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1. Experimental Procedures
1.1 Fabrication of xcln203-BN catalyst

In a typical deposition process, In203 atomic clusters were formed at
150 °C, Cyclopentadienyl indium (InCp) used as the indium precursor, was
heated to 90 °C. Water vapor and plasma oxygen were introduced into
the ALD chamber to remove the ligand. A typical deposition cycle included:
InCp injection (0.15 s) - exposure (30 s) - argon purging (90 s) - water
injection (0.15 s) + Oz plasma (20 s) - argon purging (90 s). h-BN with
different indium oxide loading was obtained by controlling the ALD cycles,
resulting in material named xcln;03-BN (where x indicates the number of

ALD cycles).
1.2 General procedure for oxidation dehydrogenation of propane

The as-prepared xcln,0s3-BN catalyst (100 mg) was placed in the
middle of the quartz tube (I.D. =9 mm) and supported by quartz wools. A
K-type thermocouple was inserted into the center of the catalyst bed to
monitor the operating temperature. The reactant gas mixture, consisting
of nitrogen, propane, and oxygen in a 6:1:1 ratio, had a total flow rate of
24 mL min, controlled by three mass flow controllers. The outlet gas was
analyzed by an on-line gas chromatograph (FULI INSTRUMENTS,
GC9790Il) equipped with a HP-PLOT Al,03 column (30 m x 0.53 mm x 15

um), a Porapak Q packed column (2 m x 3 mm) and 5A molecular sieve



column (2 m x 4 mm). A flame ionization detector (FID) was used for
detecting of CHa, CoHe, CoHa, CsHs and CsHs, etc., while CO, CO2 and CHas
were detected using a thermal conductivity detector (TCD). Every xcln,Os-
BN catalyst was activated at a propane conversion of ~ 20% for 15 min,
after which the reactor was cooled to 460 °C for catalytic evaluation. The
reaction temperature was varied in the range of 460 - 560 °C with a ramp
of 2 °C min! (reactant gas: N,-CsHs-O; = 6-1-1, total flow rate = 24 mL min
1 WHSV = 14400 L kgt ht). Such a low reaction gas concentration can
avoid the formation of excessive oxygenate, while creating a low water
vapor concentration environment. The long-term stability test was
performed at the reaction temperature where propane conversion was ~

15%.
1.3 Equations

The propane conversion, product selectivity, yield and carbon

balance were calculated as follows:

C mol of (C3Hg v — C3Hsg our)

x 100%
C mol of C3Hg )y °

Propane conversion =

o C mol of specific product
Product selectivity = x 100%
C mOl Of (C3H8,IN - C3H8,OUT)

Product yield = (Propane conversion x Product selectivity) x 100%

C mol of (products+C;H
(p 3 8,OUT)X100%

Carbon Balance =
C mol of C3Hg )y



where C mol refers to the number of carbon moles in the products,

inlet and outlet of the propane.

1.4 Catalysts Characterization

Transmission electron microscopy (TEM), including high-resolution
transmission electron microscopy (HRTEM) was obtained using a JEM
F200 Electron Microscope operated at 200 kV. Thermal gravimetric (TG)
analysis was performed on a thermal analyzer (Netzsch TG/209F3).
Powder X-ray diffraction (PXRD) patterns were collected on a Bruker D8
X-ray diffractometer with Cu Ka radiation at room temperature. The
Fourier transform infrared (FT-IR) spectra of the samples were recorded
on a Bruker 4700 FT-IR spectrometer (Bruker Optics Inc., Ettlingen,
Germany). X-ray photoelectron spectroscopy (XPS) spectra were collected
on an ESCALAB 250Xi X-ray photoelectron spectrometer. Inductively
coupled plasma optical emission spectrometer was performed on an
Agilent ICPOES 720. Nitrogen physisorption isotherms were recorded at
77 K using a Quantachrome Autosorb-iQ nitrogen volumetric adsorption
instrument. Before measurement, the catalysts were degassed at 120 °C
for 8 h. The scanning transmission electron microscopy (STEM), energy-
dispersive X-ray spectroscopy (EDS), and electron energy loss
spectroscopy (EELS) elemental mapping and spectra were collected on a
JEOL Grand ARM-300F, operate at 300 kV with a Gatan Oneview camera

and a K2 summit direct electron counting detector. Non-local density



functional theory (NLDFT) calculations were performed to obtain the pore

size distribution based on the measured N, adsorption isotherms.



