S. K. Nanda, Org. Lett., 2017, 19, 6534.
- 2. L. L. W. Cheung, A. K. Yudin, Org. Lett., 2009, 11, 1281.
- 3. V. Koch and S. Bräse, Eur. J. Org. Chem., 2021, 2021, 3478.
- 4. A. Ondrejkova, R. Lindroth, G. Hilmersson and C.-J. Wallentin, *Chem. Commun.*, 2022, 58, 10241.
- 5. A. Theodorou and C. G. Kokotos, Green Chem., 2017, 19, 670.
- G. J. Florence, J. C. Morris, R. G. Murray, R. R. Vanga, J. D. Osler, T. K. Smith, *Chem. Eur. J.*, 2013, **19**, 8309.
- 7. Y. Li, C. Topf, X. Cui, K. Junge and M. Beller, Angew. Chem., Int. Ed., 2015, 54, 5196.
- (a) D. E. Ames, G. M. R. Davison, *Chem. Phys. Lipids*, 1974, **13**, 223; (b) D. H. Dethe,
 A. Srivastava, A. K. Nirpal, N. C. Beeralingappa, V. Kumar and A. A. Bhat, *J. Org. Chem.*, 2022, **87**, 11021; (c) M. Ebine, Y. Suga, H. Fuwa, M. Sasaki, *Org. Biomol. Chem.*, 2010, **8**, 39.
- 9. G. Hernandez-Torres, J. Mateo, F. Colobert, A. Urbano M. C. Carreno, *ChemistrySelect*, 2016, **1**, 4101.

7.236
 7.224
 7.224
 7.224
 7.224
 7.225
 7.225
 7.225
 7.225
 7.225
 7.225
 7.225
 7.225
 7.225
 7.225
 7.225
 7.225
 7.225
 7.225
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.238
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.240
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.276
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277
 7.277

7,3324 7,2324 7,2325 7,2285 7,

F

-116.017
-116.029
-116.042

́Ме \mathcal{H}_5 H C Ĥ С 7n 1.5 9.10 8 9.5 8.5 8.0 7.5 6.5 5.0 3.0 0.5 2 0.92 0.92 0.92 0.92 0.5 9.0 7.0 6.0 5.5 3.5 2.5 4.5 4.0 1.0 ppm 0.62 0.63 5.46 11.34 7.66 ¹H NMR spectrum (500 MHz, CDCl₃) 142.76 142.34 142.34 132.77 138.56 138.56 138.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 127.07 80.36 80.14 79.55 77.41 77.41 77.16 77.16 77.16 36.27 36.14 34.64 34.64 34.64 31.36 31.36 31.36 31.36 31.36 25.55 26.57 26.57 26.27 26.27 14.23 Me H₅ H Ĥ 0 CI 7n ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ¹³C NMR spectrum (125 MHz, CDCl₃) 190 180 170 160 150 40 30 20 10 50 ppm

 7.256

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

 3.4467

