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Experimental Details

General Considerations. All the reagent-grade chemicals, HPLC solvents are purchased from
commercial suppliers and used without further purification. Dry solvents are prepared using
standard procedure. Adenosine tri-phosphate disodium salt (ATP), adenosine di-phosphate
sodium salt (ADP), adenosine mono-phosphate hydrate (AMP), guanosine tri-phosphate
disodium salt dihydrate (GTP), guanosine di-phosphate disodium salt (GDP), guanosine mono-
phosphate disodium salt (GMP) are purchased from Sigma-Aldrich. Silica Gel 100-200 mess
was used for column chromatography purchased from Finer. TLC plates with F254 fluorescent
indicator are purchased from Merck. Mili-Q water was used to prepare HEPES buffer solution
(10 mM, pH 7.2). All the experiments were carried out at 298 K unless otherwise specified.

Plots and graphical representations were done using Origin 9.1 software.

Instruments. UV-Vis absorption spectra were recorded using JASCO V-670
spectrophotometer. HEPES buffer (10 mM, pH 7.2) was used as the major solvent for
spectroscopic measurements. Perkin Elmer UV/Vis spectroscopic cells made with quartz glass
with a 1 cm path length were used throughout the experiments. Absorption spectra were
recorded keeping UV-Vis bandwidth 0.2 nm, scan speed 200 nm/min, with 0.5 nm data interval.
The Fourier transform infrared spectra (FTIR) were recorded in KBr pellets on a PerkinElmer
1320 instrument in the range 4000 — 400 cm™'. 'H, 3C{'H}-NMR spectra are recorded on a
JEOL ECX-400 FT (400 MHz) spectrometer using the deuterated solvents (purchased from
Sigma-Aldrich) mentioned in the spectrum and TMS as the internal standard. The chemical
shift values and coupling constant values are expressed in ppm and Hz, respectively. The NMR
data were processed using MestReNova software. ESI-MS data was obtained using LC-MS
(ESI)-QToF (Agilent 6546 LC/Q-TOF) operating in positive and negative modes as stated.
Theoretical mass data was obtained from the Molecular weight calculator. The fluorescence
and time-resolved luminescence spectra in phosphorescence mode were recorded using Agilent
Cary Eclipse fluorescence spectrophotometer. The spectra were recorded using Perkin Elmer
Fluorescence cell made with Quartz glass. The emission was recorded in the range of 450 nm
to 650 nm using PMT voltage 600 V, with excitation and emission slits of 5 nm. During the

experiments, the pH of the solution was measured by Eutech pH-700 pH meter.

Optical measurements. The stock solution of 1 mM concentration of three ligands L*P, LY,
Lrhe and three Tb(III) complexes: [Tb-LP], [Tb-L%"], [Tb-LP"] were prepared in Mili-Q

water. The stock solution of analytes of 5 mM concentration are (except guanosine, guanine,
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adenosine, and adenine) prepared in HEPES buffer solution (10 mM, pH 7.2). 1 mM stock

solution of guanine, guanosine, adenine and adenosine are prepared in Mili-Q water (pH 8).

UV-vis absorption spectroscopy was performed in HEPES buffer solution (10 mM, pH 7.2) as
amajor solvent using quartz UV/Vis spectroscopic cells of 1 cm path length. Absorption spectra
were recorded keeping UV-Vis bandwidth 0.2 nm, scan speed 200 nm/ min, with 0.5 nm data
interval at 298 K. UV-Vis absorption spectra are plotted in Origin 9.1 and molar absorption
coefficient values of the ligands and metal complexes are calculated using Beer-Lambert law

as follows:
A=e€cl ... (D)
Here,
A = Absorbance at ¢ (M) concentration.
€ = Molar absorption coefficient (M'cm™).
[ = Optical path length (cm).

The fluorescence spectrum was measured in HEPES butffer solution (10 mM, pH 7.2) as major
solvent using ex./em. slit width of 5 nm. The time-resolved luminescence (TRL) spectra were
recorded in medium voltage using delay and gate time of 0.5 ms and ex./em. slit width of 5 nm.
The luminescence lifetime of the complexes was measured in H>O and DO from the decay of
D4—>'Fs band at 546 nm with a pulsed Xenon arc lamp with a delay and gate time of 0.5 ms.

The hydration state (¢) of Tb(III) complexes is measured using modified Horrocks’ equation:

q (Tb) = 5.0( ! - 0.06> TN )

TH,o0 Tp,o0
Here,
q (Tb) = Number of water molecule(s) directly coordinated to the Tb(III) ion.

Ty, = Luminescence lifetime of Tb(III) probe in H>O.

