Supporting Information

Serendipitous Synthesis of **Phenanthrene Derivatives** bv of Exploiting Electrocyclization During Thermolysis **Diels-Alder** Intermediate Dihydro Dibenzothiophene S, S-dioxides Kabali Divya Bharathi and Arasambattu K. Mohanakrishnan* Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India. E-mail: mohanakrishnan@unom.ac.in; mohan_67@hotmail.com Table of contents: 5. ¹H, ¹³C{¹H}, DEPT 135 (selected) NMR & HRMS (selected) spectra of benzo 6. ¹H, ¹³C $\{^{1}H\}$ NMR & HRMS (selected) spectra of compounds 4, 5 and 7. ¹H, ¹³C {¹H}, DEPT 135 (selected) NMR & HRMS (selected) spectra of compounds **6a-e** 8. ¹H, ¹³C {¹H}, DEPT 135 (selected) NMR & HRMS (selected) spectra of phenanthrenes **9a**-9. ¹H, ¹³C {¹H}, DEPT 135 (selected) NMR & HRMS (selected) spectra of phenanthrene fused 10. ¹H, ¹³C {¹H}, DEPT 135 NMR & HRMS (selected) spectra of dibenzo picenes 14a & 11. X-ray structure and crystallographic data of phenanthrene compounds **3a**, **3f**, **6a**, **6e** and

1. General information

All melting points were uncorrected. Solvents were dried by standard procedures. The progression of all the reaction was monitored by TLC using hexanes/ethyl acetate mixture. Column chromatography was carried out on Silica gel (230-400 mesh, Merck) by increasing polarity. ¹H, ¹³C NMR and DEPT 135 spectra were recorded on Bruker Avance III 300 MHz spectrometer in CDCl₃ solvent. Proton chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃ δ 7.26 ppm). NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet), coupling constants (Hz) and integration. ¹³C Chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ δ 77.06 ppm). HRMS were recorded on Xevo G2S QTOF (ESI) instrument.

2. General procedure for cyclopentadienones & benzo[*b*]thiophene *S*, *S*-dioxides Procedure for the preparation of cyclopentadienones 1a-j^{1,2}

To a mixture of diarylethanedione/acenaphthoquinone and 1,3-disubstituted propanone, ethanol was added and refluxed for 15 min. At the refluxing condition, an ethanolic solution of KOH was added dropwise via addition funnel. The reaction mixture immediately became violet, and a black precipitate was formed. After that, it was cooled to 0 °C for 15 minutes. The solid obtained was filtered and dried to afford cyclopentadienone $1a-j^{1,2}$ as a deep purple/green/black solid.

Procedure for the preparation of benzo[*b*]thiophene *S*, *S*-dioxides 2a-c, 8a/b, 11a/b, 13³⁻⁶ The required benzo[*b*]thiophene *S*, *S*-dioxides were prepared adopting the published procedure. To a solution of benzo[*b*]thiophene in DCM at 0 °C, a pre-formed mixture of 33% H₂O₂ and HCOOH (1:2 mixture) was slowly added. The reaction mixture was then stirred at rt for 10-12 h. It was then poured into saturated aqueous solution of NaHCO₃ and extracted with DCM and dried (Na₂SO₄). Removal of solvent under vacuo followed by trituration with methanol furnished benzo[*b*]thiophene *S*, *S*-dioxide **2a-c**, **8a/b**, **11a/b**, **13³⁻⁶** as a colorless/pale yellow solid. 5-Nitro benzo[*b*]thiophene *S*, *S*-dioxide **2d** was prepared via oxidation of the corresponding 5-nitro benzo[*b*]thiophene using *m*-CPBA in DCM.

3. Experimental Procedures and Analytical data

1,2,3-Triphenyltriphenylene (3a)

To a solution of cyclopentadienone **1a** (0.23 g, 0.60 mmol) in nitrobenzene (5 mL), benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), the solvent was completely removed by vacuum distillation (90-100 °C, 10-20 mm Hg). Subsequent column chromatographic purification on silica gel (eluent: 100% hexane) afforded triphenylene **3a** (0.17 g, 60%) as a colorless solid. **Mp** 156-158 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 8.69-8.57 (m, 4H), 7.69-7.66 (m, 2H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.22-7.17 (m, 8H), 7.10-6.98 (m, 6H), 6.85-6.83 (m, 2H) ppm; ¹³C{¹**H**} **NMR** (75 MHz, CDCl₃): δ 143.1, 142.2, 140.6, 140.0, 139.6, 131.6, 131.5, 131.4, 130.7, 130.5, 130.2, 130.1, 129.9, 129.8, 128.5, 128.2, 127.5, 127.4, 126.8, 126.4, 126.3, 125.6, 125.1, 124.2, 123.7, 123.2, 123.1 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 131.6, 131.5, 130.1, 129.9, 128.2, 127.5, 127.4, 126.8, 126.4, 126.3, 125.6, 125.1, 124.2, 128.2, 127.5, 127.5, 127.4, 126.8, 126.4, 126.3, 125.6, 125.1, 124.2, 128.2, 127.5, 127.5, 127.4, 126.8, 126.4, 126.3, 125.6, 125.1, 124.2, 128.2, 127.5, 127.5, 127.4, 126.8, 126.4, 126.3, 125.6, 125.1, 124.2, 128.2, 127.5, 127.5, 127.4, 126.8, 126.4, 126.3, 125.6, 125.1, 124.2, 128.2, 127.5, 127.5, 127.4, 126.8, 126.4, 126.3, 125.6, 125.1, 124.2, 128.2, 127.5, 127.5, 127.4, 126.8, 126.4, 126.3, 125.6, 125.1, 124.2, 123.7, 123.2, 123.1 ppm; **HRMS (ESI)**: *m/z*: [M+H]⁺ Calcd for C₃₆H₂₄ 457.1956; Found 457.1958.

Diels-Alder reaction of 1a with benzo[b]thiophene S, S-dioxide 2a in diphenyl ether

The Diels-Alder reaction of cyclopentadienone **1a** (0.23 g, 0.60 mmol) with benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) in diphenyl ether (5 mL) at reflux for 36 h followed by workup and column chromatographic purification (Silica gel, eluent: 100% hexane) to furnish triphenylene **3a** (0.16 g, 46%) as a colorless solid.

1,2-Bis(4-methoxyphenyl)-3-phenyltriphenylene (3b)

To a solution of cyclopentadienone **1b** (0.27 g, 0.60 mmol) in nitrobenzene (5 mL), benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) was added and refluxed for 12 h. Subsequent removal solvent in vacuo (90-100 °C, 10-20 mm Hg) followed by column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) furnished

triphenylene **3b** (0.20 g, 65%) as a colorless solid. **Mp** 198-200 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 8.64-8.53 (m, 4H), 7.65-7.57 (m, 3H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.22-7.19 (m, 5H), 7.03 (t, *J* = 7.8 Hz, 1H), 6.95 (d, *J* = 8.1 Hz, 2H), 6.71 (t, *J* = 8.4 Hz, 4H), 6.54 (d, *J* = 8.4 Hz, 2H), 3.79 (s, 3H), 3.71 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 158.0, 157.4, 142.5, 140.8, 140.4, 139.5, 135.5, 132.6, 132.4, 131.4, 130.6, 130.5, 130.4, 130.1, 129.9, 129.8, 128.8, 127.6, 127.4, 127.3, 126.3, 126.3, 125.1, 123.9, 123.6, 132.5, 130.1, 129.8, 127.6, 127.4, 127.3, 126.3, 126.1, 123.9, 123.6, 132.5, 130.1, 129.8, 127.6, 127.4, 127.3, 126.3, 123.1, 113.8, 112.5, 55.2, 55.0 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 132.6, 132.5, 130.1, 129.8, 127.6, 127.4, 127.3, 126.3, 123.1, 113.8, 112.5, 55.2, 55.0 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₃₈H₂₈O₂ 517.2168; Found 517.2172.

Diels-Alder reaction of 1b with benzo[b]thiophene S, S-dioxide 2a in diphenyl ether

The Diels-Alder reaction of cyclopentadienone **1b** (0.27 g, 0.60 mmol) with benzo[b]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) in diphenyl ether (5 mL) at reflux for 36 h followed by workup and column chromatographic purification (Silica gel, 5% ethyl acetate in hexane) yielded triphenylene **3b** (0.11 g, 36%) as a colorless solid.

10-Methoxy-3-(4-methoxyhenyl)-1,2-diphenyltriphenylene (3c)

To a solution of cyclopentadienone **1c** (0.27 g, 0.60 mmol) in nitrobenzene (5 mL), benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) was added and refluxed for 12 h. Subsequent removal solvent in vacuo (90-100 °C, 10-20 mm Hg) followed by column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) gave triphenylene **3c** (0.19 g, 62%) as a colorless solid. **Mp** 216-218 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 8.67-8.64 (m, 2H), 8.54-8.52 (m, 1H), 7.97 (d, *J* = 2.4 Hz, 1H), 7.66-7.63 (m, 2H), 7.44 (d, *J* = 9.3 Hz, 1H) 7.16-7.10 (m, 3H), 7.07-7.03 (m, 4H), 6.98-6.96 (m, 3H), 6.82-6.79 (m, 2H), 6.74 (d, *J* = 8.7 Hz, 2H), 6.60 (dd, *J*₁ = 9.3 Hz, *J*₂ = 2.7 Hz, 1H), 3.92 (s, 3H), 3.78 (s, 3H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 158.1, 157.8, 143.2, 140.6, 140.2, 139.3, 138.8, 134.7, 133.0, 131.6, 131.5, 131.4, 131.1, 130.2, 129.7, 128.4, 128.2, 127.5, 127.3, 126.9, 126.2, 125.5, 124.2, 124.1, 123.7, 123.2, 113.1, 112.9, 106.0, 55.3, 55.2 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 131.6, 131.5, 131.4, 131.1, 128.2, 127.5, 127.3, 126.9, 126.2, 125.5, 124.2, 124.1, 123.7, 123.2, 113.1, 112.9, 106.0, 55.3, 55.2 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 131.6, 131.5, 131.4, 131.1, 128.2, 127.5, 127.3, 126.9, 126.2, 125.5, 124.2, 124.1, 123.7, 123.2, 113.1, 112.9, 106.0, 55.3, 55.2 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 131.6, 131.5, 131.4, 131.1, 128.2, 127.5, 127.3, 126.9, 126.2, 125.5, 124.2, 124.2, 124.2, 124.2, 124.2, 124.2, 124.2, 124.2, 124.2, 124.2, 124.2, 124.2, 124.1, 123.7, 123.2, 113.1, 112.9, 106.0, 55.3, 55.2 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 131.6, 131.5, 131.4, 131.1, 128.2, 127.5, 127.3, 126.9, 126.2, 125.5, 124.2

123.7, 123.2, 113.1, 113.0, 106.0, 55.3, 55.2 ppm; **HRMS** (**ESI**) *m/z*: [M+H]⁺ Calcd for C₃₈H₂₈O₂ 517.2168; Found 517.2156.

Diels-Alder reaction of 1c with benzo[b]thiophene S, S-dioxide 2a in diphenyl ether

The Diels-Alder reaction of cyclopentadienone **1b** (0.27 g, 0.60 mmol) with benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) in diphenyl ether (5 mL) at reflux for 36 h followed by workup and column chromatographic purification (Silica gel, 5% ethyl acetate in hexane) to produce triphenylene **3c** (0.09 g, 30%) as a colorless solid.

10-Methoxy-1,2,3-tris(4-methoxyphenyl)triphenylene (3d)

To a solution of cyclopentadienone **1d** (0.30 g, 0.60 mmol) in PhNO₂ (5 mL), benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) was added and refluxed for 12 h. Subsequent removal solvent in vacuo (90-100 °C, 10-20 mm Hg) followed by column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) gave triphenylene **3d** (0.22 g, 64%) as a colorless solid. **Mp** 132-134 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 8.57-8.54 (m, 1H), 8.52 (s, 1H), 8.47-8.44 (m, 1H), 7.88 (d, *J* = 2.7 Hz, 1H), 7.57-7.54 (m, 2H), 7.40 (d, *J* = 9.2 Hz, 1H), 7.01 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 6.70-6.61 (m, 7H), 6.47 (d, *J* = 8.7 Hz, 2H), 3.85 (s, 3H), 3.72 (s, 6H), 3.64 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 158.0, 158.0, 157.7, 157.3, 140.5, 139.6, 138.7, 135.7, 135.0, 133.0, 132.6, 132.6, 132.5, 131.3, 131.1, 130.3, 130.2, 129.6, 128.7, 127.4, 127.2, 124.4, 124.0, 123.7, 123.2, 113.8, 113.1, 113.1, 112.5, 106.0, 55.3, 55.2, 55.1 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 132.5, 132.5, 131.3, 131.1, 127.4, 127.2, 124.0, 123.7, 123.2, 113.8, 113.1, 113.1, 112.5, 106.0, 55.3, 55.2, 55.1 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 132.5, 132.5, 131.3, 131.1, 127.4, 127.2, 124.0, 123.7, 123.2, 113.8, 113.1, 113.1, 112.5, 106.0, 55.3, 55.2, 55.1 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 132.5, 132.5, 131.3, 131.1, 127.4, 127.2, 124.0, 123.7, 123.2, 113.8, 113.1, 113.1, 112.5, 106.0, 55.3, 55.2, 55.1 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 132.5, 132.5, 131.3, 131.1, 127.4, 127.2, 124.0, 123.7, 123.2, 113.8, 113.1, 113.1, 112.5, 106.0, 55.3, 55.2, 55.1 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 132.5, 132.5, 131.3, 131.1, 127.4, 127.2, 124.0, 123.7, 123.2, 113.8, 113.1, 113.1, 112.5, 106.0, 55.3, 55.2, 55.1 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₄₀H₃₂O₄ 577.2379; Found 577.2379.