2. Supplementary Figures and Tables
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Fig. S1 Indium loadings in xcIn,03-BN with different ALD deposited cycles

determined by ICP-OES.



Fig. S2 TEM images of fresh BN (A) and 8cln,0s-BN (B) catalysts. Scale bars:
20 nm. (C) STEM image and corresponding EELS elemental mapping of
fresh 4cln,03-BN catalyst, high-lighting the distribution of key elements.

Scale bars: 10 nm.
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Fig. S3 XRD patterns of fresh xcln,03-BN composite catalysts.
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Fig. S4 Olefins selectivity and ethylene selectivity as a function of propane

conversion over BN and xcln;0s-BN catalysts.
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Fig. S5 Olefins, propylene, and ethylene yield as a function of reaction

temperature over pristine BN and xcln,0s-BN catalysts.
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Fig. S6 Reaction rate as a function of reaction temperature over pristine

BN and xcIn203-BN catalysts.
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Fig. S7 Carbon balance during the long-term stability test.
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Fig. S8 XRD patterns of spent BN and xcln,O3-BN composite catalysts.
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Fig. S9 FT-IR spectra of fresh xcIn,03-BN (xcIn203-BN-F) and BN (BN-F)

catalysts.
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Fig. S10 XPS spectra of B 1s (a), N 1s (b), and In 3d (c) from fresh xcln,0s-

BN catalysts.
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Fig. S11 XPS spectra of B 1s (a), N 1s (b), and In 3d (c) from spent xcln,0s-

BN catalysts.
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Fig. S12 Nitrogen adsorption-desorption isotherm and corresponding

pore distribution of fresh (a-b) and spent (c-d) xcIn,03-BN catalysts.
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Fig. S13 TGA curves of fresh xcln,03-BN catalysts.



Fig. S14 TEM images of spent BN catalysts, scale bars: 10 nm.



Fig. S15 STEM images of spent 6cln,0s-BN (a), 8cIn.03-BN (b), and
10cIn203-BN (c) catalysts. scale bars: 100 nm. STEM images of 10cIn;0s-

BN and corresponding EELS elemental mappings (d).
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Fig. S16 Water vapor concentration as a function of reaction

temperature.
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Fig. S17 (a) Comparison of catalytic performance of BN, 8cIn,0s3-BN, and

8¢ln;03-Si0;. (b) Product selectivity and propane conversion over 8cln,0s-

SiO; catalyst as a function of reaction temperature.



Table S1. Comparison of apparent activation energy (Ea) between pristine
BN and

various xcln,O03-BN catalysts.

Catalysts Ea (k) mol?) R?
p-BN 271.1+1.6 0.995
4c¢In,03-BN 229.5£5.3 0.998
6¢cln203-BN 228.616.6 0.998
8cln203-BN 197.84+3.2 0.999

10cIn,03-BN 261.9+1.3 0.997




Table S2. The amount of BOy species of fresh and spent BN and 8cIn,0s-

BN catalysts.

Catalysts BN 8cIn203-BN

Fresh 7.9% 2.9%

Spent 3.9% 3.1%




Table S3. Brunauer-Emmett-Teller (BET) surface area and pore volumes

of fresh and spent BN and xcln,03-BN catalysts.

Catalysts BET surface area Pore volume
(m*g?) (em’g)

Fresh BN 35.7 0.12

Spent BN 52.8 0.18
Fresh 6¢In,03-BN 38.0 0.12
Spent 6¢In,03-BN 23.5 0.09
Fresh 8cln,03-BN 42.2 0.14
Spent 8cln,03-BN 34.9 0.11
Fresh 10cIn,03-BN 45.7 0.12

Spent 10cln,03-BN 27.3 0.07




