Electronic Supplementary Information

Reactivity of N-(isocyanoimino)triphenylphosphorane toward group 13 Lewis acids

Beili Tang, ^[a] Shaoying Ju, ^[a] Weili Yan, ^[b] Ting Chen, ^[a] Douglas W. Stephan^{*,[a,c]} and Yile Wu, ^{*[a]}

^a Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China. <u>wuyile@nbu.edu.cn</u>

^b Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, Zhejiang, China

^c Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada. <u>douglas.stephan@utoronto.ca</u>

Table of Contents

General Considerations	3
Experimental Procedures	4
Synthesis of compounds 2 and 3	4
Synthesis of compounds 4 and 5	6
Synthesis of compounds 6 and 7	8
Proposed Reaction Mechanism	11
NMR Spectra of compounds 2-7	12
X-ray Crystallographic Data	25
Computational Details	
Reference	
Cartesian Coordinates of the Optimized Geometries	

General Considerations

All experiments were carried out under inert gas atmosphere by using Schlenk-type glassware or in an Ar-filled glove box. Toluene, n-hexane, fluorobenzene and deuterated solvents (C_6D_6 , CD_2Cl_2 , C_6D_5Br , $CDCl_3$, CD_3CN) were stored with 3Å molecular sieves. All solvents were stored under argon atmosphere.

B(C₆F₅)3^[S1], HB(C₆F₅)2^[S2], Al(C₆F₅)3^[S3], ClAl(C₆F₅)2^[S4]were synthesized according to the literature methods. NMR spectra were recorded with Bruker Avance 500 (¹H: 500 MHz, ¹³C: 125 MHz, ¹¹B: 160 MHz, ¹⁹F: 470 MHz, ³¹P: 202 MHz) or 600 (¹H: 600 MHz, ¹³C: 151 MHz, ³¹P: 243 MHz) spectrometer at 298 K. Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in hertz (Hz), integration.

Single-crystal X-ray diffraction data were collected on a Bruker D8 QUEST diffractometer using Cu (60W, Diamond, $\mu K\alpha = 12.894 \text{ mm}^{-1}$) micro-focus X-ray sources. Using Olex2^[S5], the structure was solved with the XT^[S6] structure solution program using Intrinsic Phasing and refined with the XL^[S7] refinement package using Least Squares minimization.

Experimental Procedures

Synthesis of compounds 2 and 3

Scheme S1-1: Synthesis of 2 and 3

Compound 2

A mixture of **1** (30 mg, 0.1 mmol), $B(C_6F_5)_3$ (51 mg, 0.1 mmol) and toluene (5 mL) was stirred at ambient temperature for 2 h. The resulting brown solution was storing at -30 °C overnight to afford colourless crystals of **2**. The crystals were collected, washed with cold n-hexane, and then dried under vacuum for 2 hours (53 mg, 65%). Single crystals (colourless) suitable for X-ray analysis were obtained from the toluene solution at -30 °C for 1 day.

¹H NMR (500 MHz, C₆D₆, ppm): δ 7.29 (dd, J = 12.7, 7.8 Hz, 6H, *m*-C₆H₅),
7.01 (t, J = 7.7 Hz, 3H, *p*-C₆H₅), 6.89 (br, 6H, *o*-C₆H₅).

¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): δ 149.16-147.26 (m, *o*-C₆F₅), 140.86-139.39 (m, *p*-C₆F₅), 138.07-136.12 (m, *m*-C₆F₅), 133.86 (d, *J* = 3.0 Hz, P(C₆H₅)₃), 132.37 (d, *J* = 10.1 Hz, P(C₆H₅)₃), 129.14 (d, *J* = 12.4 Hz, P(C₆H₅)₃), 122.92 (d, *J* = 99.2 Hz, P(C₆H₅)₃), 116.98 (br, *i*-C₆F₅), 112.24 (br, -CN). ¹¹B{¹H} NMR (160 MHz, C₆D₆, ppm):δ -21.42.

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, ppm): δ -133.21 (br, *o*-C₆*F*₅), -157.80 (br, *p*-C₆*F*₅), -163.80 (br, *m*-C₆*F*₅).

³¹**P**{¹**H**} **NMR** (202 MHz, C₆D₆, ppm): δ 33.48.

FT-IR (solid, cm⁻¹): 2247(C≡N), 1645, 1514, 1462, 1439, 1282, 1182, 1093, 979, 890, 725, 673.

Compound 3

A mixture of **1** (30 mg, 0.1 mmol), HB(C₆F₅)₂ (69 mg, 0.2 mmol) and toluene (5 mL) was stirred at ambient temperature for 2 h. The resulting yellow solution was storing at -30 °C overnight to afford yellow crystals of **3**. The crystals were collected, washed with cold n-hexane, and then dried under vacuum for 2 hours (64 mg, 64%). Single crystals (yellow) suitable for X-ray analysis were obtained from the toluene solution at -30 °C for 2 days.