3-(3,4-Dimethoxyphenyl)-9,10-dimethoxy-1,2 diphenyltriphenylene (3e)

The triphenylene **3e** was prepared as per the above-mentioned procedure using cyclopentadienone **1h** (0.30 g, 0.60 mmol) and benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) in PhNO₂ at reflux followed by workup and column chromatographic purification (Silica gel, eluent: 10% ethyl acetate in hexane). 0.11 g (44%); **Mp** 254-256 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.46-9.45 (m, 1H), 8.58-8.56 (m, 2H), 7.61-7.58 (m, 2H), 7.36 (d, *J* = 9.3 Hz, 1H), 7.11-7.10 (m, 3H), 7.02-6.95 (m, 5H), 6.88-6.84 (m, 1H), 6.80-6.76 (m, 3H), 6.63 (d, *J* = 9.6 Hz, 1H), 6.44 (d, *J* = 1.8 Hz, 1H), 3.86 (s, 6H), 3.78 (s, 3H), 3.48 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 151.1, 147.6, 147.5, 146.3, 143.1, 140.3, 139.4, 138.6, 134.8, 131.6, 131.5, 130.8, 130.6, 129.2, 128.9, 128.4, 128.1, 127.3, 127.0, 126.3, 126.1, 125.5, 125.5, 123.8, 123.3, 122.1, 113.7, 110.4, 110.2, 59.8, 56.0, 55.7, 55.5 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₄₀H₃₂O₄ 577.2379; Found 577.2379.

6-Phenylacenaphtho[1,2-a]triphenylene (3f)

The Diels-Alder reaction of cyclopentadienone **1f** (0.26 g, 0.60 mmol) with benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) in PhNO₂ (5 mL) at reflux followed by workup and column chromatographic purification (Silica gel, eluent: 100% hexane) afforded acenaphthene fused triphenylene **3f** (0.19 g, 75%) as a fluorescent green solid. **Mp** 184-186 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.45 (d, *J* = 7.8 Hz, 1H), 8.74 (d, *J* = 7.2 Hz, 1H), 8.61 (d, *J* = 8.7 Hz, 3H), 8.41 (s, 1H), 7.87-7.58 (m, 12H), 7.38 (t, *J* = 7.8 Hz, 1H), 7.22 (d, *J* = 7.2 Hz, 1H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 141.1, 137.9, 137.6, 137.1, 136.3, 136.1, 132.6, 131.0, 130.6, 130.3, 130.2, 129.9, 129.4, 128.9, 128.8, 128.3, 128.0, 128.0, 127.6, 127.6, 127.4, 127.3, 127.2, 127.1, 125.4, 123.9, 123.8, 123.6, 123.6, 123.4, 123.3 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 129.4, 128.9, 128.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.9, 123.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.9, 129.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.9, 129.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.4, 128.9, 128.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.4, 128.9, 128.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.4, 128.9, 128.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.4, 128.9, 128.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.4, 128.9, 128.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.4, 128.9, 128.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.4, 128.9, 128.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 129.4, 128.9, 128.8, 128.0, 127.6, 127.4, 127.3, 127.2, 123.8, 123.9, 123.8, 123.6, 123.4, 123.3 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 129.4, 128.9, 128.8, 128.0, 127.6, 127.6, 127.4, 127.3, 127.2, 127.1, 125.4, 123.9, 123.8, 123.8, 123.6, 123.4, 123.9, 123.8, 12

123.6, 123.6, 123.4, 123.3 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₃₄H₂₀ 429.1643; Found 429.1645.

The Diels-Alder reaction of cyclopentadienone **1g** (0.25 g, 0.60 mmol) with benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) in PhNO₂ (5 mL) at reflux followed by column chromatographic purification (Silica gel, eluent: 5% ethyl acetate in hexane) furnished triphenylene **3g** (0.18 g, 63%) as a fluorescent green solid. **Mp** 190-192°C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.29 (d, *J* = 8.7 Hz, 1H), 8.64 (d, *J* = 7.2 Hz, 1H), 8.54-8.49 (m, 2H), 8.32 (s, 1H), 7.97 (s, 1H), 7.81-7.74 (m, 2H), 7.66-7.50 (m, 6H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 6.9 Hz, 1H) 7.16-7.10 (m, 2H), 4.05 (s, 3H), 3.95 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 159.4, 138.2, 137.3, 136.6, 136.6, 135.3, 133.5, 132.6, 130.6, 130.5, 130.4, 129.9, 129.7, 128.6, 128.3, 127.6, 127.2, 127.1, 127.0, 123.9, 123.8, 123.6, 123.3, 114.1, 113.5, 106.3, 55.5, 55.5 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 130.5, 130.4, 127.6, 127.2, 127.1, 127.0, 123.9, 123.8, 123.6, 123.3, 114.1, 106.3, 55.5, 55.5 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₃₆H₂₄O₂ 489.1855; Found 489.1852.

Diels-Alder reaction of 1h with benzo[b]thiophene S, S-dioxide 2a

To a solution of cyclopentadienone **1h** (0.29 g, 0.60 mmol) in nitrobenzene (5 mL), benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), the solvent was removed by vacuum distillation (90-100 °C, 10-20 mm Hg). Subsequent column chromatographic purification on silica gel (eluent: 10% ethyl acetate in hexane) gave triphenylene **3h** as a yellow solid. Further elution of the column (eluent: 12% ethyl acetate in hexane) afforded **3h'** also as a yellow solid.

6-(3,4-Dimethoxyphenyl)-15,16-dimethoxyacenaphtho[1,2-a]triphenylene (3h)

0.10 g (30%); **Mp** 236-238 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.48-9.45 (m, 1H), 9.14 (d, *J* = 9 Hz, 1H), 8.61 (d, *J* = 7.2 Hz, 1H), 8.57-8.48 (m, 1H), 8.29-8.19 (m, 2H), 7.80-7.74 (m, 2H), 7.61-7.52 (m, 3H), 7.38-7.18 (m, 4H), 7.09 (d, *J* = 7.8 Hz, 1H), 4.07 (s, 3H), 4.03 (s, 3H), 3.92 (s, 3H), 3.88 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 149.0, 148.8, 146.8, 138.1, 137.3, 136.9, 136.5, 135.2, 133.8, 133.4, 132.7, 131.3, 130.4, 129.9, 129.3, 129.0, 128.9, 128.6, 127.7, 127.5, 127.4, 127.2, 127.0, 125.4, 125.0, 124.7, 123.6, 123.4, 123.2, 121.4, 112.6, 111.5, 110.7, 59.7, 56.3, 56.1 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 128.6, 127.7, 127.5, 127.4, 123.2, 121.4, 112.6, 111.4, 110.7, 59.7, 56.3, 56.1 ppm; **HRMS** (**ESI**) *m*/*z*: [M+H]⁺ Calcd for C₃₈H₂₈O₄ 549.2066; Found 549.2064.

0.15 g (45%); **Mp** 264-266 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 8.83 (s, 1H), 8.69 (d, J = 7.2 Hz, 1H), 8.53 (d, J = 7.8 Hz, 1H), 8.43 (d, J = 7.8 Hz, 1H), 8.36 (s, 1H), 7.92 (s, 1H), 7.79-7.73 (m, 2H), 7.62-7.48 (m, 3H), 7.35 (t, J = 7.8 Hz, 1H), 7.26-7.24 (m, 3H), 7.08 (d, J = 7.8 Hz, 1H), 4.14 (s, 3H), 4.01 (s, 3H), 3.91 (s, 3H), 3.90 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 149.7, 149.0, 148.8, 147.3, 138.1, 137.2, 136.6, 136.6, 135.2, 133.8, 132.6, 130.1, 130.0, 130.0, 129.6, 127.9, 127.8, 127.5, 127.2, 127.1, 126.8, 126.6, 125.6, 124.0, 123.9, 123.8, 123.6, 123.6, 122.8, 121.4, 112.6, 111.5, 110.7, 104.9, 56.1, 56.0 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 127.8, 127.5, 127.2, 127.1, 126.8, 126.6, 124.0, 123.9, 123.8, 123.6, 122.8, 121.4, 110.7, 104.9, 56.1, 56.0 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₃₈H₂₈O₄ 549.2066; Found 549.2067.

15-Bromo-6-(4-bromophenyl)acenaphtho[1,2-a]triphenylene (3i)

The Diels-Alder reaction of cyclopentadienone **1i** (0.31 g, 0.60 mmol) with benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) in PhNO₂ (5 mL) at reflux for 12 h followed by workup and column chromatographic purification on silica gel (eluent: 100% hexane) furnished acenaphthene based triphenylene **3i** (0.25 g, 70%) as a fluorescent green solid. **Mp** 272-274 °C; **¹H NMR** (300 MHz, CDCl₃): δ 9.30 (d, *J* = 8.4 Hz, 1H), 8.73 (s, 1H), 8.65 (d, *J* = 6.9 Hz, 1H), 8.55 (m, 2H), 8.34 (s, 1H), 7.89-7.59 (m, 9H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.28-7.25 (m, 2H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 139.9, 137.5, 137.1, 136.1, 135.9, 132.9, 132.6, 132.0, 131.0, 130.5, 130.5, 130.4, 130.0, 129.0, 128.5, 128.3, 128.0, 127.8, 127.7, 127.5, 127.3, 126.5, 124.0, 123.8, 123.5, 123.4, 122.3, 122.2 ppm; **HRMS (ESI)** *m/z*: [M-2Br]⁺ Calcd for C₃₄H₁₈Br₂ 426.1409; Found 426.1408.

9-(Thiophen-2-yl)acenaphtho[1',2':7,8]phenanthrol[9,10-b]thiophene (3j)

The Diels-Alder reaction of cyclopentadienone **1j** (0.22 g, 0.60 mmol) with benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) in PhNO₂ (5 mL) at reflux for 12 h followed by workup and column chromatographic purification on silica gel (eluent: 100% hexane) gave thieno[*b*]phenanthrene **3j** (0.17 g, 69%) as a yellow solid. **Mp** 170-172 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.48 (d, *J* = 7.2 Hz, 1H), 8.64 (m, 2H), 8.35-8.32 (m, 1H), 8.00 (d, *J* = 5.4 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.71-7.56 (m, 5H), 7.48-7.36 (m, 3H), 7.30-7.27 (m, 1H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 141.8, 138.3, 137.4, 136.5, 135.8, 135.0, 133.5, 132.4, 129.8, 129.5, 128.9, 128.4, 127.8, 127.7, 127.6, 127.4, 127.3, 127.3, 127.2, 126.9, 126.6, 126.0, 125.5, 124.7, 124.2, 124.1, 123.8, 122.9 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 147.8, 127.7, 127.6, 127.4, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 127.4, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 124.2, 124.1, 123.8, 122.9 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 127.8, 127.7, 127.6, 127.4, 127.4, 127.4, 127.3, 127.2, 126.9, 126.6, 126.0, 124.7, 124.2, 124.1, 123.8, 127.9, 126.6, 126.0, 124.7, 124.2, 124.1, 123.8, 127.9, 126.6, 126.0, 124.7, 124.2, 124.1, 123.8, 127.9, 126.6, 126.0, 124.7, 124.2, 124.1, 127.4, 127.4, 127.4, 127.4, 127.4, 127.4, 127.4, 127.4, 126.8, 126.0, 124.7, 124.2, 124.1, 123.8, 127.9, 126.6, 126.0,

124.2, 124.1, 123.8, 122.9 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₃₀H₁₆S₂ 441.0772; Found 441.0775.

Diels-Alder reaction of 1f with benzo[b]thiophene S, S-dioxide 2a in NMP

To a solution of cyclopentadienone **1f** (0.26 g, 0.60 mmol) in *N*-methyl-2-pyrrolidone (NMP) (5 mL), benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), it was poured over ice water (15 mL) containing HCl (0.5 mL). The solid obtained was filtered and dried. The crude product was triturated with methanol (10 mL) to furnish known 7,13-diphenylbenzo[*b*]fluorantheno[8,9-*d*]thiophene **4**¹⁴ (0.25 g, 68%) as a yellow solid.

Diels-Alder reaction of 1f with benzo[b]thiophene S, S-dioxide 2a in DEG

To a solution of cyclopentadienone **1f** (0.26 g, 0.60 mmol) in diethylene glycol (DEG) (5 mL), benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), it was poured over ice water (15 mL). The solid obtained was filtered and dried. The crude product was triturated with methanol (10 mL) to afford a 1:1 (based on ¹H NMR integration) mixture of 7,13-diphenylbenzo[*b*]fluorantheno[8,9-*d*]thiophene **4** and 6-phenylacenaphtho[1,2-*a*]triphenylene **3f** (0.19 g, 75%) as a yellow solid. **Diels-Alder reaction of 1f with phenyl acetylene**

To a solution of cyclopentadienone 3a (0.35 g, 0.98 mmol) in nitrobenzene (5 mL), phenyl acetylene (0.10 g, 0.98 mmol) was added and refluxed for 6 h. After completion of reaction

(TLC), the solvent was removed by vacuum distillation (90-100 °C, 10-20 mm Hg). Subsequent column chromatographic purification on silica gel (eluent: 100% hexane) afforded 7,8,10-triphenylfluoranthene **5** (0.25 g, 68%) as a colorless solid. **Mp** 182-184 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 7.75 (d, *J* = 6.9 Hz, 4H), 7.61-7.55 (m, 3H), 7.41-7.32 (m, 9H), 7.30-7.19 (m, 5H), 6.72 (d, *J* = 6.9 Hz, 1H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 141.0, 140.8, 139.4, 138.3, 138.0, 136.6, 136.2, 136.0, 135.7, 133.2, 131.2, 130.4, 130.0, 129.7, 129.2, 128.7, 128.5, 127.9, 127.7, 127.6, 127.3, 126.7, 126.4, 123.4, 123.0 ppm; **HRMS** (**ESI**) *m/z*: [M+H]⁺ Calcd for C₃₄H₂₂ 431.1800; Found 431.1799.