Tp,0 = Luminescence lifetime of Tb(III) probe in D2O.
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The limit of detection (LOD) of Tb(IIl) probes were determined from time-resolved
luminescence measurements using changes in luminescence intensity for >Ds—’Fs band at 546

nm, and calculated using the formula as follows:
o
LOD = 3.3; e er e e e (3)

Here,
o = Standard deviation of the regression line.

s = Slope of the linear fraction of the curve at low concentration obtained from the graph of

relative luminescence intensity change (I /1) vs. concentration (c) of the analyte.
I, = Luminescence intensity of Tb(III) probe without addition of analyte.

I = Luminescence intensity of Tb(III) probe after the addition of the analyte.
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Synthesis and characterization of L** and [Th-L?*] complexes (L* = LP, Lr, Lphe)

DIPEA, DMF ﬂ\o
o) 2h, RT J<
B~ NH  HEL Br\)LOJ< > o)ﬁ\/l

91%

SOCl,, MeOH 0 Q{)
RT, 15h S1 ? 0
R’\H\OH —> Rﬁ}\o/ > :S S >L

N }
NH, . HCI 99% NH, . HCI K,CO3, CH3CN/H,0 (3:1) N o
24 h, RT [}
or 0 N\)
1a (R = Indole) .

o)
1b (R = 4-hydroxyphenyl) 1) DCM. NaHCOs(aq.) (R
1c (R = Phenyl) i) CH3CN/2(M) Phosphate R [o)
buffer (pH=7) (1:1), 22 h, RT 2a (R =Indole)
2b (R = 4-hydroxyphenyl)
70 - 80%

2c (R = Phenyl)
TFA/DCM (1:1)
TIPS, 24 h, RT
79 - 93%

OH,

0 S 0
Q ] OH OH
0\( TbCl3.6H,0, Cs,CO3 o
':'b ------ %o H,0, 60 °C, 16 h N }OH
02(—_ _)_>= < HO/( i
S

70 - 76%
,,,,, o
J \\' \ R) Y
[Tb-L'P] (R = Indole) L'P (R = Indole)
[Tb-L¥"] (R = 4-hydroxyphenyl) LY" (R = 4-hydroxyphenyl)
[Tb-LPMe] (R = Phenyl) LPhe (R = Phenyl)

Fig. S1 Synthetic procedure for the synthesis of L2 ligands (L3 = L, LY", LPh¢) and [Tb-L3]

(Laa — Ltl'p, Ltyr, LPhe) complexes.

Details of synthesis of L ligands (L** = L"P, L%", LPhe)

Di-tert-butyl 2,2'-((2-bromoethyl) azanediyl) diacetate (S1)!

In 50 mL R.B., tert-butyl 2-bromoacetate (2.27 mL, 15 mmol) was

added in 5 mL of DMF followed by addition of DIPEA (3.5 mL, 20 >|\0

mmol) and allow to stir for 15 min at RT. A solution of 2-bromoethan- O)\I 0J<
I-amine hydrochloride (1 g, 6 mmol) in 5 mL DMF was added into - /\/N\AO
the stirred reaction mixture and kept stirring for additional 2 h at RT.

About 400 mL of water was added into this reaction mixture and extracted with 3x100 mL of
ethyl acetate. About 20 mL of brine solutions were added each time. The organic portions were

collected and anh. Na;SO4 was added followed by evaporation of solvent and drying under
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reduced pressure to yield the light yellow oily crude product. This crude mixture was purified
by silica column, elution with 2% ethyl acetate/ hexane mixture afforded the light-yellow oily
product (2 g, density = 1.34 gm/mL, yield: 91%). 'H NMR (400 MHz, CDCls) § 3.47 (s, 4H),
3.45-3.41 (m, 2H), 3.15—3.11 (m, 2H), 1.46 (s, 18H). 3C NMR (101 MHz, CDCl;) § 170.56,
81.45, 56.77, 56.58, 30.24, 28.26 (Fig. S3).

Methyl tryptophanate hydrochloride (1a)

In 100 mL of R.B., 2 g L-tryptophan was taken and 12 mL o)
methanol was added. The mixture was kept under an ice bath for o~
15 min. About 2 mL of SOCl, was added dropwise carefully into HN | NH, . HCI
this ice-cooled mixture. The reaction mixture was allowed to come at RT and it was stirred for
24 h. The clay-type grey compound was formed, and the solvent was evaporated. Methanol
was further added and subsequently evaporated. The procedure was repeated 4 times to remove
traces of SOCl> and yield a grey color solid (yield: 2.3 g, 99%). 'H NMR (400 MHz, D>0) §
7.61 (d, J=8.0 Hz, 1H), 7.53 (d, J= 8.1 Hz, 1H), 7.33 — 7.22 (m, 2H), 7.22 — 7.16 (m, 1H),
4.50 — 4.42 (m, 1H), 3.80 (s, 3H), 3.55 — 3.42 (m, 2H). *C NMR (101 MHz, D;0) & 170.51,
136.33, 126.42, 125.44, 122.30, 119.67, 118.09, 112.12, 106.04, 53.61, 53.36, 25.71 (Fig. S4).