¹**H NMR** (500 MHz, C₆D₆, ppm): δ 7.22-7.17 (m, 6H, P(C₆H₅)₃), 6.96 (td, J = 7.4, 1.6 Hz, 3H, P(C₆H₅)₃), 6.86 (td, J = 7.7, 3.5 Hz, 6H, P(C₆H₅)₃), 4.10 (br, 1H, B*H*)3.62 (s, 1H, N*H*).

¹³C{¹H} NMR (125 MHz, C₆D₆, ppm): δ 149.11-148.38 (m, *o*-C₆F₅),147.01-146.45 (m, *p*-C₆F₅), 138.14-136.17 (m, *m*-C₆F₅), 134.38 (d, *J* = 3.1 Hz, P(C₆H₅)₃), 132.44 (d, *J* = 11.1 Hz, P(C₆H₅)₃), 129.36 (d, *J* = 13.2 Hz, P(C₆H₅)₃), 121.83 (d, *J* = 102.5 Hz, P(C₆H₅)₃), 115.81 (br, *i*-C₆F₅),112.89 (br, -CN).

³¹B{¹H} NMR (160 MHz, C₆D₆, ppm):δ -13.98, -17.44.

¹⁹F{¹H} NMR (470 MHz, C₆D₆, ppm): δ -133.64 (br, *o*-C₆F₅), -134.23 (br, *o*-

 C_6F_5), -155.06 (br, *p*- C_6F_5), -158.62 (br, *p*- C_6F_5), -162.37 (br, *m*- C_6F_5), -164.41 (br, *m*- C_6F_5).

³¹**P**{¹**H**} **NMR** (202 MHz, C₆D₆, ppm): δ 35.42.

FT-IR (solid, cm⁻¹): 3397, 2291(C≡N), 1647, 1516, 1464, 1440, 1288, 1096, 971, 751, 724, 690.

Synthesis of compounds 4 and 5

Scheme S1-2: Synthesis of 4 and 5

Compound 4

A mixture of **1** (30 mg, 0.1 mmol), Al(C₆F₅)₃ (57 mg, 0.1 mmol) and toluene (5 mL) was stirred at ambient temperature for 2 h. The resulting yellow solution was storing at -30 °C overnight to afford yellow crystals of **4**. The crystals were collected, washed with cold n-hexane, and then dried under vacuum for 2 hours (45 mg, 54%). Single crystals (yellow) suitable for X-ray analysis were obtained from the toluene solution at -30 °C for 2 days.

¹**H NMR** (600 MHz, CD₂Cl₂, ppm): δ 7.62-7.49 (m, 12H, P(C₆H₅)₃), 7.40-7.27 (m, 12H, P(C₆H₅)₃), 7.06-7.00 (m, 6H, P(C₆H₅)₃).

¹³C{¹H} NMR (151 MHz, C₆D₅Br, ppm): δ 134.88 (d, J = 9.8 Hz, P(C₆H₅)₃), 133.83 (d, J = 8.6 Hz, P(C₆H₅)₃), 133.49 (d, J = 10.5 Hz, P(C₆H₅)₃), 133.08 (d, J = 9.5 Hz, P(C₆H₅)₃), 129.47 (d, J = 12.7 Hz, P(C₆H₅)₃), 129.13 (d, J = 12.8 Hz, P(C₆H₅)₃), 128.90 (d, J = 11.6 Hz, -CN), 128.53 (d, J = 12.2 Hz, N=C), 126.39 (d, J = 33.0 Hz, P(C₆H₅)₃), 125.71 (d, J = 33.5 Hz, P(C₆H₅)₃).

¹⁹F{¹H} NMR (470 MHz, C₆D₅Br, ppm): δ -118.38 (br, *o*-C₆F₅), -137.42 (br, *o*-C₆F₅), -152.74 (br, *p*-C₆F₅), -156.75 (br, *p*-C₆F₅), -160.87 (br, *m*-C₆F₅), -162.26 (br, *m*-C₆F₅).

³¹**P**{¹**H**} **NMR** (243 MHz, C₆D₅Br, ppm): δ 37.36, 24.12.

FT-IR (solid, cm⁻¹): 2252(C≡N), 1559, 1506, 1437, 1111, 1064, 953, 718, 691, 609.

Compound 5

A mixture of **1** (30 mg, 0.1 mmol), $ClAl(C_6F_5)_2$ (40 mg, 0.1 mmol) and toluene (5 mL) was stirred at ambient temperature for 2 h. The resulting yellow solution was storing at -30 °C overnight to afford yellow crystals of **5**. The crystals were collected, washed with cold n-hexane, and then dried under vacuum for 2 hours (40 mg, 57%). Single crystals (yellow) suitable for X-ray analysis were obtained from the toluene solution at -30 °C for 2 days.

¹**H NMR** (500 MHz, CDCl₃, ppm): δ 7.80-7.76 (m, 6H, P(C₆H₅)₃), 7.65-7.46 (m, 24H, P(C₆H₅)₃).

¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 136.17 (s, P(C₆H₅)₃), 135.58 (s, P(C₆H₅)₃), 133.55 (d, J = 5.4 Hz, P(C₆H₅)₃), 132.64 (d, J = 5.8 Hz, P(C₆H₅)₃),

132.64 (d, J = 10.5 Hz, -*C*N), 130.44 (d, J = 13.5 Hz, P(C_6H_5)₃), 130.13 (d, J = 13.1 Hz, P(C_6H_5)₃), 129.43(d, J = 12.9 Hz, N=*C*), 120.38 (d, J = 91.7 Hz, P(C_6H_5)₃), 119.57 (d, J = 91.6 Hz, P(C_6H_5)₃).

¹⁹**F**{¹**H**} **NMR** (470 MHz, CDCl₃, ppm): δ -119.47 (br, *o*-C₆*F*₅), -122.00 (br, *o*-C₆*F*₅), -148.93 (br, *p*-C₆*F*₅), -157.13 (br, *p*-C₆*F*₅), -159.40 (br, *m*-C₆*F*₅), -163.77 (br, *m*-C₆*F*₅).

³¹**P**{¹**H**} **NMR** (202 MHz, CDCl₃, ppm): δ 39.84, 36.42.

FT-IR (solid, cm⁻¹): 2922, 2224(C≡N), 1531, 1507, 1436, 1110, 1066, 953, 720, 687.

Synthesis of compounds 6 and 7

Scheme S1-3: Synthesis of 6 and 7

Compound 6

A mixture of 1 (30 mg, 0.1 mmol), GaCl₃ (18 mg, 0.1 mmol) and fluorobenzene

(5 mL) was stirred at ambient temperature for 2 h. The resulting orange solution was storing at -30 °C overnight to afford orange crystals of **6**. The crystals were collected, washed with cold n-hexane, and then dried under vacuum for 2 hours (30 mg, 63%). Single crystals (orange) suitable for X-ray analysis were obtained from the fluorobenzene solution at -30 °C for 1 day.

¹**H NMR** (500 MHz, CDCl₃, ppm): δ 7.90-7.85 (m, 6H, P(C₆H₅)₃), 7.78-7.75 (m, 12H, P(C₆H₅)₃), 7.72-7.68 (m, 12H, P(C₆H₅)₃).

¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 136.21 (d, J = 3.1 Hz, P(C_6H_5)₃), 135.82 (d, J = 3.0 Hz, P(C_6H_5)₃), 134.27 (d, J = 10.7 Hz, P(C_6H_5)₃), 134.06 (d, J = 11.3 Hz, P(C_6H_5)₃), 130.57 (d, J = 13.5 Hz, P(C_6H_5)₃), 130.28 (d, J = 13.1 Hz, P(C_6H_5)₃), 129.95(d, J = 7.8 Hz, -CN), 120.04 (d, J = 60.0 Hz, P(C_6H_5)₃), 119.23 (d, J = 59.5 Hz, P(C_6H_5)₃), 115.32 (d, J = 20.8 Hz, N=C).

³¹**P**{¹**H**} **NMR** (202 MHz, CDCl₃, ppm): δ 41.86, 37.16.

FT-IR (solid, cm⁻¹): 2231(C≡N), 1538, 1436, 1347, 1109,1045, 997, 722, 685, 652, 584.

Compound 7

A mixture of **1** (60 mg, 0.2 mmol), InCl₃ (22 mg, 0.1 mmol) and fluorobenzene (5 mL) was stirred at ambient temperature for 2 h. The resulting orange solution was storing at -30 °C overnight to afford orange crystals of **7**. The crystals were collected, washed with cold n-hexane, and then dried under vacuum for 2 hours (56 mg, 68%). Single crystals (orange) suitable for X-ray analysis were obtained from the fluorobenzene solution at -30 °C for 2 days.

¹**H NMR** (500 MHz, CD₃CN, ppm): δ 7.93-7.72 (m, 24H, P(C₆*H*₅)₃), 7.62-7.59 (m, 6H, P(C₆*H*₅)₃).

¹³C{¹H} **NMR** (125 MHz, CD₃CN, ppm): δ 136.59 (d, J = 3.2 Hz, P(C_6H_5)₃), 134.96 (d, J = 11.1 Hz, P(C_6H_5)₃), 134.58 (d, J = 2.9 Hz, P(C_6H_5)₃), 133.74(d, J = 10.5 Hz, P(C_6H_5)₃), 133.57 (d, J = 11.2 Hz, -CN), 130.97 (d, J = 13.4 Hz, P(C_6H_5)₃), 130.26 (d, J = 12.7 Hz, P(C_6H_5)₃), 130.04 (d, J = 13.2 Hz, N=C), 127.48 (d, J = 103.5 Hz, P(C_6H_5)₃), 120.62 (d, J = 103.8 Hz, P(C_6H_5)₃).