Diels-Alder reaction of 1f with benzo[b]thiophene S, S-dioxide 2a using K₂CO₃

To a solution of cyclopentadienone **1f** (0.26 g, 0.60 mmol) in nitrobenzene (5 mL), benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol), K_2CO_3 (0.17 g, 1.21 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent by vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 100% hexane) afforded 7,8,10-triphenylfluoranthene **5** (0.15 g, 59%) as a colorless solid.

Thermal electrocyclization of compound 5

To a solution of 7,8,10-triphenylfluoranthene **5** in PhOPh or PhNO₂ (5 mL) at reflux for 26 h. The reaction was monitered by TLC, and the starting material was recovered.

Diels-Alder reaction of 1f with benzo[b]thiophene S, S-dioxide 2a

A solution of cyclopentadienone **1f** (0.26 g, 0.60 mmol) with benzo[*b*]thiophene *S*, *S*-dioxide **2a** (0.10 g, 0.60 mmol) in PhNO₂ (5 mL) was stirred at 150 °C in an (oil bath) for 36 h. Subsequent removal of solvent followed by column chromatographic purification (Silica gel, eluent: 100% hexane) to give 7,13-diphenylbenzo[*b*]fluorantheno[8,9-*d*]thiophene **4**¹⁴ (0.05 g, 20%) as a yellow solid.

5,8-Dimethoxy-1,2,3-triphenyltriphenylene (6a)

To a solution of cyclopentadienone **1a** (0.17 g, 0.44 mmol) in PhNO₂ (5 mL), 4,7dimethoxybenzo[*b*]thiophene *S*, *S*-dioxide **2b** (0.10 g, 0.44 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent by vacuum distillation (90-100 °C, 10-20 mm Hg) followed by subsequent column chromatographic purification on silica gel (eluent: 100% hexane) furnished triphenylene **6a** (0.19 g, 82%) as a colorless solid. **Mp** 214-216 °C; **¹H NMR** (300 MHz, CDCl₃): δ 9.54 (s, 1H), 9.10 (d, *J* = 8.4 Hz, 1H), 7.45 (d, *J* = 8.1 Hz, 1H), 7.28-7.24 (m, 1H), 7.16-6.87 (m, 16H), 6.79-6.77 (m, 2H), 4.00 (s, 3H), 3.96 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 152.4, 151.7, 142.8, 140.2, 140.0, 138.2, 132.1, 131.7, 130.6, 130.5, 130.5, 130.2, 129.7, 129.5, 128.3, 127.9, 127.4, 127.1, 126.8, 126.0, 125.6, 125.5, 124.8, 123.7, 122.9, 111.1, 110.9, 56.9, 56.6 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 132.1, 131.7, 130.2, 129.8, 128.3, 127.8, 127.0, 126.8, 126.0, 125.6, 125.5, 124.8, 111.1, 110.9, 56.9, 56.6 ppm; **HRMS (ESI)** *m*/z: [M+H]⁺ Calcd for C₃₈H₂₈O₂ 516.2168; Found 516.2166. **5,8,10-Trimethoxy-3-(4-methoxyphenyl)-1,2-diphenyltriphenylene (6b)**

To a solution of cyclopentadienone **1c** (0.20 g, 0.44 mmol) in nitrobenzene (5 mL), 4,7dimethoxybenzo[*b*]thiophene *S*, *S*-dioxide **2b** (0.10 g, 0.44 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent by vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) furnished triphenylene **6b** (0.21 g, 82%) as a colorless solid. **Mp** 202-204 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.49 (s, 1H), 8.68 (s, 1H), 7.35 (d, *J* = 9.3 Hz, 1H), 7.24-6.95 (m, 13H), 6.78-6.77 (m, 2H), 6.70 (d, *J* = 8.4 Hz, 2H), 6.54-6.50 (m, 1H), 4.00 (s, 3H), 3.96 (s, 3H), 3.83 (s, 3H), 3.75 (s, 3H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 157.8, 156.9, 152.5, 151.8, 143.1, 140.5, 140.0, 138.7, 137.6, 135.4, 132.1, 131.9, 131.7, 131.2, 130.9, 129.7, 129.3, 128.6, 127.8, 126.9, 125.9, 125.4, 124.5, 123.6, 123.4, 112.9, 112.9, 111.3, 111.0, 110.2, 56.9, 56.8, 55.1 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 132.1, 131.7, 131.2, 131.0, 128.6, 127.9, 126.9, 125.9, 125.4, 112.9, 111.3, 111.0, 110.2, 56.9, 56.8, 55.1 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺Calcd for C₄₀H₃₂O₄ 577.2379; Found 577.2377.

1,4-Dimethoxy-6-phenylacenaphtho[1,2-*a*]triphenylene (6c)

To a solution of cyclopentadienone **1f** (0.16 g, 0.44 mmol) in PhNO₂ (5 mL), 4,7dimethoxybenzo[*b*]thiophene *S*, *S*-dioxide **2b** (0.10 g, 0.44 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent by vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) afforded acenaphthene fused triphenylene **6c** (0.20 g, 91%) as a yellow solid. **Mp** 194-196 °C; **¹H NMR** (300 MHz, CDCl₃): δ 9.37 (s, 1H), 9.26-9.17 (m, 2H), 8.60 (d, *J* = 7.2 Hz, 1H), 7.81-7.74 (m, 4H), 7.62-7.45 (m, 6H), 7.35 (t, *J* = 8.1 Hz, 1H), 7.26 (d, *J* = 6.6 Hz, 1H), 7.14-7.07 (m, 2H), 4.03 (s, 3H), 3.98 (s, 3H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 152.5, 152.0, 141.8, 138.3, 136.8, 136.6, 136.3, 134.6, 132.8, 130.2, 130.0, 129.9, 129.7, 129.4, 128.7, 128.7, 128.2, 128.0, 127.7, 127.6, 127.3, 127.2, 126.9, 125.6, 123.5, 123.1, 122.9, 122.8, 111.5, 110.9, 56.8, 56.6 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 129.4, 128.8, 128.7, 128.6, 128.0, 127.7, 127.6, 127.3, 127.2, 126.9, 125.6, 123.5, 123.1, 110.9, 56.8, 56.6 ppm; **HRMS** (**ESI**) *m*/z: [M+H]⁺ Calcd for C₃₆H₂₄O₂ 489.1855; Found 489.1852.

1,4,15-Trimethoxy-6-(4-methoxyphenyl)acenaphtho[1,2-a]triphenylene (6d)

To a solution of cyclopentadienone 1g (0.18 g, 0.44 mmol) in PhNO₂ (5 mL), 4,7dimethoxybenzo[*b*]thiophene *S*, *S*-dioxide 2b (0.10 g, 0.44 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 10% ethyl acetate in hexane) gave triphenylene **6d** (0.17 g, 69%) as a yellow solid. **Mp** 238-240 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.32 (s, 1H), 9.14 (d, J = 9 Hz, 1H), 8.76 (d, J = 2.4 Hz, 1H), 8.55 (d, J = 7.2 Hz, 1H), 7.79-7.69 (m, 4H), 7.50 (t, J = 7.8 Hz, 1H), 7.39-7.32 (m, 2H), 7.14-7.08 (m, 5H), 4.05 (s, 3H), 4.00 (s, 6H), 3.97 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 159.3, 158.5, 152.6, 152.1, 138.5, 136.8, 136.4, 135.7, 134.2, 133.9, 132.8, 131.1, 130.5, 129.9, 129.4, 129.4, 129.3, 129.0, 127.6, 127.3, 126.8, 126.7, 124.1, 123.9, 123.3, 123.0, 122.8, 114.0, 113.7, 111.7, 111.2, 111.0, 56.8 (2C), 55.4 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 130.5, 129.4, 129.0, 127.6, 127.3, 126.8, 126.7, 123.2, 123.0, 114.0, 113.7, 111.7, 111.2, 111.0, 56.8, 56.7, 55.4 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₃₈H₂₈O₄ 549.2066; Found 549.2065. **4,7-Dimethoxy-9-(thiophen-2-yl)acenaphtho**[1'2':7,8]phenanthrol[9,10-*b*]thiophene (6e)

To a solution of cyclopentadienone **1j** (0.16 g, 0.44 mmol) in PhNO₂ (5 mL), 4,7dimethoxybenzo[*b*]thiophene *S*, *S*-dioxide **2b** (0.10 g, 0.44 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) afforded thieno[*b*]phenanthrene **6e** (0.16 g, 70%) as a yellow solid. **Mp** 120-122 °C; **¹H NMR** (300 MHz, CDCl₃): δ 9.45 (s, 1H), 9.31 (d, *J* = 7.2 Hz, 1H), 8.60 (d, *J* = 5.7 Hz, 1H), 7.87-7.79 (m, 2H), 7.64-7.41 (m, 6H), 7.27-7.25 (m, 1H), 7.41 (s, 2H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 152.4, 150.8, 142.8, 136.9, 136.1, 135.7, 134.3, 133.8, 132.3, 132.2, 129.9, 128.9, 128.3, 127.6, 127.6, 127.5, 127.4, 127.1, 126.9, 126.4, 125.7, 124.2, 123.6, 122.3, 121.9, 121.5, 110.2, 109.0, 56.8, 56.2 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 132.2, 128.3, 127.6, 127.5, 127.4, 127.1, 126.9, 125.7, 124.2, 123.6, 122.3, 110.2, 109.0, 56.8, 56.2 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₃₂H₂₂O₂S₂ 501.0983; Found 501.0986. **6-Chloro-1,2,3-triphenyltriphenylene (7a)**

To a solution of cyclopentadienone **1a** (0.19 g, 0.50 mmol) in nitrobenzene (5 mL), 5-chlorobenzo[*b*]thiophene *S*, *S*-dioxide **2c** (0.10 g, 0.50 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 100% hexane) led to triphenylene **7a** (0.17 g, 69%) as a colorless solid. **Mp** 230-232 °C; **¹H NMR** (300 MHz, CDCl₃): δ 8.59 (s, 1H), 8.56 (s, 1H), 8.52-8.45 (m, 2H), 7.60-7.52 (m, 2H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.25-7.15 (m, 8H), 7.05-6.96 (m, 6H), 6.80-6.79 (m, 2H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 142.8, 141.9, 141.2, 140.9, 139.8, 133.5, 131.5, 131.4, 131.3, 130.7, 130.1, 130.0, 129.9, 129.6, 128.9, 128.2, 127.7, 127.6, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 124.8, 124.2, 123.4, 123.0 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 131.5, 131.4, 130.0, 128.3, 127.6, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 124.8, 124.2, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 124.8, 124.2, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 124.8, 124.2, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 124.8, 124.2, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 125.7, 125.4, 125.7, 125.4, 124.8, 124.2, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 124.8, 124.2, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 124.8, 124.2, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 124.8, 124.2, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 124.8, 124.2, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 124.8, 124.2, 126.9, 126.6, 126.5, 126.4, 125.7, 125.4, 125.7, 125.4, 125.7, 125.4, 124.8, 124.2, 123.4, 123.0 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₃₆H₂₃Cl 491.1567; Found 491.1569.

6-Chloro-1,2-bis(4-methoxyphenyl)-3-phenyltriphenylene (7b)

To a solution of cyclopentadienone **1b** (0.22 g, 0.50 mmol) in PhNO₂ (5 mL), 5-chlorobenzo[*b*]thiophene *S*, *S*-dioxide **2c** (0.10 g, 0.50 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) furnished triphenylene **7b** (0.18 g, 65%) as a colorless solid. **Mp** 210-212 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 8.57 (d, *J* = 1.8 Hz, 1H), 8.52-8.44 (m, 3H), 7.59-7.55 (m, 2H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.25-7.15 (m, 5H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.74-6.67 (m, 4H), 6.54 (d, *J* = 8.4 Hz, 2H), 3.79 (s, 3H), 3.70 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 158.1, 157.4, 142.2, 141.1, 139.6, 135.2, 133.4, 132.5, 132.4, 132.1, 131.4, 130.6, 130.4, 130.0, 129.9, 129.4, 129.2, 128.9, 127.7, 127.5, 126.5, 126.4, 125.4, 124.8, 123.9, 123.4, 122.9, 113.8, 112.5, 55.2, 55.0 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 132.5, 132.4, 130.0,

129.9, 127.7, 127.5, 126.5, 126.4, 125.4, 124.8, 124.0, 123.4, 122.9, 113.8, 112.5, 55.2, 55.0 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₃₈H₂₇ClO₂ 551.1778; Found 551.1777. **3-Chloro-6-phenylacenaphtho**[1,2-*a*]triphenylene (7c)

To a solution of cyclopentadienone **1f** (0.18 g, 0.50 mmol) in PhNO₂ (5 mL), 5-chlorobenzo[*b*]thiophene *S*, *S*-dioxide **2c** (0.10 g, 0.50 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 100% hexane) afforded acenaphthene incorporated triphenylene **7c** (0.21 g, 91%) as a fluorescent green solid. **Mp** 200-202 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.39 (d, *J* = 7.8 Hz, 1H), 8.68 (d, *J* = 6.9 Hz, 1H), 8.51-8.48 (m, 3H), 8.26 (s, 1H), 7.86-7.52 (m, 11H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 6.9 Hz, 1H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 140.8, 137.9, 137.8, 137.7, 136.1, 133.6, 132.6, 131.7, 130.3, 130.1, 129.9, 129.5, 129.4, 129.3, 128.9, 128.8, 128.6, 128.5, 128.2, 128.1, 127.7, 127.6, 127.4, 127.3, 127.2, 125.7, 124.8, 123.9, 123.7, 123.5, 123.4 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 129.3, 128.9, 128.8, 128.2, 128.1, 127.7, 127.6, 127.4, 127.3, 127.2, 125.7, 124.8, 128.2, 128.1, 127.7, 127.6, 127.4, 127.3, 127.2, 125.7, 124.8, 123.9, 123.7, 123.5, 123.4 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 123.5, 123.4 ppm; **HRMS** (**ESI**) *m*/*z*: [M+H]⁺ Calcd for C₃₄H₁₉Cl 463.1254; Found 463.1255.