Methyl tyrosinate hydrochloride (1b)

Methyl tyrosinate hydrochloride (1b) was synthesized using a (]
similar procedure for 1a, starting from L-tyrosine (2 g). Yield: 0~
2.35 g, 99%. 'H NMR (400 MHz, D,0) § 7.17 (d, J = 8.5 Hz, NH, . HCI
2H), 6.91 (d, J = 8.5 Hz, 2H), 4.39 (dd, J = 7.3, 5.5 Hz, 1H),

3.85 (s, 3H), 3.28 (dd, J = 14.6, 6.1 Hz, 1H), 3.18 (dd, J = 14.6, 7.3 Hz, 1H). *C NMR (101
MHz, D-O) 6 170.17, 155.27, 130.86, 125.43, 116.01, 54.21, 53.54, 34.77 (Fig. S5).

HO

Methyl phenylalaninate hydrochloride (1¢)

Methyl phenylalaninate hydrochloride (1¢) was synthesized using lo]
a similar procedure as for 1a, starting from L-phenylalanine. Yield: o~
2.4 gm, 99%. '"H NMR (400 MHz, D>0) § 7.51 —7.36 (m, 3H), 7.31 NH, . HCI

(dt, J = 5.5, 2.1 Hz, 2H), 4.45 (dd, J = 7.6, 5.8 Hz, 1H), 3.85 (s,
3H), 3.37 (dd, J = 14.3, 5.8 Hz, 1H), 3.26 (dd, J = 14.6, 7.3 Hz, 1H). 3C NMR (101 MHz,
D,0) § 170.19, 133.86, 129.49, 129.39, 128.23, 54.21, 53.67, 35.69 (Fig. S6).
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Tetra-tert-butyl-2,2',2"",2""'-((((3-(1H-indol-3-yl)-1-methoxy-1-oxopropan-2-yl)
azanediyl) bis (ethane-2,1-diyl)) bis(azanetriyl)) tetraacetate (2a)
The ligand 2a was synthesized using a modified literature
procedure. In 20 mL acetonitrile: water (3:1) mixture, 500 mg O?QL
(1.96 mmol) of 1a and 1.36 g (9.8 mmol) of K»CO3 were added N
and stirred for 10 min at RT. Thereafter, 1.29 mL of S1 was o-—( Q_ N
added dropwise to the stirred solution. The reaction mixture was —7\ ? N?.é\
continuously stirred for 24 h at RT. A greenish-yellow color
solution was obtained and the solvent was evaporated under
reduced pressure and extracted 3 times with a DCM-water mixture. The organic phases are
collected, anh. Na;SO4 was added and the solvent was evaporated under reduced pressure and
dried. The light green sticky product was purified by silica column in 40% ethyl acetate/ hexane
mixture and afforded a light-yellow sticky product. Yield: 1.14 g, 76%. 'H NMR (400 MHz,
CDCl) 6 8.08 (s, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 8.0 Hz,
1H), 7.13 (d, J= 8.0 Hz, 1H), 7.08 (t, /= 7.4 Hz, 1H), 3.79 — 3.73 (m, 1H), 3.58 (s, 3H), 3.40
(s, 8H), 3.26 (dd, J=14.3, 8.6 Hz, 1H), 2.99 (dd, J=14.3, 6.3 Hz, 1H), 2.92 (dt,J=13.2, 7.2
Hz, 2H), 2.76 (p, J = 4.6, 4.0 Hz, 4H), 2.69 (dd, J = 13.2, 5.2 Hz, 2H), 1.45 (d, J = 12.6 Hz,
36H). 3*C NMR (101 MHz, CDCls) § 173.14, 170.54, 135.86, 127.44, 123.11, 121.56, 119.06,
118.55, 112.15, 110.82, 80.66, 64.60, 55.84, 53.50, 50.91, 50.34, 27.97, 25.64 (Fig. S7).

Tetra-tert-butyl2,2',2"",2""'-((((3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl)-azane
diyl) bis(ethane-2,1-diyl)) bis(azanetriyl)) tetraacetate (2b)

Ligand 2b was synthesized from 1b using the literature
procedure for the synthesis of 2a.% At first the acidic compound Q ;//
1b (500 mg, 2.16 mmol) was neutralized by saturated NaHCO3 ?I-\I 0=S}O>L
solution and the neutralized compound was extracted in DCM. o} &_ N
o \—N._

The organic portions are collected, anhy. Na,SO4 was added to Oj-uu«o\

remove the traces of H>O, solvent was evaporated and dried HO ©

under high vacuum. The white solid thus obtained was dissolved in 20 mL acetonitrile. The
ligand S1 (0.6 mL) and 20 mL of 2(M) phosphate buffer (pH 7) were added and allowed to stir
for 3 h at RT. Another portion of S1 (0.6 mL) was added and stirred for an additional 16 h at
the same condition. Again 0.2 ml S1 was added, and the reaction was stopped after stirring for

an additional 3 h. The organic phases were collected and the solvent was evaporated and dried.