³¹**P**{¹**H**} **NMR** (202 MHz, CD₃CN, ppm): δ 37.77, 16.54.

FT-IR (solid, cm⁻¹): 3058, 2218(C≡N), 1530, 1436, 1271, 1106, 1085, 719,686, 571.

Proposed Reaction Mechanism

Scheme S1-4: Proposed reaction mechanism for the formation of 4-7

NMR Spectra of compounds 2-7

Spectra of 2

Figure S2-1. ¹H NMR spectrum of **2** in C₆D₆

Figure S2-2. ¹³C{¹H} NMR spectrum of 2 in C₆D₆

Figure S2-4. ${}^{19}F{}^{1}H{}$ NMR spectrum of 2 in C₆D₆

-50 δ (ppm) 130 110 90 70 50 30 10 -190 -210 -230 -10 -30 -70 -90 -110 -130 -150 -170

Figure S2-5. ${}^{31}P{}^{1}H$ NMR spectrum of 2 in C₆D₆

Figure S2-6. ¹H NMR spectrum of **3** in C_6D_6 (# toluene)

Figure S2-8. ¹¹B{¹H} NMR spectrum of **3** in C_6D_6

133.62 133.62 133.67 133.67 134.25 134.25 135.05 134.25 155.05 15

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 $\overline{\delta}\,(\text{ppm})$

Figure S2-10. ³¹P{¹H} NMR spectrum of 3 in C₆D₆

Figure S2-11. ³¹P NMR spectrum of $\mathbf{3}$ in C₆D₆

 $\stackrel{35.49}{\underbrace{35.45}}_{35.35}$

 $\begin{array}{c} 7.62 \\ 7.56 \\ 7.57 \\ 7.49 \\ 7.28 \\ 7.28 \\ 7.28 \\ 7.06 \\ 7.03 \\ 7.00 \\ 7.00 \\ 7.00 \\ 7.00 \end{array}$

Figure S2-12. ¹H NMR spectrum of **4** in CD₂Cl₂ (# toluene * n-hexane)

Figure S2-14. $^{19}F{^1H}$ NMR spectrum of 4 in C₆D₅Br

-37.36 -24.12

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 δ (ppm)

Figure S2-15. ³¹P{¹H} NMR spectrum of **4** in C₆D₅Br

Figure S2-16. ¹H NMR spectrum of **5** in CDCl₃

Figure S2-18. ¹⁹F{¹H} NMR spectrum of **5** in CDCl₃

130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 δ (ppm)

Figure S2-19. ³¹P{¹H} NMR spectrum of **5** in CDCl₃

Figure S2-20. ¹H NMR spectrum of **6** in CDCl₃

Figure S2-21. ¹³C{¹H} NMR spectrum of **6** in CDCl₃

Figure S2-22. ³¹P{¹H} NMR spectrum of **6** in CDCl₃

Spectra of 7

Figure S2-24. ¹³C{¹H} NMR spectrum of **7** in CD₃CN

130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 δ(ppm)

Figure S2-25. ³¹P{¹H} NMR spectrum of **7** in CD₃CN

X-ray Crystallographic Data

Table S3-	1. Crystal	data and	structure	refinement	details	for	compounds	2,	3
-----------	------------	----------	-----------	------------	---------	-----	-----------	----	---

and 4	4.
-------	----

Compounds	2	3	4
CCDC	2379880	2379881	2379882
Empirical formula	$C_{37}H_{15}BF_{15}N_2P$	$C_{50}H_{25}B_2F_{20}N_2P$	$C_{81}H_{38}Al_2F_{30}N_4P_2$
Formula weight	814.29	1086.31	1753.05
Temperature, K	150.00	150.00	150.00
Crystal system	monoclinic	triclinic	triclinic
Space group	$P2_{1}/n$	<i>P</i> -1	<i>P</i> -1
a, Å	11.6295(3)	11.9853(9)	11.2784(2)
b, Å	11.5884(3)	12.0437(9)	17.5791(4)
c, Å	24.2727(6)	18.3470(14)	20.1614(5)
α, deg	90	93.329(4)	94.3340(10)
β, deg	98.2250(10)	104.396(4)	99.0020(10)
γ, deg	90	115.728(4)	100.3890(10)
V, Å ³	3237.52(14)	2268.7(3)	3861.10(15)
Z	4	2	2
$D_{\rm calcd}, {\rm g/cm^3}$	1.671	1.590	1.508
µ/mm ⁻¹	1.862	1.656	1.820
F(000)	1624.0	1088.0	1756.0
2θ range, °	8.028-137.49	5.066-133.162	4.462-136.692
Index ranges	$-14 \le h \le 13$	$-14 \le h \le 14$	$-13 \le h \le 13$
	$-13 \le k \le 13$	$-14 \le k \le 13$	$-21 \le k \le 21$
	$-28 \le 1 \le 29$	$-21 \le l \le 21$	$-24 \le l \le 24$
Reflections collected	37185	41072	50107
Independent reflections	5926	7987	14089
	$R_{\text{int}} = 0.0516$	$R_{\text{int}} = 0.0675$	$R_{int} = 0.0751$
	$R_{sigma} = 0.0290$	$R_{sigma} = 0.0469$	$R_{sigma} = 0.0682$
Data/restraints/parameters	5926/0/505	7987/186/754	14089/0/1073
Goodness-of-fit on F ²	1.059	1.083	1.012
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0315$	$R_1 = 0.0578$	$R_1 = 0.0526$
	$wR_2 = 0.0823$	$wR_2 = 0.1596$	$wR_2 = 0.1299$
Final R indexes [all data]	$R_1 = 0.0350$	$R_1 = 0.0747$	$R_1 = 0.0799$
	$wR_2 = 0.0848$	$wR_2 = 0.1731$	$wR_2 = 0.1439$
Largest diff. peak/hole, e/Å-3	0.43/-0.33	0.63/-0.66	0.45/-0.44

