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Sample preparation

All catalyst powders were synthesized by the solid-phase reaction method at 1100
°C for 3 hours. Prior to calcination, stoichiometrically weighed SrCOj;, TiO, and Nb,0;
powders (99.99%, Aladdin Co. Ltd.) were mixed via a wet ball milling process at 300
rpm for 12 hours with ethanol as the medium, followed by drying at 70 °C. To induce
oxygen vacancies, the resulting pure SrTiO3; powders were annealed at 800 °C under a
flow of mixed H,/Ar gas (5% H; and 95% Ar). The electron doping concentration was
adjusted by varying the annealing duration to 9, 12, and 21 hours (hereafter denoted as
STO-Ov1, STO-Ov2, and STO-Ov3). In case of Nb substituted SrTiO; powders, 2
mol%, 5 mol% and 10 mol% of Nb substitution at the Ti site was applied (StTi,_,Nb,Os,
x=0.02, 0.05, 0.1, hereafter denoted as STNO-0.02, STNO-0.05, and STNO-0.1).
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Figure S1. Transmission electron microscopy (TEM) images of SrTiO; powders

before (a) and after (b) post-annealing.
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Figure S2. Electron paramagnetic resonance (EPR) spectra of pure SrTiO; and
STO-Ov3 samples. EPR signals attributed to oxygen vacancy and Ti** can be
detected at g =2.001 and 1.97.

Fig. S2 shows the electron paramagnetic resonance (EPR) results of pure SrTiO5 and
STO-Ov3 samples. The g factor can be calculated by following relations from
magnetic field (H),

g=hv/pH
where 4 is Plank constant (= 6.63 x 1034 J s), v is frequency, f is Bohr magneton

(9.27 x 10* A m?) and H is magnetic field strength.
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Figure S3. Solid UV characterization of SrTiO; powders with different oxygen

vacancies (Pure-STO, STO-Ov1l, STO-Ov2 and STO-Ov3) and Nb substitutions (2

mol%, 5 mol% and 10 mol% substitutions abbreviated as STNO-0.02, STNO-0.05 and

STNO-0.1, respectively). All the samples show an almost constant optical band gap of

~3.2 eV, corresponding to the pristine SrTiO;.
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Figure S4. XPS valence band spectra of pure SrTiO; and STO-Ov3 powders. The
valence band energies are measured to be 2.21 eV for pure SrTiO; and 2.29 eV for

STO-Ov3, showing minimal variation between these two samples.



Table S1. Specific area and porosity of electron doped SrTiO; powders.

Sample No. Specific area (m? g!)
Pure-SrTiO; 13.57
STO-Ov1 11.93
STO-Ov2 12.08
STO-Ov3 13.63
STNO-0.02 6.87
STNO-0.05 13.99

STNO-0.1 8.11
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Figure S5. Schematic illustration of the custom-designed thermoelectrocatalytic

(TECatal) reactor.
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Figure S6. Time-dependent TECatal H,O, production rate of SrTiO; powders with
different oxygen vacancies (Pure-STO, STO-Ov1, STO-Ov2 and STO-Ov3) and Nb
substitutions (2 mol%, 5 mol% and 10 mol% substitutions abbreviated as STNO-0.02,

STNO-0.05 and STNO-0.1, respectively) at the temperature gradient (A7) ranging from
0 to 130 °C.
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Figure S7. X-ray diffraction (XRD) patterns of oxygen vacancy doped SrTiO;
powders before and after 5 cycles’ thermoelectrocatalysis (TECatal). No obvious
phase change can be detected suggesting a good composition stability of SrTiO;

powders.
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Figure S8. H,O, yield of 2 mol% Nb substituted SrTiO; powder (STNO-0.02) with
EDTA-2Na, CuCl, and p-benzoquinone (p-BQ) as hole scavenger, electron scavenger
and superoxide (-O;7) scavenger, respectively. Significant suppression of H,O,

production can be observed at the presence of scavengers.a