3-Chloro-15-methoxy-6-(4-methoxyphenyl)acenaphtho[1,2-a]triphenylene (7d)

To a solution of cyclopentadienone 1g (0.21 g, 0.50 mmol) in PhNO₂ (5 mL), 5chlorobenzo[*b*]thiophene *S*, *S*-dioxide 2c (0.10 g, 0.50 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) gave acenaphthene fused triphenylene **7d** (0.19 g, 85%) as a yellow solid. **Mp** 212214 °C; ¹**H** NMR (300 MHz, CDCl₃): δ 9.19 (d, *J* = 9 Hz, 1H), 8.56 (d, *J* = 7.2 Hz, 1H), 8.37-8.32 (m, 2H), 8.12 (s, 1H), 7.83 (s, 1H), 7.76 (t, *J* = 8.7 Hz, 2H), 7.59 (d, *J* = 8.1 Hz, 2H), 7.51-7.46 (m, 2H), 7.33 (t, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 6.8 Hz, 1H), 7.12-7.06 (m, 3H), 4.00 (s, 3H), 3.93 (s, 3H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 159.5, 159.5, 137.9, 137.8, 136.7, 136.4, 135.3, 133.6, 133.2, 132.6, 132.1, 131.9, 130.4, 129.9, 128.5, 128.4, 128.2, 127.6, 127.3, 127.2, 124.8, 123.8, 123.6, 123.5, 123.2, 114.1, 113.7, 106.2, 55.5, 55.5 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 130.4, 127.6, 127.3, 127.2, 124.8, 123.8, 123.6, 123.5, 114.1, 113.7, 106.2, 55.5, 55.5 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₃₆H₂₃ClO₂ 523.1465; Found 523.1459.

To a solution of cyclopentadienone **1g** (0.20 g, 0.47 mmol) in PhNO₂ (5 mL), 5nitrobenzo[*b*]thiophene *S*, *S*-dioxide **2d** (0.10 g, 0.47 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) afforded acenaphthene fused triphenylene **7e** (0.16 g, 65%) as a yellow solid. **Mp** 234-236 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.15-9.12 (m, 2H), 8.47 (d, *J* = 7.2 Hz, 1H), 8.40 (d, *J* = 9 Hz, 1H), 8.21 (d, *J* = 8.5 Hz, 1H), 8.1 (s, 1H), 7.79-7.73 (m, 3H), 7.54-7.43 (m, 3H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.23-7.13 (m, 2H), 7.04 (d, *J* = 8.1 Hz, 2H), 4.00 (s, 3H), 3.92 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 159.6, 159.6, 146.6, 138.4, 137.5, 137.1, 136.0, 135.4, 134.3, 132.6, 131.0, 130.8, 130.5, 130.4, 129.9, 128.3, 128.3, 127.7, 127.6, 127.5, 127.2, 124.5, 124.4, 123.9, 123.8, 123.7, 120.7, 119.6, 115.4, 114.2, 107.0, 55.6, 55.5 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 130.5, 130.4, 127.7, 127.6, 127.5, 127.2, 124.4, 123.9, 123.8, 123.7, 120.7, 119.6, 115.4, 114.2, 107.0, 55.6, 55.5 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₃₆H₂₃NO₄ 534.1705; Found 534.1702.

6-Chloro-9-(thiopheny-2-yl)acenaphtho[1'2':7,8]phenanthrol[9,10-b]thiophene (7f)

To a solution of cyclopentadienone **1j** (0.18 g, 0.50 mmol) in PhNO₂ (5 mL), 5-chlorobenzo[*b*]thiophene *S*, *S*-dioxide **2c** (0.10 g, 0.50 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 100% hexane) to give thieno[*b*]phenanthrene **7f** (0.16 g, 69%) as a yellow solid. **Mp** 240-242 °C; **¹H NMR** (300 MHz, CDCl₃): δ 9.33 (d, *J* = 7.2 Hz, 1H), 8.46 (s, 1H), 8.40 (s, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.83-7.74 (m, 3H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.49-7.47 (m, 3H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.28-7.26 (m, 2H), 7.21-7.19 (m, 1H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 141.5, 138.9, 136.7, 136.3, 135.5, 135.1, 133.7, 132.5, 132.4, 132.4, 130.8, 129.8, 128.7, 128.0, 127.8, 127.8, 127.6, 127.5, 127.4, 127.2, 126.9, 126.2, 125.8, 125.6, 124.9, 124.5, 124.1, 123.9, 122.7 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 128.0, 127.8, 127.7, 127.6, 127.5, 127.4, 127.2, 126.9, 126.2, 125.8, 125.6, 124.9, 124.5, 124.1, 123.9, 122.7 ppm; 126.2, 125.6, 124.9, 124.5, 124.1, 123.9, 122.7 ppm; **LEPT-135 NMR** (75 MHz, CDCl₃): δ 128.0, 127.8, 127.7, 127.6, 127.5, 127.4, 127.2, 126.9, 126.2, 125.8, 125.6, 124.9, 124.5, 124.1, 123.9, 122.7 ppm; C₃₀H₁₅ClS₂ 475.0382; Found 475.0378.

2,3,4-Triphenylbenzo[f]tetraphene (9a)

To a solution of cyclopentadienone **1a** (0.18 g, 0.46 mmol) in PhNO₂ (5 mL), naphtho[2,3b]thiophene *S*, *S*-dioxide **8a** (0.10 g, 0.46 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 100% hexane) led to naphthalene fused phenanthrene **9a** (0.17 g, 71%) as a colorless solid. **Mp** 246-248 °C; **¹H NMR** (300 MHz, CDCl₃): δ 9.07 (s, 1H), 9.03 (s, 1H), 8.78 (s, 1H), 8.65 (d, *J* = 8.4 Hz, 1H), 8.06 (dd, *J*₁ = 8.4 Hz, *J*₂ = 6.6 Hz, 2H), 7.59-7.54 (m, 2H), 7.49-7.40 (m, 2H), 7.26-6.82 (m, 14H), 6.81-6.79 (m, 2H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 142.8, 142.2, 140.9, 140.8, 139.9, 139.7, 132.5, 132.4, 131.8, 131.5, 131.5, 131.0, 130.5, 130.0, 129.2, 128.9, 128.6, 128.2, 128.0, 127.6, 126.8, 126.6, 126.4, 126.3, 126.2, 126.0, 125.6, 125.5, 124.4, 123.7, 122.5, 121.7 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃):δ 131.6, 131.5, 130.2, 130.1, 128.2, 128.2, 127.6, 126.9, 126.7, 126.5, 126.3, 126.2, 126.1, 125.6, 125.5, 124.6, 123.7, 122.5, 121.8, ppm; **HRMS** (**ESI**) *m/z*: [M+H]⁺ Calcd for C₄₀H₂₆ 507.2113; Found 507.2111.

3,4-Bis(4-methoxyphenyl)-2-phenylbenzo[*f*]tetraphene (9b)

To a solution of cyclopentadienone **1b** (0.21 g, 0.46 mmol) in PhNO₂ (5 mL), naphtho[2,3*b*]thiophene *S*, *S*-dioxide **8a** (0.10 g, 0.46 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) gave naphthalene fused phenanthrene **9b** (0.18 g, 70%) as a colorless solid. **Mp** 208-210 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.05 (d, *J* = 7.8 Hz, 2H), 8.76 (s, 1H), 8.66 (d, *J* = 8.1 Hz, 1H), 8.07 (dd, *J*₁ = 8.7 Hz, *J*₂ = 6.9 Hz, 2H), 7.60-7.52 (m, 3H), (t, *J* = 7.5 Hz, 1H), 7.28-7.25 (m, 5H), 7.06-6.96 (m, 3H), 6.76-6.71 (m, 4H), 6.56 (d, *J* = 8.7 Hz, 2H), 3.81 (s, 3H), 3.73 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 158.1, 157.4, 142.5, 141.1, 140.7, 139.6, 135.3, 132.5, 132.4, 132.3, 131.8, 131.1, 130.8, 130.2, 130.1, 129.2, 129.2, 128.8, 128.2, 128.1, 127.7, 126.5, 126.3, 126.1, 126.0, 125.6, 124.3, 123.7, 122.4, 121.7, 113.8, 112.5, 55.2, 55.0 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 132.5, 130.2, 130.1, 128.2, 127.7, 126.5, 126.3, 126.1, 126.0, 125.6, 124.3, 123.7, 122.4, 121.7, 113.8, 112.5, 55.2, 55.0 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₄2H₃₀O₂ 567.2324; Found 567.2329.

To a solution of cyclopentadienone **1f** (0.16 g, 0.46 mmol) in PhNO₂ (5 mL), naphtho[2,3b]thiophene *S*, *S*-dioxide **8a** (0.10 g, 0.46 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 100% hexane) furnished naphthalene fused phenanthrene **9c** (0.16 g, 72%) as a fluorescent green solid. **Mp** 236-238 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.31 (d, *J* = 7.8 Hz, 1H), 9.00 (s, 1H), 8.94 (s, 1H), 8.69-8.66 (m, 2H), 8.48 (s, 1H), 8.08-8.00 (m, 2H), 7.85-7.77 (m, 4H), 7.69-7.53 (m, 9H), 7.37 (t, *J* = 8.1 Hz, 1H), 7.19 (d, *J* = 6.9 Hz, 1H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 141.1, 137.8, 137.4, 136.3, 136.2, 132.7, 132.6, 132.4, 131.4, 131.0, 130.0, 129.7, 129.4, 129.0, 128.9, 128.8, 128.3, 128.2, 128.1, 128.0, 127.6, 127.4, 127.2, 127.1, 126.1, 125.9, 124.2, 123.9, 123.8, 123.3, 122.5, 121.9 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 129.4, 129.3, 129.0, 128.8, 128.3, 128.2, 128.1, 128.0, 127.6, 127.4, 127.2, 127.1, 126.1, 125.9, 124.2, 123.9, 123.8, 123.3, 122.5, 128.1, 128.0, 127.6, 127.4, 127.2, 127.1, 126.1, 125.9, 124.2, 123.9, 123.8, 128.3, 128.2, 128.1, 128.0, 127.6, 127.4, 127.2, 127.1, 126.1, 125.9, 124.2, 123.9, 123.8, 128.3, 128.2, 128.1, 128.0, 127.6, 127.4, 127.2, 127.1, 126.1, 125.9, 124.2, 123.9, 123.8, 123.3, 122.5, 121.9 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₃₈H₂₂ 479.1800; Found 479.1797. **9-Methoxy-18-(4-methoxyphenyl)acenaphtho[1,2-***c***]benzo[***f***]tetraphene (9d)**

To a solution of cyclopentadienone **1g** (0.19 g, 0.46 mmol) in PhNO₂ (5 mL), naphtho[2,3*b*]thiophene *S*, *S*-dioxide **8a** (0.10 g, 0.46 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation (90-100 °C, 10-20 mm Hg) followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) afforded naphthalene fused phenanthrene **9d** (0.20 g, 82%) as a yellow solid. **Mp** 258-260 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.18 (d, *J* = 9.0 Hz, 1H), 8.89 (s, 2H), 8.61 (d, *J* = 7.2 Hz, 1H), 8.41 (s, 1H), 8.06-7.97 (m, 3H), 7.78 (dd, *J_I* = 8.1 Hz, *J₂* = 4.3 Hz, 2H), 7.68 (d, *J* = 8.7 Hz, 2H), 7.39-7.34 (m, 2H), 7.27-7.19 (m, 2H), 7.18-7.10 (m, 2H), 4.08 (s, 3H), 3.96 (s, 3H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 159.6, 159.5, 138.0, 137.6, 136.7, 136.5, 135.5, 133.0, 132.8, 132.7, 132.3, 130.5, 130.1, 129.9, 129.2, 128.8, 128.6, 128.2, 128.1, 127.2, 127.1, 126.9, 126.2, 126.1, 124.0, 123.6, 123.5, 123.2, 122.5, 122.0, 114.8, 114.2, 113.4, 107.5, 55.6, 55.5 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 139.5, 128.2, 128.1, 127.6, 127.2, 127.2, 126.9, 126.2, 126.1, 124.0, 123.6, 123.2, 122.5, 122.0, 114.2, 113.4, 107.5, 55.6, 55.5 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₄₀H₂₆O₂ 539.2011; Found 539.2018.