DCM and water (2:1 v/v) were added to the product, organic parts were collected, and anhy.
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Na>SO4 was added, the solvent was evaporated and product was dried. The crude product was
purified by silica column (35% ethyl acetate/ hexane) to obtain a white fluffy solid. Yield: 1.1
gm (70%). '"H NMR (400 MHz, CDCls) & 7.06 (d, J = 8.6 Hz, 2H), 6.70 (d, J = 8.6 Hz, 2H),
3.67—3.62 (m, 1H), 3.60 (s, 3H), 3.40 (s, 8H), 2.98 (dd, J=13.7, 8.6 Hz, 1H), 2.90 — 2.75 (m,
4H), 2.70 — 2.66 (m, 4H), 2.65 (d, J= 5.0 Hz, 1H), 1.45 (s, 36H). *C NMR (101 MHz, CDCls)
0 172.95, 170.54, 153.91, 130.41, 130.30, 114.90, 81.19, 80.68, 65.81, 55.93, 53.36, 50.21,
35.16, 28.01 (Fig. S8).

Tetra-tert-butyl2,2',2",2""'-((((1-methoxy-1-0x0-3-phenylpropan-2-yl) azanediyl) bis
(ethane-2,1- diyl)) bis(azanetriyl)) tetraacetate (2c)

Ligand 2¢ was synthesized from 1e¢ using a similar procedure used for 2a. The crude mixture

was purified by silica column using 30% ethyl acetate/ hexane % A(
mixture that afforded colorless sticky product. Yield: 1.34 gm 0?—0 o :'SOO >L
(80%). 'H NMR (400 MHz, CDCl3) § 7.24 — 7.18 (m, 4H), 7.16 ‘(C— N_)—O
—7.12 (m, 1H), 3.71 (t, J = 7.4 Hz, 1H), 3.59 (s, 3H), 3.37 (s, _75 o] N\)o\

8H), 3.08 — 3.02 (m, 1H), 2.89 — 2.77 (m, 3H), 2.67 (qd, J= 5.2, OJ S
2.3 Hz, 5H), 2.64 — 2.62 (m, 1H), 1.44 (s, 36H). '*C NMR (101

MHz, CDCLs) § 173.13, 170.74, 138.76, 129.52, 128.20, 126.23, 80.88, 65.86, 56.18, 53.61,
51.18, 50.48, 36.46, 28.26 (Fig. S9).

2,2',2",2'""-((((3-(1H-indol-3-yl)-1-methoxy-1-oxopropan-2-yl) azanediyl) bis(ethane-2,1-
(azanetriyl)) tetraacetic acid (L"P)

The pentaester 2a (100 mg, 0.131 mmol, 1 equiv.) dissolved in 2

mL DCM was stirred in ice bath for 15 min. Triisopropylsilane :S

(134.6 pL, 0.657 mmol, 5 equiv.) was added to this cold reaction ‘( Q_ } OH
mixture. Trifluoroacetic acid (TFA) (2 mL) was added dropwise "o

into this ice-cold solution. The reaction was allowed to reach RT HN-

and continued to stir for 24 h. The excess TFA was removed by

Nz bubbling and the solvent was removed under reduced pressure. Into this dark brown
solution, Et2O was added and the precipitate was collected by filtration. The light grey color
solid was washed five times with Et2O and acetone to yield a white hygroscopic product, which
was stored in a desiccator over anh. CaCl,. Yield: 56.13 mg, 79.6%. 'H NMR (400 MHz, D,0O)
0 7.70 (d, J=17.6 Hz, 1H), 7.51 (d, J= 7.9 Hz, 1H), 7.25 (d, /= 7.0 Hz, 2H), 7.20 (t, /= 6.8
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Hz, 1H), 4.08 — 4.00 (m, 1H), 3.91 (s, 8H), 3.68 (s, 3H), 3.42 — 3.36 (m, 1H), 3.33 (dd, J=9.8,
4.4 Hz, 4H), 3.21 (dd, J = 15.0, 8.3 Hz, 1H), 3.09 (tt, J = 14.5, 7.3 Hz, 4H). 3C NMR (101
MHz, D;0) 6 174.49, 168.87, 136.22, 126.32, 124.43, 122.27, 119.57, 118.25, 112.22, 109.84,
62.96,55.60, 53.42, 52.50, 45.54, 24.21 (Fig. S10). FT-IR (cm’', KBr pallet): 3407 (Lo-ir), 3017
(Vesp2-n), 1732 (ve=0), 1208 (vc-0) (Fig. S16(a)). ESI-MS (+) in H2O: m/z [M+H]" exp.:
537.2185, caled: 537.2192 (Fig. S13). UV-vis (10 mM HEPES, pH 7.2): Amax (&Lmol'ecm™) =
282 nm (4478), 288 nm (4170) (Fig. S21(a)).