Table S3-2. Crystal data and structure refinement details for compounds 5, 6

an	d	7	
an	u		•

Compounds	5	6	7
CCDC	2379885	2379884	2379883
Empirical formula	$C_{81.3}H_{50.2}Al_2Cl_2F_{21}N_4P_2$	$C_{82}H_{65}Cl_{12}FGa_4N_8P_4$	$C_{62}H_{50}Cl_3F_4InN_4P_2$
Formula weight	1668.85	2009.58	1210.17
Temperature, K	150.00	150.00	150.00
Crystal system	monoclinic	triclinic	monoclinic
Space group	<i>P</i> 2 ₁ /c	<i>P</i> -1	Cc
a, Å	15.3044(6)	17.4641(12)	24.0532(5)
b, Å	25.9421(11)	17.7994(11)	20.9341(4)
c, Å	19.9557(8)	17.8166(10)	11.6059(2)
α, deg	90	79.202(4)	90
β, deg	109.490(2)	62.982(4)	102.4310(10)
γ, deg	90	61.288(4)	90
V, Å ³	7469.0(5)	4323.8(5)	5706.94(19)
Z	4	2	4
D_{calcd} , g/cm ³	1.484	1.544	1.408
µ/mm ⁻¹	2.312	5.942	5.591
F(000)	3380.0	2020.0	2464.0
2θ range, °	5.802-137.176	5.572-133.19	5.654-133
Index ranges	$-18 \le h \le 18$	$-20 \le h \le 20$	$-28 \le h \le 28$
	-31≤ k ≤31	$-21 \le k \le 21$	-24≤ k ≤24
	$-24 \le l \le 24$	$-21 \le l \le 21$	$-12 \le 1 \le 13$
Reflections collected	318927	143281	44823
Independent reflections	13718	15249	9390
	$R_{int} = 0.0732$	$R_{int} = 0.1602$	$R_{\text{int}} = 0.0555$
	$R_{sigma} = 0.0211$	$R_{sigma} = 0.0757$	$R_{sigma} = 0.0502$
Data/restraints/parameters	13718/270/1150	15249/42/988	9390/221/766
Goodness-of-fit on F ²	1.097	1.066	1.090
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0445$	$R_1 = 0.0662$	$R_1 = 0.0304$
	$wR_2 = 0.1163$	$wR_2 = 0.1763$	$wR_2 = 0.0675$
Final R indexes [all data]	$R_1 = 0.0503$	$R_1 = 0.1028$	$R_1 = 0.0321$
	$wR_2 = 0.1196$	$wR_2 = 0.1983$	$wR_2 = 0.0682$
Largest diff. peak/hole, e/Å ⁻³	0.54/-0.42	1.07/-0.96	0.61/-0.73

Figure S3-1. Solid-state structures of **2**. Hydrogen atoms omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-2. Solid-state structures of **3**. Hydrogen atoms (except those linked to N or B atoms) omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-3. Solid-state structures of **4**. Hydrogen atoms omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-4. Solid-state structures of **5**. Hydrogen atoms omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-5. Solid-state structures of **6**. Hydrogen atoms omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure S3-6. Solid-state structures of **7**. Hydrogen atoms omitted for clarity. Thermal ellipsoids are set at the 50% probability level.

Computational Details

Geometry optimizations were carried out with the Gaussian 16 package^[S8] with the M06-2X functional and the def2-SVP basis set. The single-point energy calculations were performed at the M06-2X/def2-TZVP level of theory for solution-phase (toluene).

The gas-phase geometry was used for all the solution phase calculations. The corrections of Gibbs free energy from frequency calculations were added to the single-point energies to obtain the Gibbs free energy in solution, respectively. Optimized structures were visualized by the Chemcraft^[S9] program.

Figure S4-1. Selected molecular orbitals for **A** at M06-2X/def2-TZVP level. Isovalue = 0.05.