Diels-Alder reaction of cyclopentadienone 1h with naphtho[2,3-*b*]**thiophene** *S*, *S*-**dioxide** To a solution of cyclopentadienone **1h** (0.22 g, 0.46 mmol) in PhNO₂ (5 mL), naphtho[2,3-*b*]**thiophene** *S*, *S*-**dioxide 8a** (0.10 g, 0.46 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by

subsequent column chromatographic purification on silica gel (eluent: 10% ethyl acetate in hexane) gave naphthalene fused phenanthrene **9e** (0.08 g, 28%) as a yellow solid. Further elution of the column (eluent: 12% ethyl acetate in hexane) led to the isolation of positionally isomeric naphthalene fused phenanthrene **9e'** (0.14 g, 53%) also as a yellow solid.

18-(3,4-dimethoxyphenyl)-9,10-dimethoxyacenaphtho[1,2-c]benzo[f]tetraphene (9e)

Mp 210-212 °C. ¹**H NMR** (300 MHz, CDCl₃): δ 9.98 (s, 1H), 8.96 (d, J = 9 Hz, 1H), 8.83 (s, 1H), 8.52 (t, J = 7.8 Hz, 1H), 8.34 (s, 1H), 8.00-7.92 (m, 2H), 7.87-7.66 (m, 3H), 7.51-7.44 (m, 2H), 7.33-7.05 (m, 6H), 4.02 (s, 3H), 4.00 (s, 3H), 3.87 (s, 3H), 3.81 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 153.2, 149.0, 148.9, 147.3, 138.0, 137.6, 137.1, 136.5, 135.4, 133.8, 133.4, 132.8, 132.5, 132.3, 130.9, 130.0, 129.9, 129.4, 128.9, 128.4, 127.9, 127.7, 127.2, 127.2, 126.5, 125.8, 125.7, 125.1, 124.8, 123.6, 123.4, 123.3, 121.8, 121.4, 112.7, 111.5, 110.8, 59.5, 56.3, 56.1 ppm; **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₄₂H₃₀O₄ 599.2222; Found 599.2225. **18-(3,4-Dimethoxyphenyl)-8,9-dimethoxyacenaphtho[1,2-***c***]benzo[***f***]tetraphene (9e')**

Mp 178-180 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 8.89 (s, 1H), 8.76 (s, 1H), 8.68 (s, 1H), 8.62 (d, J = 7.2 Hz, 1H), 8.42 (s, 1H), 8.02-7.94 (m, 3H), 7.78-7.70 (m, 2H), 7.50-7.45 (m, 3H), 7.35-7.15 (m, 3H), 7.06 (d, J = 7.8 Hz, 1H), 3.99 (s, 3H), 3.88 (s, 3H), 3.88 (s, 3H), 3.85 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 149.8, 149.0, 148.9, 147.6, 138.0, 137.5, 136.9, 136.5, 135.3, 133.8, 132.8, 132.4, 132.1, 130.5, 130.0, 128.9, 128.6, 128.4, 128.2, 127.8, 127.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 111.1, 105.9, 56.2, 56.1, 56.0 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 128.2, 127.8, 127.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 125.8, 125.6, 124.0, 123.9, 123.8, 123.5, 122.6, 121.4, 121.0, 112.7, 111.5, 127.1, 126.8, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1, 126.1, 126.

111.1, 105.9, 56.2, 56.1, 56.0 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₄₂H₃₀O₄ 599.2222; Found 599.2219.

17-(Thiophen-2-yl)acenaphtho[1',2':3,4]tetrapheno[5,6-b]thiophene (9f)

To a solution of cyclopentadienone 1j (0.14 g, 0.46 mmol) in PhNO₂ (5 mL), naphtho[2,3b]thiophene S, S-dioxide 8a (0.10 g, 0.46 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 100% hexane) provided thieno[b]anthracene 9f (0.17 g, 74%) as a yellow solid. Mp 248-250 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.54 (d, J = 7.2 Hz, 1H), 8.98 (s, 1H), 8.72 (s, 1H), 8.71 (s, 1H), 8.03-7.98 (m, 3H), 7.85-7.73 (m, 2H), 7.61 (t, J = 7.8 Hz, 1H), 7.52-7.41 (m, 4H), 7.38-7.16 (m, 4H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): *δ* 141.8, 138.6, 137.4, 136.4, 135.7, 135.2, 133.5, 132.6, 132.4, 131.9, 130.2, 129.9, 128.6, 128.5, 128.4, 127.8, 127.7, 127.5, 127.3, 127.2, 126.9, 126.3, 126.1, 125.8, 125.6, 124.7, 124.1, 123.7, 123.5, 123.4, 122.1 ppm; **DEPT-135 NMR** (75 MHz, CDCl₃): δ 128.5, 127.8, 127.7, 127.5, 127.3, 127.2, 126.9, 126.3, 126.1, 125.8, 124.7, 124.1, 123.7, 123.5, 123.4, 122.1 ppm; **HRMS (ESI)** *m/z*: [M+H]⁺ Calcd for C₃₄H₁₈S₂ 491.0928; Found 491.0927. Diels-Alder reaction of cyclopentadienone 1a with naphthothiophene S, S-dioxide 8b To a solution of cyclopentadienone **1a** (0.18 g, 0.46 mmol) in nitrobenzene (5 mL), naphtho[1,2-b]thiophene S, S-dioxide 8b (0.10 g, 0.46 mmol)) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 100% hexane) offered benzo chrysene 9g (0.11 g, 49%) as a colorless solid. Further elution of the column (eluent: 5% ethyl acetate in hexane) led to the isolation of thiophene S, S-dioxide tethered hetero helicene 10 (0.03 g, 20%) as a brown solid.

1,2,3-Triphenylbenzo[g]chrysene (9g)

Mp 172-174 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 8.94 (d, J = 8.1 Hz, 1H), 8.72 (d, J = 8.1 Hz, 1H), 8.65 (s, 1H), 8.60 (d, J = 9 Hz, 1H), 8.00 (t, J = 8.7 Hz, 2H), 7.67-7.58 (m, 3H), 7.40 (t, J = 7.8 Hz, 1H), 7.26-7.16 (m, 10H), 7.06-6.98 (m, 4H), 6.82-6.81 (m, 2H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 142.6, 142.4, 140.9, 140.3, 139.9, 138.9, 133.7, 131.7, 131.6, 131.3, 131.1, 130.7, 130.1, 129.8, 129.5, 129.1, 128.8, 128.2, 127.8, 127.8, 127.6, 126.9, 126.4, 126.1, 126.0, 125.7, 124.9, 124.2, 120.7 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 131.9, 131.7, 130.1, 129.5, 129.1, 128.2, 127.6, 126.9, 126.4, 126.1, 126.0, 125.7, 124.9, 124.2, 120.7 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 131.9, 131.7, 130.1, 129.5, 129.1, 128.5, 127.6, 126.9, 126.4, 126.1, 126.0, 125.7, 124.9, 124.2, 120.7 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₄₀H₂₆ 507.2113; Found 507.2111.

Naphtho[1,2-*b*]phenanthro[4,3-*d*]thiophene *S*, *S*-dioxide (10a)

Mp 140-142 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 8.77 (d, *J* =8.1 Hz, 1H), 8.50 (d, *J* = 8.1 Hz, 1H), 8.28 (d, *J* = 8.7 Hz, 1H), 8.03-7.84 (m, 6H), 7.78-7.60 (m, 4H), 7.51 (t, *J* = 7.8 Hz, 1H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 139.0, 137.1, 134.1, 133.7, 133.1, 132.8, 132.4, 130.6, 129.8, 129.4, 128.9, 128.9, 128.8, 128.6, 128.6, 128.3, 128.0, 126.6, 125.1, 123.8, 122.2, 118.3 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 132.8, 130.6, 129.8, 129.4, 128.9, 128.6, 128.3, 130.6, 129.8, 129.4, 128.9, 128.8, 128.6, 128.3, 130.6, 129.8, 129.4, 128.9, 128.6, 128.6, 128.3, 130.6, 129.8, 129.4, 128.9, 128.6, 128.6, 128.7, 130.6, 129.8, 129.4, 128.9, 128.6, 128.6, 128.7, 130.6, 129.8, 129.4, 128.9, 128.6, 128.6, 128.7, 130.6, 129.8, 129.4, 128.9, 128.6, 128.6, 128.7, 130.6, 129.8, 129.4, 128.9, 128.6, 128.6, 128.7, 130.6, 129.8, 129.4, 128.9, 128.6, 128.6, 128.7, 123.8, 122.2, 118.3 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₂₄H₁₄O₂S 367.0793; Found 367.0792.

Diels-Alder reaction of cyclopentadienone 1c with naphthothiophene S, S-dioxide 8b

To a solution of cyclopentadienone **1c** (0.18 g, 0.46 mmol) in PhNO₂ (5 mL), naphtho[1,2*b*]thiophene *S*, *S*-dioxide **8b** (0.10 g, 0.46 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 2-3% ethyl acetate in hexane) offered a complex mixture of compounds. Further elution of the column (eluent: 5% ethyl acetate in hexane) led to the isolation of thiophene *S*, *S*-dioxide tethered hetero helicene **10a** (0.05 g, 30%) as a brown solid.

Self-Diels-Alder reaction of naphthothiophene S, S-dioxide 8b in PhNO₂

To a solution of naphtho[1,2-*b*]thiophene *S*, *S*-dioxide **8b** (0.10 g, 0.46 mmol) in nitrobenzene (5 mL), was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) gave thiophene *S*, *S*-dioxide tethered hetero helicene **10a** (0.06 g, 68%) as a brown solid.

Self-Diels-Alder reaction of naphthothiophene S, S-dioxide 8b in PhOPh

The self-Diels-Alder reaction of naphtho[1,2-*b*]thiophene *S*, *S*-dioxide **8b** (0.10 g, 0.46 mmol) in diphenyl ether (5 mL) at reflux for 12 h followed by workup and column chromatographic purification on silica gel (eluent: 4% ethyl acetate in hexane) offered dihydro thiophene *S*, *S*-dioxide **10b** (0.04 g, 55%)as a colorless solid. **Mp** 194-196 °C; **¹H NMR** (300 MHz, CDCl₃): δ 8.60 (d, *J* = 8.4 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.97-7.59 (m, 7H), 7.32 (d, *J* = 8.4 Hz, 1H), 6.71-6.66 (m, 2H), 6.32 (d, *J* = 7.8 Hz, 1H), 5.71 (d, *J* = 7.5 Hz, 1H), 4.72 (d, *J* = 7.2 Hz, 1H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 138.2, 134.3, 133.8, 133.5, 132.3, 132.1, 131.1, 129.2, 129.1, 129.0, 128.5, 127.8, 126.3, 126.1, 123.1, 122.8, 120.2, 64.9, 36.3 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 134.3, 131.1, 129.2, 129.1, 129.0, 128.5, 127.8, 126.3, 126.1, 123.1, 129.0, 128.5, 127.8, 126.3, 126.1, 123.1, 129.0, 128.5, 127.8, 120.2, 64.9, 36.3 ppm.

A solution of naphtho[2,3-*b*]thiophene *S*, *S*-dioxide **8a** (0.10 g, 0.46 mmol) in PhNO₂/PhOPh (5 mL) was refluxed for 24 h. The usual workup followed by column chromatographic

purification on silica gel (eluent: 7% ethyl acetate in hexane) failed to produce the expected hetero helicene, instead the starting material **8a** was recovered unchanged.

12-Phenylacenaphtho[1,2-a]benzo[p]chrysene (9i)

To a solution of cyclopentadienone **1f** (0.16 g, 0.46 mmol) in PhNO₂ (5 mL), naphtho[1,2*b*]thiophene *S*, *S*-dioxide **8b** (0.10 g, 0.46 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by column chromatographic purification on silica gel (eluent: 100% hexane) to afford fluoranthene fused chrysene **9i** (0.18 g, 84%) as a fluorescent green solid. **Mp** 240-242 °C; **¹H NMR** (300 MHz, CDCl₃): δ 9.51(d, *J* = 7.8 Hz, 1H), 9.04 (d, *J* = 8.4 Hz, 1H), 8.85-8.82 (m, 2H), 8.52 (d, *J* = 9.0 Hz, 1H), 8.41 (s, 1H), 8.02-7.95 (m, 2H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.82-7.77 (m, 3H), 7.71-7.55 (m, 8H), 7.39 (t, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 6.9 Hz, 1H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 141.2, 137.9, 137.7, 137.1, 136.4, 135.5, 133.6, 132.8, 130.5, 130.3, 129.9, 129.4, 129.2, 128.8, 128.2, 128.1, 128.1, 128.0, 127.9, 127.7, 127.5, 127.5, 127.3, 127.1, 126.2, 126.0, 125.4, 124.0, 123.9, 123.6, 123.5, 120.8 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 129.4, 129.2, 128.8, 128.2, 128.1, 128.1, 128.0, 127.9, 127.7, 127.5, 127.5, 127.3, 127.1, 126.2, 126.0, 125.4, 124.0, 123.6, 123.5, 120.8 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 129.4, 129.2, 128.8, 128.2, 128.1, 128.1, 128.0, 127.9, 127.7, 127.5, 127.5, 127.3, 127.1, 126.2, 126.0, 125.4, 124.0, 123.6, 123.5, 120.8 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₃₈H₂₂479.1800; Found 479.1803.