2,2",2"2""-((((3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl) azanediyl) bis(ethane-
2,1-diyl)) bis(azanetriyl)) tetraacetic acid (LY")

Pentaester 2b (100 mg, 0.135 mmol, 1 equiv.) was dissolved (o) OH OH
in 2 mL DCM and stirred in an ice bath for 15 min. ? O:‘S 0

Triisopropylsilane (138.8 uL, 0.678 mmol, 5 equiv.) was HO-(Q_
added to this cold reaction mixture. Trifluoroacetic acid )O)""'\YO\
(TFA) (2 mL) was added dropwise into this ice-cold solution. o]
The reaction was allowed to reach RT and stirred for 24 h. HO

Excess TFA was removed by N2 bubbling and the compound was dried under reduced pressure.
Et.O was added to this dark brown solution and the precipitate was collected by filtration,
washed two times with Et2O to yield a white hygroscopic product, stored in a desiccator over
anhy. CaCl,. Yield: 63 mg (90%). *H NMR (400 MHz, D,0) & 7.14 (d, J = 11.8 Hz, 2H), 6.82
(d, J = 8.6 Hz, 2H), 3.98 (s, 8H), 3.75 (t, J = 7.7 Hz, 1H), 3.62 (s, 3H), 3.56 — 3.43 (m, 1H),
3.38 (s, 4H), 3.07 (t, J = 6.8 Hz, 4H), 2.90 (dd, J = 13.8, 7.0 Hz, 1H). 3C NMR (101 MHz,
D20) o6 174.13, 169.12, 154.49, 130.59, 129.20, 115.74, 64.71, 56.06, 53.38, 52.44, 45.69,
33.38 (Fig. S11). FT-IR (KBr pallet): 3423 cm™ (vo.+ of ArO-H), 3265 cm™ (vo-+ of C(O)O-
H), 3020 cm™ (vespz-+), 1731 cm™ (ve-=0), 1240 cmt (vc.o) (Fig. S16(b)). ESI-MS (+) in H20:
m/z [M+H]" exp.: 514.2035, calcd.: 514.2032 (Fig. S14). UV-vis (10 mM HEPES, pH 7.2):
Amax (lLmoltem™) = 275 nm (2529) (Fig. S21(a)).

2,2',2",2""-((((1-methoxy-1-0x0-3-phenylpropan-2-yl) azanediyl) bis(ethane-2,1-diyl)) bis

(azanetriyl)) tetraacetic acid (LP"®)
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Ligand LP" was synthesized from 2¢ (100 mg, 0.2 mmol, 1 0
equiv.) and purified by a similar procedure as used for L%" ?'OH O:SO I:)
obtained as white hygroscopic product which was stored in a OH
desiccator over anhy. CaCly. Yield: 64 mg (93%). 'H NMR (400 0 OQ—N\)

MHz, D>0) § 7.36 (t, J = 7.5 Hz, 2H), 7.29 (d, J = 3.6 Hz, 3H), 0) ""‘\Bo‘

4.03 (s, 8H), 3.83 (t, J=7.5 Hz, 1H), 3.63 (s, 3H), 3.52 (dt, J =

7.1, 5.8 Hz, 1H), 3.39 (t, J= 7.5 Hz, 4H), 3.09 (d, J = 6.8 Hz, 4H), 3.01 (dd, J = 13.6, 7.2 Hz,
1H). 3C NMR (101 MHz, D;0) § 174.13, 168.92, 137.57, 129.26, 129.06, 127.20, 64.64,
55.85,53.49,52.49,45.72, 34.21 (Fig. S12). FT-IR (cm™!, KBr pallet): 3433 (vo.n), 3026 (Lcsp2-
1), 1735 (Lc=0), 1196 (vc-o) (Fig. S16(c)). ESI-HRMS (+) in H2O: m/z [M+H]" exp.: 498.2089,
caled.: 498.2083. (Fig. S15). UV-vis (10 mM HEPES, pH 7.2): Amax (¢/Lmol'cm™) =258 nm
(918) (Fig. S21(a)).