Reference

- [S1] A.G. Massey, A. J. Park, J. Organomet. Chem., 1964, 2, 245-250.
- [S2] D. J. Parks, H.Von, R. E. Spence, W. E. Piers, Angew. Chem. Int. Ed., 1995, 34, 809-811.
- [S3] G. S. Hair, A. H. Cowley, R. A. Jones, B. G. McBurnett, A. Voigt, J. Am. Chem. Soc. 1999, 121, 4922-4923.
- [S4] D. Chakraborty, E. Y. X. Chen., Inorg. Chem. Commun., 2002, 5, 698-701.
- [S5] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- [S6] G. Sheldrick, Acta Crystallogr. Sect. A., 2015, 71, 3-8.
- [S7] G. Sheldrick, Acta Crystallogr. Sect. A., 2008, 64, 112-122.
- [S8] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,; M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,; G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich,; J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian,; J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young,; F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone,; T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,; G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda,; J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,; T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta,; F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,; V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,; K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,; J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi,; J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,; J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- [S9] G. A. Andrienko, C. ChemCraft, http://www.chemcraftprog.com. Accessed date: Oct. 30, 2022.

Cartesian Coordinates of the Optimized Geometries

A (M06-2X/def2-SVP)

SCF Done:	E(RM062X) :	= -2365.57592	578 A.U.
Р	-2.85367200	-0.10014100	-0.13380100
Р	2.94632200	-0.00910300	-0.09236900
Ν	0.77965200	1.17330500	-0.28507800
Ν	-1.31564400	0.08909400	-0.41820600
С	-3.13656800	-1.89066400	-0.20970400
С	2.72657500	-2.58289000	-1.06431000
Н	1.77183800	-2.22080600	-1.45018800
С	-4.42661700	-2.42984700	-0.23540200
Н	-5.29996000	-1.77316700	-0.24092000
Ν	-1.66785900	3.53183400	-0.38487000
С	4.74111100	-2.13922800	0.21450100
Н	5.35096000	-1.45933300	0.81437900
С	4.70329800	1.11552000	1.84241400
Н	5.41577500	1.28665800	1.03133900
С	-2.01695700	-2.72805400	-0.21531400
Н	-1.02470800	-2.26876400	-0.20192600
С	5.17224700	-3.44501300	-0.01334700
Н	6.12265800	-3.78347000	0.40143500
С	3.45791800	0.53817400	1.57186600
Ν	1.35103500	-0.06661800	-0.29776300
С	-0.51024900	1.19055700	-0.33814600
С	3.59175400	2.42518300	-1.23672900
Н	2.81669600	2.80957200	-0.57063000
С	3.52135300	-1.70745300	-0.31608200
С	-3.48973000	0.44822600	1.49003600
С	3.89852300	1.05569700	-1.22452300
С	-3.96223300	0.68509600	-1.35360100
С	3.16284600	-3.88826300	-1.28443800
Н	2.54547800	-4.57442100	-1.86625900
С	-3.56583700	-0.45278400	2.55905400
Н	-3.32213500	-1.50610000	2.40407400

C	-2.19719800	-4.11112900	-0.24070200
Н	-1.32699000	-4.76949800	-0.24393700
С	-4.20102800	1.58468500	-3.58437600
Н	-3.76268900	1.84668000	-4.54818500
С	-3.40556700	1.01161900	-2.59403800
Н	-2.34416000	0.82005500	-2.76788500
С	5.02538700	1.48839100	3.14667100
Н	5.99598000	1.93876900	3.35969400
С	-5.31619900	0.94051000	-1.10582800
Н	-5.74927200	0.71403100	-0.12841500
С	-1.10377300	2.52186800	-0.36130800
С	4.38374000	-4.31794600	-0.76335100
Н	4.72155900	-5.34068200	-0.93860200
С	2.85336700	0.73668100	3.90202500
Н	2.12715900	0.60198800	4.70488200
С	-4.26577800	1.33663100	4.02251700
Н	-4.57156500	1.68339200	5.01095900
С	-3.95692900	-0.00811600	3.82099800
Н	-4.02041400	-0.71548600	4.64910400
С	2.52859700	0.35600000	2.60157400
Н	1.55195300	-0.07166300	2.36217800
С	-3.79424400	1.80114900	1.69781500
Н	-3.71845600	2.51631900	0.87528300
С	-4.59771400	-3.81202000	-0.26116300
Н	-5.60282300	-4.23533700	-0.28388000
С	-3.48247500	-4.65184900	-0.26260900
Н	-3.61842500	-5.73443600	-0.28374600
С	-6.10915600	1.50820900	-2.10126100
Н	-7.16336900	1.71029000	-1.90653700
С	-4.18115600	2.23964100	2.96255900
Н	-4.41358900	3.29378700	3.11909400
С	4.25585600	3.27387300	-2.11863100
Н	4.01217000	4.33712600	-2.13145600
С	4.86068900	0.54726600	-2.10333200
Н	5.09189000	-0.51999400	-2.10800000

C	-5.55161600	1.82946700	-3.33933200
Н	-6.17277900	2.28138500	-4.11425700
С	4.10134000	1.29770300	4.17449900
Н	4.35262500	1.59769400	5.19316300
С	5.22530900	2.76672900	-2.98566200
Н	5.74530100	3.43609900	-3.67292800
С	5.52605000	1.40590000	-2.97899600
Н	6.27962000	1.00754100	-3.65993200

A (M06-2X/def2-TZVP)

SCF Done: E(RM062X) = -2367.67230577 A.U.