3-Methoxy-12-(4-methoxyphenyl)acenaphtho[1,2-*a*]benzo[*p*]chrysene (9j)

To a solution of cyclopentadienone 1g (0.19 g, 0.46 mmol) in PhNO₂ (5 mL), naphtho[1,2b]thiophene *S*, *S*-dioxide **8b** (0.10 g, 0.46 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) gave acenaphtho based benzo chrysene **9j** (0.14 g, 78%) as a fluorescent green solid. **Mp** 190-192 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.39 (d, J = 9 Hz, 1H), 9.09 (d, J = 8.4 Hz, 1H), 8.78 (d, J = 7.2 Hz, 1H), 8.52 (d, J = 9 Hz, 1H), 8.36 (s, 1H), 8.32 (d, J = 1.8 Hz, 1H), 8.02-7.98 (m, 2H), 7.83 (dd, $J_1 = 8.1$ Hz, $J_2 = 8.4$ Hz, 2H), 7.70-7.58 (m, 5H), 7.40 (t, J = 7.8 Hz, 1H), 7.32-7.28 (m, 1H), 7.16 (d, J = 8.4 Hz, 3H), 4.02 (s, 3H), 4.00 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 159.5, 158.8, 137.9, 137.3, 136.8, 136.7, 134.8, 133.6, 133.5, 132.8, 132.0, 130.5, 130.1, 129.9, 129.8, 129.7, 128.6, 128.3, 128.0, 127.7, 127.6, 127.5, 127.3, 127.2, 127.0, 126.2, 125.9, 124.4, 123.9, 123.6, 123.4, 121.0, 114.1, 113.3, 112.0, 55.6, 55.5 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 130.5, 129.7, 128.3, 128.0, 127.7, 127.5, 127.3, 127.2, 127.0, 126.2, 125.9, 123.6, 123.4, 121.0, 114.1, 113.3, 112.0, 55.6, 55.5 ppm; **MRMS** (**ESI**) m/z: [M+H]⁺ Calcd for C₄₀H₂₆O₂ 539.2011; Found 539.2010.

2,3,4-Triphenyl-10-(phenylsulfonyl)-10H-phenanthro[9,10-b]carbazole (12a)

To a solution of cyclopentadienone **1a** (0.10 g, 0.25 mmol) in nitrobenzene (5 mL), 9-(phenylsulfonyl)-9*H*-thieno[2,3-*b*]carbazole *S*, *S*-dioxide **11a** (0.10 g, 0.25 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), the solvent was removed by vacuum distillation (90-100 °C, 10-20 mm Hg). Subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) afforded phenanthrene fused carbazole **12a** (0.12 g, 65%) as a pale brown solid. **Mp** >300 °C; **¹H NMR** (300 MHz, CDCl₃): δ 9.53 (s, 1H), 9.04 (s, 1H), 8.74-8.69 (m, 2H), 8.36 (d, *J* = 8.4 Hz, 1H), 8.04 (d, *J* = 7.5 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 2H), 7.52 (t, *J* = 8.1 Hz, 3H), 7.47-7.36 (m, 2H), 7.29-7.13 (m, 10H), 7.05-6.93 (m, 6H), 6.79-6.77 (m, 2H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 142.9, 142.3, 140.8, 140.6, 139.9, 139.7, 138.4, 137.7, 133.9, 131.7, 131.6, 131.5, 130.7, 130.6, 130.4, 130.1, 129.1, 128.4, 128.2, 128.1, 127.6, 127.0, 126.9, 126.8, 126.6, 126.4, 125.7, 125.5, 124.5, 123.9, 123.8, 120.6, 115.5, 114.8, 108.9 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 133.9, 131.6, 131.5, 130.1, 129.1, 128.2, 128.1, 127.6, 126.9, 126.8, 126.6, 126.5, 126.4, 125.6, 125.5, 124.5, 123.9, 123.8, 120.6, 115.5, 114.8, 108.9 ppm; **HRMS (ESI)** *m*/z : [M+H]⁺ Calcd for C₄₈H₃₁NO₂S 686.2154; Found 686.2161.

2-Methoxy-7-(4-methoxyphenyl)-5,6-diphenyl-10-(phenylsulfonyl)-10*H*-phenanthro[9,10-*b*]carbazole (12b)

To a solution of cyclopentadienone 1c (0.11 g, 0.25 mmol) in PhNO₂ (5 mL), 9-(phenylsulfonyl)-9H-thieno[2,3-b]carbazole S, S-dioxide 11a (0.10 g, 0.25 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 10% ethyl acetate in hexane) provided phenanthrene fused carbazole 12b (0.17 g, 87%) as a pale brown solid. Mp 254-256 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.42 (s, 1H), 9.02 (s, 1H), 8.63 (s, 1H), 8.32 (d, J = 8.1 Hz, 1H), 8.10 (s, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 7.2Hz, 2H), 7.49 (t, J = 7.2 Hz, 1H), 7.42-7.36 (m, 3H), 7.27-7.21 (m, 2H), 7.11-6.93 (m, 10H), 6.74-6.71 (m, 4H), 6.59 (d, J = 9.3 Hz, 1H), 3.94 (s, 3H), 3.74 (s, 3H) ppm; ¹³C{¹H} NMR (75) MHz, CDCl₃): δ 158.2, 158.0, 143.1, 140.6, 140.1, 139.7, 139.5, 138.9, 138.3, 137.7, 134.7, 133.9, 133.3, 131.6, 131.5, 131.2, 130.3, 129.8, 129.2, 128.2, 128.1, 127.3, 126.9, 126.8, 126.6, 126.5, 126.3, 125.5, 124.4, 124.3, 124.0, 120.5, 115.5, 114.9, 113.2, 113.1, 109.0, 106.9, 55.4, 55.2 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 133.9, 131.6, 131.5, 131.2, 129.1, 128.3, 128.1, 126.9, 126.5, 126.3, 125.5, 124.4, 124.0, 120.6, 115.5, 114.9, 113.2, 113.1, 109.0, 106.0, 55.4, 55.2 ppm; **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₅₀H₃₅NO₄S 746.2365; Found 746.2365. 19-Phenyl-12-(phenylsulfonyl)-12H-acenaphtho[1',2':3,4]phenanthro[9,10-b]carbazole (12c)

To a solution of cyclopentadienone **1f** (0.09 g, 0.25 mmol) in PhNO₂ (5 mL), 9- (phenylsulfonyl)-9*H*-thieno[2,3-*b*]carbazole *S*, *S*-dioxide **11a** (0.10 g, 0.25 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) gave phenanthrene fused carbazole **12c** (0.14 g, 81%) as a yellow

solid. **Mp** >300 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.52 (s, 1H), 9.40 (d, J = 8.1 Hz, 1H), 8.94 (s, 1H), 8.76 (d, J = 8.1 Hz, 2H), 8.71 (d, J = 7.2 Hz, 2H), 8.40 (s, 1H), 8.36 (d, J = 8.1 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.88-7.74 (m, 7H), 7.65-7.50 (m, 3H), 7.42-7.25 (m, 6H), 7.15 (d, J = 7.2 Hz, 1H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 141.1, 139.7, 138.2, 137.9, 137.7, 137.7, 137.1, 136.2, 136.2, 133.9, 132.7, 131.2, 130.5, 130.2, 129.9, 129.5, 129.1, 128.9, 128.8, 128.3, 128.1, 127.6, 127.5, 127.4, 127.2, 127.1, 126.8, 126.6, 126.5, 125.8, 124.4, 124.2, 124.0, 123.4, 120.5, 115.5, 114.9, 109.0 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 133.9, 129.4, 129.1, 128.9, 128.8, 128.3, 128.1, 127.6, 127.5, 127.5, 127.2, 127.1, 126.5, 125.8, 124.4, 124.2, 124.0, 123.4, 120.5, 115.4, 114.9, 109.0 ppm; **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₄₆H₂₇NO₂S 658.1841; Found 658.1835.

9-Methoxy-19-(4-methoxyphenyl)-12-(phenylsulfonyl)-12Hacenaphtho[1',2':3,4]phenanthro[9,10-*b*]carbazole (12d)

To a solution of cyclopentadienone **1g** (0.11 g, 0.25 mmol) in PhNO₂ (5 mL), 9-(phenylsulfonyl)-9*H*-thieno[2,3-*b*]carbazole *S*, *S*-dioxide **11a** (0.10 g, 0.25 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 10% ethyl acetate in hexane) furnished phenanthrene incorporated carbazole **12d** (0.14 g, 79%) as a yellow solid. **Mp** 270-272 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.46 (s, 1H), 9.32 (d, *J* = 9.0 Hz, 1H), 8.98 (s, 1H), 8.67 (d, *J* = 7.2 Hz, 1H), 8.39-8.35 (m, 2H), 8.17 (d, *J* = 2.4 Hz, 1H), 8.06 (d, *J* = 7.5 Hz, 1H), 7.87-7.77 (m, 4H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.59-7.51 (m, 2H), 7.44-7.35 (m, 3H), 7.31-7.15 (m, 6H), 4.14 (s, 3H), 3.98 (s, 3H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 159.7, 159.6, 139.7, 138.2, 138.1, 137.7, 137.4, 136.7, 136.5, 135.4, 133.9, 133.6, 133.0, 132.7, 130.5, 130.0, 129.7, 129.1, 128.1, 127.8, 127.7, 127.3, 127.1, 127.0, 126.6, 126.6, 124.4, 123.7, 123.6, 123.5, 123.3, 120.5, 115.5, 114.9, 114.2, 113.6, 109.2, 107.2, 55.7, 55.5 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 133.9, 130.5, 129.1, 128.1, 127.7, 127.3, 127.1, 126.6, 124.5, 123.7, 123.6, 123.3, 120.5, 115.5, 114.9, 114.2, 113.6, 109.2, 107.2, 55.7, 55.5 ppm; **HRMS (ESI)** *m*/z: [M+H]⁺Calcd for C₄₈H₃₁NO₄S 718.2052; Found 718.2054.

11-(Phenylsulfonyl)-18-(thiophen-2-yl)-11*H*-acenaphtho[1',2':5,6] thieno[3',2':3,4]naphtho[2,1-*b*]carbazole (12e)

To a solution of cyclopentadienone **1j** (0.09 g, 0.25 mmol) in PhNO₂ (5 mL), 9-(phenylsulfonyl)-9*H*-thieno[2,3-*b*]carbazole *S*, *S*-dioxide **11a** (0.10 g, 0.25 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) furnished fluoranthene fused carbazole **12e** (0.12 g, 69%) as a yellow solid. **Mp** 184-186 °C; **¹H NMR** (300 MHz, CDCl₃): δ 9.43 (d, *J* = 7.2 Hz, 1H), 9.16 (s, 1H), 9.01 (s, 1H), 8.64 (s, 1H), 8.33 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 5.7 Hz, 1H), 8.04 (d, *J* = 7.2 Hz, 1H), 7.90-7.80 (m, 4H), 7.67 (t, *J* = 7.8 Hz, 1H), 7.62-7.57 (m, 2H), 7.51 (t, *J* = 7.8 Hz, 1H), 7.43-7.38 (m, 4H), 7.31-7.25 (m, 4H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 141.8, 139.6, 138.3, 138.1, 137.7, 136.4, 135.6, 135.1, 133.9, 133.7, 132.4, 129.8, 129.8, 129.1, 128.7, 128.4, 128.0, 127.9, 127.7, 127.6, 127.5, 127.4, 127.3, 126.6, 126.5, 126.1, 126.1, 125.2, 124.8, 124.4, 124.3, 123.8, 123.5, 120.5, 115.5, 115.4, 109.5 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 133.9, 129.1, 128.0, 127.9, 127.7, 127.6, 127.5, 127.4, 127.3, 126.6, 126.5, 126.1, 126.5, 126.1, 124.8, 124.4, 124.3, 123.8, 123.5, 120.5, 115.5, 115.4, 109.4 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₄₂H₂₃NO₂S₃ 670.0969; Found 670.0972.

2-Phenyl-18-(phenylsulfonyl)-18*H*-acenaphtho[1',2':5,6]phenanthro[9,10-*b*]carbazole (12f)

To a solution of cyclopentadienone **1f** (0.09 g, 0.25 mmol) in PhNO₂ (5 mL), 5- (phenylsulfonyl)-5*H*-thieno[3,2-*b*]carbazole *S*, *S*-dioxide **11b** (0.10 g, 0.25 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) afforded fluoranthene fused carbazole **12f** (0.12 g, 74%) as a

yellow solid. **Mp** 266-268 °C; ¹**H NMR** (**300 MHz**, CDCl₃): δ 9.48 (s, 1H), 9.39 (d, J = 7.8 Hz, 1H), 9.02 (s, 1H), 8.68 (d, J = 7.2 Hz, 1H), 8.63 (d, J = 8.4 Hz, 1H), 8.55 (s, 1H), 8.35 (d, J = 8.1 Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 7.84- 7.76 (m, 5H), 7.72-7.61 (m, 4H), 7.56-7.51 (m, 3H), 7.45-7.34 (m, 4H), 7.27-7.19 (m, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ 140.9, 139.7, 138.6, 138.1, 137.9, 137.5, 136.3, 136.1, 133.9, 132.7, 131.0, 130.9, 130.4, 129.9, 129.4, 129.1, 128.9, 128.6, 128.2, 128.2, 128.1, 127.7, 127.5, 127.4, 127.2, 126.6, 125.4, 124.4, 123.9, 123.7, 123.6, 123.5, 120.4, 115.6, 114.4, 109.6 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 133.9, 129.4, 129.1, 128.9, 128.2, 128.2, 128.1, 127.7, 127.5, 127.2, 126.6, 125.4, 124.4, 124.4, 123.9, 123.7, 123.6, 123.5, 120.4, 115.6, 114.4, 109.6 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₄₆H₂₇NO₂S 658.1841; Found 658.1843.