General procedure for the synthesis of terbium(III) complexes (Cs[Tb-L*]) (L** = L"P,
Lo, Lphe):

The respective tetraacetic acids (L*) (0.1 mmol) were dissolved in 2 mL of Mili-Q water. The
pH of the ligand solution was adjusted between 7-8 by adding a saturated aqueous solution of
Cs2CO0s. Then, 1 mL of TbCl3.6H20 (0.1 mmol) solution in Mili-Q water was added dropwise
into the deprotonated ligand solution and stirred at 60°C for 16 h. The reaction mixture was
filtered, and the solvent was dried under vacuum, the product was dried three times with DCM
under reduced pressure to yield the desired Cs[Th-L**] complexes in good yields. The
respective complexes were characterized by FT-IR and ESI-MS techniques.

The presence of a minor trace of t-butylated side product was observed in the ESI-MS of the

L ligands, however, we did not observe any major m/z peaks in the ESI-MS analysis of the

[Tb-L2?] luminescent probes.

[Th-LtP]
Light grey hygroscopic product. Yield: 57.93 mg, 70.28%. FT-IR (cm™Y/ KBr pallet): 3253 (vo-
H), 2968 (Lesp-t), 1577 (Lc=0), 1200 (vc-o0) (Fig. S20(a)). ESI-MS (-) in H20: m/z [M] exp.:

691.1041, calcd.: 691.1059, the observed isotopic distribution matched with the calculated one
(Fig. S17). UV-vis (10 mM HEPES, pH 7.2): Amax (¢/Lmol*cm™) = 286 nm (3000), 292 nm
(2843) (Fig. S21(h)).
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[Th-LYT]

White hygroscopic product. Yield: 58.16 mg, 72.58%. FT-IR (cm™!/ KBr pallet): 3233 (vo-n),
3026 (vespe-n), 1574 (ve=o), 1195 (veo) (Fig. S20(b)). ESI-MS (-) in H2O: m/z [M] exp.:
668.0896, calcd.: 668.0899, the observed isotopic distribution matched with the calculated one
(Fig. S18). UV-vis (10 mM HEPES, pH 7.2): Amax (¢Lmol'cm™) = 276 nm (1303) (Fig.
S21(b)).

[Tb-LPhe]

White hygroscopic product. Yield: 58.9 mg, 76.4%. FT-IR (cm™'/KBr pallet): 3220 (vo-n), 3026
(Vesp2-n), 1578 (Ve=0), 1200 (ve-o) (Fig. S20(c)). ESI-MS (-) in H2O: m/z [M] ™ exp.: 652.0968,

calcd.: 652.0950, the observed isotopic distribution matched with the calculated one (Fig. S19).
UV-vis (10 mM HEPES, pH 7.2): Amax (¢Lmol'cm™) = 259 nm (744) (Fig. S21(b)).

(a) (b) (c)
. OHz o OH, OH,
] o) o
s ,0% 4 ofhe 29 |,
0=(d O £0>=° TbO\f o =(' Tbo =0
- J ( )‘ o=({ (.. _)""

5‘?)"8\ OJ’WO jJ"\r"

Fig. S2 The chemical structures of the Th(lll) complexes (a) [Tb-L'"P], (b) [Th-L%"], (c)
[Tb-LPre] with Cs* as counter cation studied in this work. The eight-coordinated DTTA

moiety strongly chelates with the Th(I1l) center. One H>O molecule bound with the Tb(lll)

center (hydration no., q =1) was confirmed by the spectroscopic experiments.
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Fig. S13 ESI-MS (+) spectra (full range) of L' in H>O. Overlay of experimental isotopic

distribution profile with theoretically calculated m/z value of molecular ion peak (right inset).

m/z for [M+H]": exp.: 537.2185, caled.: 537.2192. Expanded spectrum (left inset) showing
p

the presence of a trace of #-butylated product peak at m/z 593.2806 for [M+C4sHo]".
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distribution profile with theoretically calculated m/z value of molecular ion peak (right inset).
m/z for [M+H]": exp.: 514.2035, calcd.: 514.2032. Expanded spectrum (left inset) showing
the presence of [M+Na]" at m/z 536.1840, and a trace of #-butylated product peak at 570.2648

for [M+C4Ho]", respectively.
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Fig. S15. ESI-MS (+) spectra (full range) of LP" in H,O. Overlay of experimental isotopic

distribution profile with theoretically calculated m/z value of molecular ion peak (right inset).
m/z for [M+H]": exp.: 498.2089, calcd.: 498.2083. Expanded spectrum (left inset) showing
the presence of [M+Na]" at m/z 520.1898, and a trace #-butylated product peak at 554.2706

for [M+C4Ho]", respectively.
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Fig. S17 ESI-MS (-) spectra (full-range) of [Tb-L®?] in H>O and overlay of experimental

isotopic distribution profile with theoretically calculated m/z values (inset). m/z for [M]":

exp.: 691.1041, calcd.: 691.1059.