Р	2.85367200	0.10014100	-0.13380100
Р	-2.94632200	0.00910300	-0.09236900
Ν	-0.77965200	-1.17330500	-0.28507800
Ν	1.31564400	-0.08909400	-0.41820600
С	3.13656800	1.89066400	-0.20970400
С	-2.72657500	2.58289000	-1.06431000
Н	-1.77183800	2.22080600	-1.45018800
С	4.42661700	2.42984700	-0.23540200
Н	5.29996000	1.77316700	-0.24092000
Ν	1.66785900	-3.53183400	-0.38487000
С	-4.74111100	2.13922800	0.21450100
Н	-5.35096000	1.45933300	0.81437900
С	-4.70329800	-1.11552000	1.84241400
Н	-5.41577500	-1.28665800	1.03133900
С	2.01695700	2.72805400	-0.21531400
Н	1.02470800	2.26876400	-0.20192600
С	-5.17224700	3.44501300	-0.01334700
Н	-6.12265800	3.78347000	0.40143500
С	-3.45791800	-0.53817400	1.57186600
Ν	-1.35103500	0.06661800	-0.29776300
С	0.51024900	-1.19055700	-0.33814600
С	-3.59175400	-2.42518300	-1.23672900
Н	-2.81669600	-2.80957200	-0.57063000
С	-3.52135300	1.70745300	-0.31608200
С	3.48973000	-0.44822600	1.49003600

С	-3.89852300	-1.05569700	-1.22452300
С	3.96223300	-0.68509600	-1.35360100
С	-3.16284600	3.88826300	-1.28443800
Н	-2.54547800	4.57442100	-1.86625900
С	3.56583700	0.45278400	2.55905400
Н	3.32213500	1.50610000	2.40407400
С	2.19719800	4.11112900	-0.24070200
Н	1.32699000	4.76949800	-0.24393700
С	4.20102800	-1.58468500	-3.58437600
Н	3.76268900	-1.84668000	-4.54818500
С	3.40556700	-1.01161900	-2.59403800
Н	2.34416000	-0.82005500	-2.76788500
С	-5.02538700	-1.48839100	3.14667100
Н	-5.99598000	-1.93876900	3.35969400
С	5.31619900	-0.94051000	-1.10582800
Н	5.74927200	-0.71403100	-0.12841500
С	1.10377300	-2.52186800	-0.36130800
С	-4.38374000	4.31794600	-0.76335100
Н	-4.72155900	5.34068200	-0.93860200
С	-2.85336700	-0.73668100	3.90202500
Н	-2.12715900	-0.60198800	4.70488200
С	4.26577800	-1.33663100	4.02251700
Н	4.57156500	-1.68339200	5.01095900
С	3.95692900	0.00811600	3.82099800
Н	4.02041400	0.71548600	4.64910400
С	-2.52859700	-0.35600000	2.60157400
Н	-1.55195300	0.07166300	2.36217800
С	3.79424400	-1.80114900	1.69781500
Н	3.71845600	-2.51631900	0.87528300
С	4.59771400	3.81202000	-0.26116300
Н	5.60282300	4.23533700	-0.28388000
С	3.48247500	4.65184900	-0.26260900
Н	3.61842500	5.73443600	-0.28374600
С	6.10915600	-1.50820900	-2.10126100
Н	7.16336900	-1.71029000	-1.90653700

С	4.18115600	-2.23964100	2.96255900
Н	4.41358900	-3.29378700	3.11909400
С	-4.25585600	-3.27387300	-2.11863100
Н	-4.01217000	-4.33712600	-2.13145600
С	-4.86068900	-0.54726600	-2.10333200
Н	-5.09189000	0.51999400	-2.10800000
С	5.55161600	-1.82946700	-3.33933200
Н	6.17277900	-2.28138500	-4.11425700
С	-4.10134000	-1.29770300	4.17449900
Н	-4.35262500	-1.59769400	5.19316300
С	-5.22530900	-2.76672900	-2.98566200
Н	-5.74530100	-3.43609900	-3.67292800
С	-5.52605000	-1.40590000	-2.97899600
Н	-6.27962000	-1.00754100	-3.65993200

A (M06-2X/def2-TZVP; SMD, toluene)

SCF Done: E(RM062X) = -2367.71648623 A.U.