11-Methoxy-2-(4-methoxyphenyl)-18-(phenylsulfonyl)-18*H*-acenaphtho[1',2':5,6]phenanthro[9,10-*b*]carbazole (12g)

To a solution of cyclopentadienone **1g** (0.11 g, 0.25 mmol) in PhNO₂ (5 mL), 5-(phenylsulfonyl)-5*H*-thieno[3,2-*b*]carbazole *S*, *S*-dioxide **11b** (0.10 g, 0.25 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) offered fluoranthene fused carbazole **12g** (0.14 g, 75%) as a yellow solid. M**p** 146-148 °C; ¹**H** NMR (300 MHz, CDCl₃): δ 9.38 (s, 1H), 9.18 (d, *J* = 8.7 Hz, 1H), 8.83 (s, 1H), 8.55 (d, *J* = 7.2 Hz, 1H), 8.41 (s, 1H), 8.28 (d, *J* = 8.1 Hz, 1H), 8.01 (d, *J* = 7.2 Hz, 1H), 7.94 (s, 1H), 7.76-7.66 (m, 6H), 7.48-7.44 (m, 2H), 7.43-7.32 (m, 6H), 7.30-7.06 (m, 6H), 4.01 (s, 3H), 3.93 (s, 3H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 159.6, 159.5, 139.6, 138.6, 138.0, 137.6, 136.9, 136.5, 135.3, 133.9, 133.3, 132.7, 132.6, 131.4, 130.7, 130.6, 130.1, 129.9, 129.1, 128.8, 128.8, 128.4, 128.0, 127.7, 127.2, 127.1, 126.6, 126.3, 124.4, 123.9, 123.6, 123.4, 123.0, 120.4, 115.5, 114.3, 113.0, 109.6, 106.8, 55.6, 55.5 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 133.9, 130.6, 129.1, 128.0, 127.7, 127.2, 127.2, 127.1, 126.6, 124.4, 123.9, 123.6, 123.4, 120.4, 115.5, 114.3, 113.0, 109.6, 106.8, 55.6, 55.5 ppm; **HRMS (ESI**) *m*/*z*: [M+H]⁺ Calcd for C₄₈H₃₁NO₄S 718.2052; Found 718.2051.

17-(Phenylsulfonyl)-2-(thiophen-2-yl)-17*H* acenaphtho[1',2':5,6]thieno[3',2':3,4]naphtho[1,2-*b*]carbazole (12h)

To a solution of cyclopentadienone **1j** (0.09 g, 0.25 mmol) in PhNO₂ (5 mL), 5-(phenylsulfonyl)-5*H*-thieno[3,2-*b*]carbazole *S*, *S*-dioxide **11b** (0.10 g, 0.25 mmol) was added and refluxed for 12 h. After completion of reaction (TLC), removal of solvent through vacuum distillation followed by subsequent column chromatographic purification on silica gel (eluent: 5% ethyl acetate in hexane) afforded fluoranthene fused carbazole **12h** (0.11 g, 63%) as a yellow solid. **Mp** 260-262 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.55 (s, 1H), 9.45 (d, *J* = 7.2 Hz, 1H), 8.77 (s, 1H), 8.74 (s, 1H), 8.36 (d, *J* = 8.1 Hz, 1H), 8.09-8.05 (m, 2H), 7.86-7.82 (m, 3H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.62-7.52 (m, 3H), 7.49-7.35 (m, 6H), 7.34-7.26 (m, 3H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 141.6, 139.9, 138.6, 137.8, 137.6, 137.3, 136.4, 135.7, 135.1, 133.9, 133.1, 132.5, 130.2, 129.9, 129.6, 129.1, 128.8, 128.3, 128.0, 127.8, 127.7, 127.6, 127.5, 127.2, 127.1, 126.8, 126.6, 126.4, 126.2, 126.1, 125.6, 124.7, 124.4, 124.0, 122.9, 120.6, 115.6, 114.9, 110.0 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 133.9, 129.1, 128.3, 128.0, 127.8, 127.7, 127.6, 127.5, 127.2, 126.6, 126.2, 124.7, 124.4, 124.0, 122.9, 120.6, 115.6, 114.9, 110.0 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₄₂H₂₃NO₂S₃ 670.0969; Found 670.0961.

4,9-Diphenyldiacenaphtho[1,2-c:1',2'-m]dibenzo[f,j]picene (14a)

To a solution of cyclopentadienone **1f** (0.28 g, 0.79 mmol) in PhNO₂ (5 mL), benzo[2,1-*b*:3,4*b*']dithiophene *S*, *S*-tetraoxide **13** (0.10 g, 0.39 mmol) was added and refluxed for 24 h. After completion of reaction (TLC), the solvent was removed by vacuum distillation (90-100 °C, 10-20 mm Hg). Subsequent column chromatographic purification on silica gel (eluent: 100% hexane) gave dibenzo picene **14a** (0.24 g, 78%) as a green fluorescent solid. **Mp** 230-232 °C; **¹H NMR** (300 MHz, CDCl₃): δ 9.4 (d, *J* = 8.1 Hz, 1H), 8.68 (d, *J* = 7.2 Hz, 1H), 8.47 (s, 1H), 8.35-8.29 (m, 3H), 8.04 (d, J = 7.2 Hz, 1H), 7.82-7.70 (m, 9H), 7.62-7.49 (m, 11H), 7.44-7.30 (m, 5H), 7.16 (d, J = 6.9 Hz, 1H), 6.76 (d, J = 6.9 Hz, 1H) ppm; ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 141.2, 140.9, 140.4, 140.0, 139.5, 138.5, 138.2, 138.0, 137.7, 137.1, 136.7, 136.4, 136.1, 136.0, 133.3, 132.7, 131.6, 131.5, 131.3, 131.1, 130.5, 130.0, 129.8, 128.8, 128.6, 128.5, 128.3, 128.0, 127.9, 127.7, 127.6, 127.6, 127.4, 127.2, 127.1, 126.8, 125.3, 125.0, 123.9, 123.7, 123.5, 123.4, 123.1, 121.0 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 131.3, 130.5, 129.5, 129.3, 129.1, 128.8, 128.8, 128.6, 128.4, 128.3, 128.0, 127.9, 127.7, 127.6, 127.4, 127.2, 127.1, 126.8, 125.3, 125.0, 123.9, 123.7, 127.1, 126.8, 125.3, 125.0, 123.9, 123.7, 127.1, 126.8, 125.3, 125.0, 123.9, 123.7, 123.5, 123.4, 123.1, 121.0 ppm; **HRMS (ESI)** *m*/*z*: [M+H]⁺ Calcd for C₆₂H₃₄ 779.2739; Found 779.2756.

18,21-Dimethoxy-4,9-bis(4-methoxyphenyl)diacenaphtho[1,2-c:1',2'-

To a solution of cyclopentadienone 1g (0.33 g, 0.79 mmol) in PhNO₂ (5 mL), benzo[2,1-b:3,4b']dithiophene S, S-tetraoxide 13 (0.10 g, 0.39 mmol) was added and refluxed for 24 h. After completion of reaction (TLC), the solvent was removed by vacuum distillation (90-100 °C, 10-20 mm Hg). Subsequent column chromatographic purification on silica gel (eluent: 20% ethyl acetate in hexane) furnished dibenzo picene **14b** (0.25 g, 73%) as a yellow solid. **Mp** 222-224 °C; ¹**H NMR** (300 MHz, CDCl₃): δ 9.24 (d, J = 9 Hz, 1H), 8.61 (d, J = 7.2 Hz, 1H), 8.35-8.31 (m, 2H), 8.24 (s, 1H), 7.79-7.71 (m, 4H), 7.63 (dd, $J_1 = 8.7$ Hz, $J_2 = 8.4$ Hz, 4H), 7.52-7.44 (m, 3H), 7.39-7.29 (m, 5H), 7.23-7.21 (m, 2H), 7.09 (d, *J* = 8.1 Hz, 4H) 6.90 (d, *J* = 8.4 Hz, 2H), 6.83 (d, J = 7.2 Hz, 1H), 4.00 (s, 3H), 3.93 (s, 3H), 3.91 (s, 3H), 3.76 (s, 3H) ppm; ¹³C{¹H} **NMR** (75 MHz, CDCl₃): *δ* 159.4, 159.4, 158.9, 140.7, 139.9, 138.9, 137.8, 137.2, 136.8, 136.6, 136.6, 136.2, 136.1, 135.9, 135.3, 133.6, 133.2, 133.1, 132.7, 132.7, 132.7, 131.6, 130.5, 130.4, 130.0, 129.8, 129.6, 129.6, 129.3, 128.9, 128.2, 127.7, 127.6, 127.2, 127.1, 127.0, 126.7, 124.9, 123.9, 123.6, 123.5, 123.4, 123.3, 123.0, 114.2, 114.1, 113.5, 106.3, 55.6, 55.5, 55.4, 55.2 ppm; **DEPT 135-NMR** (75 MHz, CDCl₃): δ 131.5, 130.5, 130.3, 129.6, 127.7, 127.6, 127.2, 126.9, 126.7, 124.9, 123.9, 123.6, 123.5, 123.3, 123.0, 114.1, 112.5, 106.3, 55.6, 55.5, 55.4, 55.2 ppm; **HRMS** (**ESI**) *m*/*z*: [M+H]⁺ Calcd for C₆₆H₄₂O₄ 899.3161; Found 899.3159.

4. References

- 1. Karunakaran, J.; Mohanakrishnan, A. K. Org. Lett. 2018, 20, 966.
- 2. Iniesta, J.; Matsumoto, T.; Thiemann, T. J. Chem. Res. 2008, 2, 109.
- 3. Karunakaran, J.; Manikandan, P.; Sathish, M.; Mohanakrishnan, A. K. *ChemistrySelect* **2018**, *3*, 9409.
- 4. Saravanan, V.; Mohanakrishnan, A. K. Synthesis 2021, 53, 2304.
- Chen, X.; Yang, Y.; Han, W.; Huang, Q.; Huang, Z.; You, J. Angew. Chem. Int. Ed. 2021, 60, 12371.
- 6. (a) Lindley, W. A.; MacDowell, D. W. H.; Petersen, J. L. J. Org. Chem. 1983, 48, 4419;
 (b) Rungtaweevoranit, B.; Butsuri, A.; Wongma, K.; Sadorn, K.; Neranon, K.; Nerungsi, C.; Thongpanchang, T. Tetrahedron Lett. 2012, 53, 1816.

5. ¹H, ¹³C {¹H}, DEPT-135 (selected) NMR & HRMS (selected) spectra of benzo phenanthrenes **3a-i** and thieno[*b*]phenanthrene **3j**

6. ¹H, ¹³C {¹H} NMR & HRMS (selected) Spectra of compounds 4, 5 and 3f

7. ¹H, ¹³C {¹H}, DEPT 135 (selected) NMR & HRMS (selected) spectra of compounds **6a-e** and **7a-f**

.

8. ¹H, ¹³C {¹H}, DEPT 135 (selected) NMR & HRMS (selected) spectra of phenanthrenes **9a-j** and hetero helicene **10a** & **10b**

S105

S109

S115

9. ¹H, ¹³C {¹H}, DEPT 135 (selected) NMR & HRMS (selected) spectra of phenanthrene fused carbazoles **12a-h**

10. ¹H, ¹³C {¹H}, DEPT 135 NMR & HRMS (selected) Spectra of dibenzo picenes **14a** and **14b**

11. X-ray structure and crystallographic data of phenanthrenes 3a, 3f,6a, 6e and hetero helicene 10

11.1 X-Ray Structure & Crystallographic data of 3a

Crystallographic data of 1,2,3-Triphenyltriphenylene **3a** (ellipsoid contour % probability is 50%). The crystals of suitable quality were obtained from chloroform by slow evaporation under air conditions and were analysed by single crystal diffractometer.

CCDC: 2375301

https://www.ccdc.cam.ac.uk/structures/Search?access=referee&ccdc=2375301&Author=Divya+bharathi

Table S1. Crystal data and structure refinement for 1-c2_red1_abs1_sx. checkCIF/PLATON report

CIF dictionary

Structure factors have been supplied for datablock(s) shelx

No syntax errors found.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Interpreting this report

Datablock:	shelx				
Bond precisio	n:	C-C = 0	0.0033 A		Wavelength = 0.71073
Cell:	a = 11.434	(8)	b = 22.093(18)	c = 9.934	4(9)
	alpha = 90		beta = 96.97(3)	gamma =	= 90

Temperature: 293 K

	Calculated		Reported
Volume	2491(4)		2491(3)
Space group	P 21/c		P 21/c
Hall group	-P 2ybc		-P 2ybc
Moiety formula	C36 H24		C36 H24
Sum formula	C36 H24		C36 H24
Mr	456.55		456.55
Dx,g cm-3	1.217		1.217
Z	4		4
Mu (mm-1)	0.069		0.069
F000	960.0		960.0
F000'	960.36		
h,k,lmax	13,26,11		13,26,11
Nref	4394		4370
Tmin,Tmax	0.983,0.987		0.970,0.987
Tmin'	0.970		
Correction method= # Re MULTI-SCAN	ported T Limits:	$\Gamma min = 0.970 \ Tmax = 0.98$	37 AbsCorr =
Data completeness $= 0.99$	5	Theta(max) = 25.026	
R(reflections) = 0.0475(3260)		wR2(reflections) = 0.221	1(4370)
S = 0.907	Npar = 325		

Computing Details and Refinement

The **3a** single-crystal dimensions were 0.445 x 0.205 x 0.195 mm³ chosen for an X-ray diffraction X-ray diffraction collected а study. The intensity data was at temperature of 303 K on a Bruker Kappa Apex II CCD Diffractometer using graphite monochromate Mo-K α ($\lambda = 0.71073$ Å) radiation. The crystal structure **3a** was solved by the direct methods SHELXS. The crystal structure of 3a was refined by the full-matrix least-squares method on F2 using SHELXL programs. All the nonhydrogen atoms were revealed in the first difference Fourier map itself. All the hydrogen atoms were positioned geometrically and refined using a riding model. The geometrical calculations were carried out using the program PLATON. The molecular and packing diagrams were generated using the software MERCURY. The details of the crystal structure and data refinement was listed in Table S1. The

synthesized title compound was crystallized in the Monoclinic, crystal system in the P 21/c space group with unit cell parameters a = 11.434(8) Å, b = 22.093(18) Å, c = 9.934(9) Å, $\alpha = 90^{\circ}$, $\beta = 96.97(3)^{\circ}$, $\gamma = 90^{\circ}$, Z = 4 and V = 2491(4) Å³.