Relative Abundance

120

90

60

30

0

668.0896 [M]-
—|®
. 2:: Lo
5680895 °=(Z»' TbN_)_).—_o
0
s
—Exp UJ s
—Cal HO o]
669.0925
670.0909 671.0981
- 668 669 670 671
m/z
‘JL.L.L._.. _‘.J_ ik 1 I L. ll_\ " l.n.
T
200 400 600 800 1000
m/z

Fig. S18 ESI-MS (-) spectra (full-range) of [Th-L%"] in H>O and overlay of experimental

isotopic distribution profile with theoretically calculated m/z values (inset). m/z for [M]":

exp.: 668.0896, calcd.: 668.0899.

528



120

—Exp.
—Cal

653.0997

6541024 gs5 1039
PN

654
m/z

855

652.0968 [M]"

0,

N. o0
o (Tb
(o A SRR

o
""‘Wb\
(o]

Yoo

ot
D

N

i

8 90 . 652.0968
c
©
o
c
=1
e}
< g0
[0}
=
=
Q
0 852
o

30 H

0 A L
200

T
400

1
600
m/z

1
800

1000

Fig. S19 ESI-MS (-) spectra (full-range) of [Tb-LP"] in H,O and overlay of experimental

isotopic distribution profile with theoretically calculated m/z values (inset). m/z for [M]":

exp.: 652.0968, calcd.: 652.0950.

529



(@) (b)
105 100
Q
3 90 5}
2 <
g g 759 VieH)
2 AN I /3026 o)
o > v(C-0) 4 v(O-H)
& 75- V(Cyp-H) (1200 cm™) @ (3233 o)
= (2968 cm) E 50
= Vi =
v(O-H)
: (C= c=0)
| 3253 em ™) V(C=0) — w(C=0) V(C-0)
%0 (1577 cm) - (1574 ey ~| 15 om
4000 3000 2000 1000 4000 3000 2000 1000
Wavenumber (cm') Wavenumber (cm™)
(0
105

@

[&]

c

3

g

& N

= v(C-0)

32 (1200 cm™)

wC=0)
(1578 cm'™) 7
60 T T T
4000 3000 2000 1000

Wavenumber (cm™)
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Spectroscopic studies:
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Fig. S21 UV-Vis absorption spectrum of (a) L** ligands. For L"P: A, = 282 nm with a
shoulder peak at 288 nm (black), LY": Anax= 275 nm (red), and LPP®: 1,4 = 258 nm (blue).
Conditions: 74 pM of L** in 10 mM HEPES buffer (pH 7.2), 7 = 298 K. (b) [Tb-L*]
complexes. For [Tb-L"P]: 4,4= 286 nm with a shoulder peak at 292 nm (black), [Tb-L%"]:
Amax= 276 nm (red), and [Tb-LP"]: A,.c = 260 nm (blue). Conditions: 0.16 mM of [Th-L33]
in 10 mM HEPES buffer (pH 7.2), T= 298 K.
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Fig. S22 Excitation and time-resolved luminescence (TRL) spectra of [Th-L#*] complexes
in HEPES buffer. [Tb-L"P]: A.. = 288 nm (green), [Tb-L%"]: Aex = 277 nm (blue), [Th-LPh¢]
Aex = 259 nm (red). Difterent spectral lines for Tb(IIl) centered emission spectra due to
transition from D4 — 'F; energy states. Conditions: 25 uM of [Tb-L??] in 10 mM HEPES
buffer (pH 7.2), ex./em. slit width = 5 nm, delay and gate time = 0.5 ms, 7= 298 K.
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the changes in relative fluorescence intensity for free L™P (black) with addition of different
nucleobases, nucleosides and nucleotides (0.34 mM). Conditions: [L*P] =25 uM in 10 mM
HEPES buffer (pH 7.2), Aex = 281 nm, ex./em. slit width =5 nm, 7= 298 K.
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Fig. S24 Relative changes of D4 — ’Fs emission peak intensity at 546 nm of [Tb-Lf?] in the
absence of any analyte (black), followed by the addition of different interferents (0.64 mM)
showing the negligible changes in emission intensity. The addition of GMP (0.64 mM) in every
different set of mixtures results in a significant quenching in TRL-intensity, showcasing the

selectivity towards G-NPPs. Conditions: [Tb-L"?] =25 uM in 10 mM HEPES buffer (pH 7.2),

Aex =290 nm, ex./em. slit width = 5 nm, delay and gate time = 0.5 ms, 7 =298 K.
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Table S1. Luminescence lifetime values of [Tbh-L'"P] in H,O/D,O and calculated ¢ values,
in the absence and presence of 30 eq. purine nucleotides. Condition: [Tb-L"P] = 25 uM in
H>0 and D»0, Aex =290 nm, ex./em. slit width = 5 nm, delay and gate time = 0.5 ms, T =
298 K.