Р	2.85367200	0.10014100	-0.13380100
Р	-2.94632200	0.00910300	-0.09236900
Ν	-0.77965200	-1.17330500	-0.28507800
Ν	1.31564400	-0.08909400	-0.41820600
С	3.13656800	1.89066400	-0.20970400
С	-2.72657500	2.58289000	-1.06431000
Н	-1.77183800	2.22080600	-1.45018800
С	4.42661700	2.42984700	-0.23540200
Н	5.29996000	1.77316700	-0.24092000
Ν	1.66785900	-3.53183400	-0.38487000
С	-4.74111100	2.13922800	0.21450100
Н	-5.35096000	1.45933300	0.81437900
С	-4.70329800	-1.11552000	1.84241400
Н	-5.41577500	-1.28665800	1.03133900
С	2.01695700	2.72805400	-0.21531400
Н	1.02470800	2.26876400	-0.20192600
С	-5.17224700	3.44501300	-0.01334700
Н	-6.12265800	3.78347000	0.40143500
С	-3.45791800	-0.53817400	1.57186600

Ν	-1.35103500	0.06661800	-0.29776300
С	0.51024900	-1.19055700	-0.33814600
С	-3.59175400	-2.42518300	-1.23672900
Н	-2.81669600	-2.80957200	-0.57063000
С	-3.52135300	1.70745300	-0.31608200
С	3.48973000	-0.44822600	1.49003600
С	-3.89852300	-1.05569700	-1.22452300
С	3.96223300	-0.68509600	-1.35360100
С	-3.16284600	3.88826300	-1.28443800
Н	-2.54547800	4.57442100	-1.86625900
С	3.56583700	0.45278400	2.55905400
Н	3.32213500	1.50610000	2.40407400
С	2.19719800	4.11112900	-0.24070200
Н	1.32699000	4.76949800	-0.24393700
С	4.20102800	-1.58468500	-3.58437600
Н	3.76268900	-1.84668000	-4.54818500
С	3.40556700	-1.01161900	-2.59403800
Н	2.34416000	-0.82005500	-2.76788500
С	-5.02538700	-1.48839100	3.14667100
Н	-5.99598000	-1.93876900	3.35969400
С	5.31619900	-0.94051000	-1.10582800
Н	5.74927200	-0.71403100	-0.12841500
С	1.10377300	-2.52186800	-0.36130800
С	-4.38374000	4.31794600	-0.76335100
Н	-4.72155900	5.34068200	-0.93860200
С	-2.85336700	-0.73668100	3.90202500
Н	-2.12715900	-0.60198800	4.70488200
С	4.26577800	-1.33663100	4.02251700
Н	4.57156500	-1.68339200	5.01095900
С	3.95692900	0.00811600	3.82099800
Н	4.02041400	0.71548600	4.64910400
С	-2.52859700	-0.35600000	2.60157400
Н	-1.55195300	0.07166300	2.36217800
С	3.79424400	-1.80114900	1.69781500
Н	3.71845600	-2.51631900	0.87528300

4.59771400	3.81202000	-0.26116300
5.60282300	4.23533700	-0.28388000
3.48247500	4.65184900	-0.26260900
3.61842500	5.73443600	-0.28374600
6.10915600	-1.50820900	-2.10126100
7.16336900	-1.71029000	-1.90653700
4.18115600	-2.23964100	2.96255900
4.41358900	-3.29378700	3.11909400
-4.25585600	-3.27387300	-2.11863100
-4.01217000	-4.33712600	-2.13145600
-4.86068900	-0.54726600	-2.10333200
-5.09189000	0.51999400	-2.10800000
5.55161600	-1.82946700	-3.33933200
6.17277900	-2.28138500	-4.11425700
-4.10134000	-1.29770300	4.17449900
-4.35262500	-1.59769400	5.19316300
-5.22530900	-2.76672900	-2.98566200
-5.74530100	-3.43609900	-3.67292800
-5.52605000	-1.40590000	-2.97899600
-6.27962000	-1.00754100	-3.65993200
	4.59771400 5.60282300 3.48247500 3.61842500 6.10915600 7.16336900 4.18115600 4.18115600 -4.25585600 -4.01217000 -4.86068900 -5.09189000 5.55161600 6.17277900 -4.10134000 -4.35262500 -5.22530900 -5.74530100 -5.52605000 -6.27962000	4.597714003.812020005.602823004.235337003.482475004.651849003.618425005.734436006.10915600-1.508209007.16336900-1.710290004.18115600-2.239641004.41358900-3.29378700-4.25585600-3.27387300-4.01217000-4.33712600-4.86068900-0.54726600-5.091890000.519994005.55161600-1.829467006.17277900-2.28138500-4.10134000-1.29770300-4.35262500-1.59769400-5.74530100-3.43609900-5.52605000-1.40590000-6.27962000-1.00754100