11.2 X-Ray Structure & Crystallographic data of 3f

Crystallographic data of 6-phenylacenaphtho [1,2-a] triphenylene **3f** (ellipsoid contour % probability is 50%). The crystals of suitable quality were obtained from chloroform by slow evaporation under air conditions and were analysed by single crystal diffractometer.

CCDC: 2375299

https://www.ccdc.cam.ac.uk/structures/Search?access=referee&ccdc=2375299&Author=Divya+bharathi

Table S2. Crystal data and structure refinement for 1-c2_red1_abs1_sx. checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report Datablock: shelx

Bond precision:		C-C = 0.0053 A			Wavelength $= 0.71073$	
Cell:	a = 9.898	37(7)	b = 21.3915	(15)	c = 20.2646(15)	
	alpha = 9	90	beta = 96.07	6(3)	gamma = 90	
Temperature:	304 K					
		Calcula	ted		Reported	
Volume		4266.9((5)		4266.9(5)	
Space group)	P 21/n			P 21/n	
Hall group		-P 2yn			-P 2yn	
Moiety form	nula	C34 H2	20		C34 H20	
Sum formula		C34 H20			C34 H20	
Mr		428.50			428.50	
Dx,g cm-3		1.334			1.334	
Z		8			8	
Mu (mm-1)		0.076			0.076	
F000		1792.0			1792.0	
F000'		1792.67	7			
h,k,lmax		11,25,2	4		11,25,24	
Nref		7553			7523	
Tmin,Tmax		0.983,0	.995		0.983,0.995	
Tmin'		0.983				
Correction me MULTI-SCAN	ethod= # Re	eported T	Limits: Tmin	= 0.98	83 Tmax = 0.995 AbsCorr =	
Data completeness = 0.996			Tl	Theta(max) = 25.054		
R(reflections) = 0.0593(4324)			v	vR2(re	eflections) = 0.2582 (7523)	
S = 0.768 Npar = 613			ar = 613			

Computing Details and Refinement

The **3f** single-crystal dimensions were 0.225 x 0.193 x 0.069 mm³ chosen for an X-ray diffraction The X-ray diffraction study. intensity data was collected at а temperature of 304 K on a Bruker Kappa Apex II CCD Diffractometer using graphite monochromate Mo-K α ($\lambda = 0.71073$ Å) radiation. The crystal structure **3f** was solved by the direct methods SHELXS. The crystal structure of **3f** was refined by the full-matrix least-squares method on F2 using SHELXL programs. All the non-hydrogen atoms were revealed in the first difference Fourier map itself. All the hydrogen atoms were positioned

geometrically and refined using a riding model. The geometrical calculations were carried out using the program *PLATON*. The molecular and packing diagrams were generated using the software *MERCURY*. The details of the crystal structure and data refinement was listed **in Table S2**. The synthesized title compound was crystallized in the Monoclinic, crystal system in the P 21/n space group with unit cell parameters a = 9.8987(7) Å, b = 21.3915(15) Å, c = 20.2646(15) Å, $\alpha = 90^{\circ}$, $\beta = 96.076(3)^{\circ}$, $\gamma = 90^{\circ}$, Z = 8 and V = 4266.9(5) Å³.

11.3 X-Ray Structure & Crystallographic data of 6a

Crystallographic data of 5,8-dimethoxy-1,2,3-triphenyltriphenylene **6a** (ellipsoid contour % probability is 50%). The crystals of suitable quality were obtained from chloroform by slow evaporation under air conditions and were analysed by single crystal diffractometer.

CCDC: 2375302

https://www.ccdc.cam.ac.uk/structures/Search?access=referee&ccdc=2375302&Author=Divya+bharathi

Table S3. Crystal data and structure refinement for 1-c2_red1_abs1_sx. checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED

CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.	CIF dictionary	Interpreting this report
Datablock: shelx		

Bond precision	: $C-C = 0.004$	2 A	Wavelength = 0.71073		
Cell:	a = 12.1839(9)	b = 13.885(1)	c = 16.4844(12)		
	alpha = 91.638(2)	beta = 102.362(2)	gamma = 91.987(2)		
Temperature:	304 K				
	Calculated		Reported		
Volume	2720.6(3)		2720.6(3)		
Space group	P -1		P -1		
Hall group	-P 1		-P 1		
Moiety formula	C38 H28 O2		C76 H56 O4		
Sum formula	C38 H28 O2		C76 H56 O4		
Mr	516.60		1033.20		
Dx,g cm-3	1.261		1.261		
Z	4		2		
Mu (mm-1)	0.076		0.076		
F000	1088.0		1088.0		
F000'	1088.45				
h,k,lmax	14,16,19		14,16,19		
Nref	9861		9752		
Tmin,Tmax	0.980,0.996		0.979,0.996		
Tmin'	0.979				
Correction met	hod= # Reported T Lim	its: Tmin = 0.979 Tr	nax = 0.996 AbsCorr = MULTI-SCAN		
Data completen	sess = 0.990	Theta	Theta(max) = 25.248		
R(reflections) =	= 0.0572(5578)	wR20	wR2(reflections) = 0.1757(9752)		
S = 0.985	Npar = 721				

Computing Details and Refinement

The **6a** single-crystal dimensions were $0.284 \ge 0.221 \ge 0.058 \text{ mm}^3$ chosen for an X-ray diffraction study. The X-ray diffraction intensity data was collected at a temperature of

304 K on a Bruker Kappa Apex II CCD Diffractometer using graphite monochromate Mo-K α ($\lambda = 0.71073$ Å) radiation. The crystal structure **6a** was solved by the direct methods SHELXS. The crystal structure of **6a** was refined by the full-matrix least-squares method on *F*2 using *SHELXL* programs. All the non-hydrogen atoms were revealed in the first difference Fourier map itself. All the hydrogen atoms were positioned geometrically and refined using a riding model. The geometrical calculations were carried out using the program *PLATON*. The molecular and packing diagrams were generated using the software *MERCURY*. The details of the crystal structure and data refinement was listed in **Table S3**. The synthesized title compound was crystallized in the Triclinic, crystal system in the P -1 space group with unit cell parameters a = 12.1839(9) Å, b = 13.885(1) Å, c = 16.4844(12) Å, $\alpha = 91.638(2)^{\circ}$, $\beta = 102.362(2)^{\circ}$, $\gamma = 91.987(2)^{\circ}$, Z = 4 and V = 2720.6(3) Å³.

11.4 X-Ray Structure & Crystallographic data of 6e

Crystallographic data of 4,7-dimethoxy-9-(thiophen-2-yl)acenaphtho[1'2':7,8]phenanthro [9,10*b*]thiophene **6e** (ellipsoid contour % probability is 50%). The crystals of suitable quality were obtained from chloroform by slow evaporation under air conditions and were analysed by single crystal diffractometer. **CCDC: 2375531**

https://www.ccdc.cam.ac.uk/structures/Search?access=referee&ccdc=2375531&Author=PAVUNKUMAR +pavunkumar2002

Table S4. Crystal data and structure refinement for 1-c2_red1_abs1_sx. checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. Datablock: shelx		d. Cl	IF dictionary	Interpreting	this report
Bond precision:		C-C = 0.0089 A		V	Wavelength = 0.71073
Cell:	a = 12.841	4(7)	b = 18.5591(11)	c = 10.068	35(6)
	alpha = 90)	beta = 90	gamma =	90
Temperature:	304 K				
		Calculate	ed		Reported
Volume		2399.6(2)		2399.6(2)
Space group		P n a 21			P n a 21
Hall group		P 2c -2n			P 2c -2n
Moiety formu	ıla	C32 H20 O2 S2			C32 H20 O2 S2
Sum formula		C32 H20 O2 S2			C32 H20 O2 S2
Mr		500.60			500.60
Dx,g cm-3		1.386			1.386
Z		4			4
Mu (mm-1)		0.252			0.252
F000		1040.0			1040.0
F000'		1041.39			
h,k,lmax		15,22,11			15,22,11
Nref		4250[22	57]		4233
Tmin,Tmax		0.944,0.9	984		0.659,1.000
Tmin'		0.922			
Correction method= # Reported T Limits: Tmin = 0.659 Tmax = 1.000 AbsCorr = MULTI-SCAN					
Data completeness = 1.88/1.00				Theta(max)	= 25.050
R(reflections) = 0.0506(3072)				wR2(reflec	tions) = 0.1384(4233)
S = 1.057 Npar = 333			par = 333		

Computing Details and Refinement

The **6e** single-crystal dimensions were 0.322 x 0.192 x 0.063 mm³ chosen for an X-ray diffraction of X-ray diffraction intensity data was collected at a temperature study. The 304 K on a Bruker Kappa Apex II CCD Diffractometer using graphite monochromate Mo-Ka ($\lambda = 0.71073$ Å) radiation. The crystal structure **6e** was solved by the direct methods SHELXS. The crystal structure of **6e** was refined by the full-matrix least-squares method on F2 using SHELXL programs. All the non-hydrogen atoms were revealed in the first difference Fourier map itself. All the hydrogen atoms were positioned geometrically and refined using a riding model. The geometrical calculations were carried out using the program PLATON. The molecular and packing diagrams were generated using the software MERCURY. The details of the crystal structure and data refinement was listed in Table S4. The synthesized title compound was crystallized in the Orthorhombic, crystal system in the P n a 21 space group with unit cell parameters a = 12.8414(7) Å, b = 18.5591(11) Å, c = 10.0685(6) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, Z = 4 and V = 2399.6(2) Å3.

11.5 X-Ray Structure & Crystallographic data of 10

Crystallographic data of naphtho [1,2-b] phenanthro [4,3-d] thiophene *S*, *S*-dioxide **10** (ellipsoid contour % probability is 50%). The crystals of suitable quality were obtained from chloroform by slow evaporation under air conditions and were analysed by single crystal diffractometer.

CCDC: 2376199

https://www.ccdc.cam.ac.uk/structures/Search?access=referee&ccdc=2376199&Author=Divya+bhar athi

Table S5. Crystal data and structure refinement for 1-c2_red1_abs1_sx. checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report Datablock: shelx					
Bond precision	n: C-C =	= 0.0106 A	Wavelength = 0.71073		
Cell:	a = 10.7358(17)	b = 7.2630(11)	c = 22.198(4)		
	alpha = 90	beta = 95.021(5)) gamma = 90		
Temperature:	293 K				
	Calcula	ited	Reported		
Volume	1724.2	(5)	1724.2(5)		
Space group	P 21/c		P 21/c		
Hall group	-P 2ybo		-P 2ybc		
Moiety formul	a C24 H2	4 O2 S	C24 H14 O2 S		

Sum formula	C24 H14 O2 S	(C24 H14 O2 S		
Mr	366.41	3	366.41		
Dx,g cm-3	1.411	1	1.411		
Z	4	4	4		
Mu (mm-1)	0.205	0	0.203		
F000	760.0	7	760.0		
F000'	760.82				
h,k,lmax	12,8,26	1	12,8,26		
Nref	3176	3	3169		
Tmin,Tmax	0.970, 0.983	0).983, 0.995		
Tmin'	0.909				
Correction method= # Reported T Limits: Tmin = 0.983 Tmax = 0.995 AbsCorr = MULTI-SCAN					
Data completeness $= 0.9$	998	Theta(max) = 25.403			
R(reflections) = 0.1406((2537)	wR2(reflection	ons) = 0.3752(3169)		
S = 1.133	Npar = 244				

Computing Details and Refinement

The **10** single-crystal dimensions were 0.465 x 0.125 x 0.085mm³ chosen for an X-ray diffraction study. The X-ray diffraction intensity data was collected at a temperature of 293 K on a Bruker Kappa Apex II CCD Diffractometer using graphite monochromate Mo-K α ($\lambda = 0.71073$ Å) radiation. The crystal structure 10 was solved by the direct methods SHELXS. The crystal structure of 10 was refined by the full-matrix least-squares method on F2 using SHELXL programs. All the nonhydrogen atoms were revealed in the first difference Fourier map itself. All the hydrogen atoms were positioned geometrically and refined using a riding model. The geometrical calculations were carried out using the program PLATON. The molecular and packing diagrams were generated using the software MERCURY. The details of the crystal structure and data refinement was listed in Table S5. The synthesized title compound was crystallized in the Orthorhombic, crystal system in the P 21/c space group with unit cell parameters a = 10.7358(17) Å, b = 7.2630(11) Å, c = 22.198(4) Å, $\alpha = 90^{\circ}$, $\beta = 95.021$ $(5)^{\circ}$, $\gamma = 90^{\circ}$, Z = 4 and $V = 1724.2(5) \text{ Å}^3$.