Complex + NPPs (30 eq.) TH20 (MS) Tn20 (MS) q

[Th-LtP] 1.684 3.229 1.12
[Tbh-L"P] + GTP 1.767 3.072 0.902
[Th-L"P] + GDP 1.817 3.033 0.803
[Tb-L?] + GMP 1.838 3.173 0.844
[Tbh-L"P] + ATP 1.862 3.162 0.804
[Th-L"P] + ADP 1.877 3.123 0.762
[Th-L"P] + AMP 1.842 3.277 0.888

Lifetime calculation:

From equation 2, we can calculate the g values as follows:-

Initially, without addition of nucleotides, ¢ value of [Tb-L"P] is,

q (Tb) = 5.0 ( - 0.06) = 5.0 (0.594 — 0.31 — 0.06) = 5.0X0.224 = 1.12

1.684 3.229

Similarly, after the addition of 30 eq. of GTP, g value of [Th-L*P] is,

q (Tb) = 5.0( - 0.06) = 5.0 (0.566 — 0.326 — 0.06) = 5.0X0.18 = 0.9

1.767 3.072
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Fig. S25 Luminescence lifetime of [Th-L"P] in H2O (green) and D20 (blue), in the absence

and presence of 30 eq. purine nucleotides. Condition: [Tb-L"?P] =25 uM in H>O and D-0,

Aex =290 nm, ex./em. slit width = 5 nm, delay and gate time = 0.5 ms, T =298 K.
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Fig. 826 Time-resolved luminescence spectrum of [Tb-L%"]. Relative changes of D4 — Fs
emission peak intensity (///p) at 546 nm (a) as a function of the concentration of NPPs (0 —
0.444 mM). (b) bar diagram showing the TRL-intensity of [Tb-L%"] in the free form (black)
and with the addition of different NPPs (0.444 mM). Conditions: of [Tb-L®"] =25 uM in 10
mM HEPES buffer (pH 7.2), Aex =278 nm, ex./em. slit width = 5 nm, delay and gate time =
0.5ms, 7=298 K.
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Fig. S27 Time-resolved luminescence spectrum of [Tb-LP"¢]. Relative changes of D4 — Fs
emission peak intensity (//1p) at 546 nm (a) as a function of the concentration of NPPs (0 —
0.119 mM). (b) bar diagram showing the TRL-intensity of [Th-LP"] in the free form (black)
and with the addition of different NPPs (0.119 mM). Conditions: [Th-LP"¢] = 25 uM in 10
mM HEPES buffer (pH 7.2), Aex =260 nm, ex./em. slit width = 5 nm, delay and gate time =
0.5 ms, 7=298 K.
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Fig. S28 (a) Stern -Volmer plots from the TRL titration of [Tb-LP] with various nucleotides
(0—0.23 mM). (b) Bar diagram showing the Stern-Volmer quenching constant (Ks) of [Tb-
L'P] with six nucleotides showing significantly higher Ksv for G-NPPs over A-NPPs. The
TRL-intensity was calculated from the full range spectrum (460 — 640 nm). Conditions: [Th-
L] =25 uM in 10 mM HEPES buffer (pH 7.2), Aex = 290 nm, ex./em. slit width = 5 nm,
delay and gate time = 0.5 ms, 7=298 K.
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Fig. S29 Plot for calculation of limit of detection (LOD) for G-NPPs using TRL titration data
from [Th-L"P] (Amax = 546 nm, AJ = 1). Conditions: [Tb-L"P] = 25 uM in 10 mM HEPES
buffer (pH 7.2), Aex =290 nm, ex./em. slit width = 5 nm, delay and gate time = 0.5 ms, 7' =
298 K.
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Table S2. Calculation of LOD for G-NPPs using TRL-titration data from [Th-L"P] (Amax
=546 nm, AJ = 1). Conditions: [Th-L*P] =25 uM in 10 mM HEPES buffer (pH 7.2), Aex =
290 nm, ex./em. slit width = 5 nm, delay and gate time = 0.5 ms, 7= 298 K.

Nucleotides Slope (S) R? Standard LOD =3.3*( 6/8)
(G-NPPs) error (o) (ppm)
GTP -0.00389 0.99573 0.00258 1.13
GDP -0.00387 0.9901 0.00393 1.47
GMP -0.00348 0.98081 0.00494 1.69
References

1. Y. Azuma, M. Imanishi, T. Yoshimura, T. Kawabata and S. Futaki, Angew. Chem. Int.
Ed., 2009, 48, 6853-6856.

2. Anelli, Pier Lucio; Lolli, Marco; Fedeli, Franco; Virtuani, Mario, World Intellectual
Property Organization, W0O9805626, 1998.

S37



