Electronic Supplementary Information (ESI)

Electro-catalyzed, Solvent-Controlled Divergent Decarboxylative Annulation and Hydroaminomethylation of Cyclic Aldimines with *N*-Arylglycines

Jie Zhang^a, Xiaolan Li^{a,b}, Guisheng Chen,^a Haidong Liu^a*, Haiqing Luo^a*

^a Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China

^b College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China

Email: hdliu@gnnu.edu.cn; luohaiq@sina.com

Table of Contents	Page No.
1. General Information	S-2
2. Radical switchable annulation and amino-methylation wit substituted glycines	^{h <i>N</i>-} S-4
3. Experimental section	S-4
4. Preliminary mechanistic studies	S-10
5. Experimental data	S-15
6. References	S-34
7. ¹ H NMR, ¹³ C NMR Spectras	S-35

1. General Information

Analytical methods

Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectroscopy were performed on a Bruker Advance 300, 400 and 500 NMR spectrometers. Chemical shifts ¹H NMR spectra are reported as in units of parts per million (ppm) downfield from SiMe₄ (0.0) and relative to the signal of chloroform-*d* (J = 7.264, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); ddd (doublet of doublets of doublets); ddd (doublet of doublets) of doublets); ddd (doublet of doublets of doublets); dt (doublet of triplets); m (multiplets) and etc. The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a *J* value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as d in units of parts per million (ppm) downfield from SiMe₄ (0.0) and relative to the signal of chloroform-*d* (J = 77.03, triplet). High resolution mass spectral analysis (HRMS) was performed on LCMS Q-TOF (SHIMADZU Corporation) ESI spectrometer. Infrared spectra were recorded on a Nicolet IS50 Fourier transform spectrometer (FT-IR) and are reported in wave numbers (cm⁻¹).

Materials

Unless otherwise noted, all reagents were purchased energy chemistry, Ouhe and Tansoole, and used without further purification. DMF, DMSO, 1, 4-Dioxane and DCE were extra dry bought from energy chemistry.

1.1 General procedure for the preparation of benzoxathiazine.

To a solution of salicyclaldehyde (1.00 mmol) in 2.0 mL of DMA at 0 $^{\circ}$ C was quickly transferred solid H₂NSO₂Cl (3.00 mmol, 3.0 equiv). **Caution:** A mild exotherm is generally noted upon combination of these reagents. The mixture was allowed to warm to ambient temperature and was stirred until TLC analysis indicated completion of the reaction (2–12 h). The reaction was quenched with 5 mL of a pH 7 NaH₂PO₄/NaOH aqueous buffer solution and transferred to a separatory funnel with 10 mL of Et₂O. The organic layer was separated, and the aqueous layer was

extracted with 2 x 5 mL of Et_2O . The combined organic layers were washed successively with 2 × 3 mL of H_2O and 1 × 5 mL of saturated aqueous NaCl, dried over MgSO₄, and concentrated under reduced pressure. Purification by chromatography on silica gel (conditions given below) afforded the desired benzoxathiazine.

1.2 General procedure for the preparation of *N*-arylglycine.^[1]

A mixture of substituted aniline (10 mmol), ethyl bromoacetate (1.2 equiv, 12 mmol) and anhydrous sodium acetate (2 equiv, 20 mmol) in 30 mL ethanol was refluxed for about 10 h until the substituted aniline disappeared. After cooling to room temperature, the precipitated salts were removed by filtration. The solvent was removed by rotary evaporation. After obtaining the concentrate, NaOH (3.3 equiv, 33 mmol) and the concentrate (1.0 equiv, 10 mmol) were dissolved in H₂O (10 mL), EtOH (10 mL) and THF (30 mL). The reaction mixture was stirred for 3 h at 50°C. The organic solvent was then removed by rotary evaporation. The residue was extracted with ethyl acetate (3×10 mL). The water layer was acidified with con. HCl until pH = 2-3 and extracted with ethyl acetate (3×20 mL). The combined organic layers were concentrated by rotary evaporation to afford product substituted *N*-arylglycines. 2. Radical switchable annulation and amino-methylation with *N*-substituted glycines

Scheme S1 Radical switchable annulation and amino-methylation with N-substituted glycines.

3. Experimental section

3.1 Electrolysis reaction set-ups pictures

Figure S1 0.2 mmol scale electrolysis reaction set-ups: rubber plug, graphite plate (10 mm \times 10 mm \times 3 mm), platinum plate (10 mm \times 10 mm \times 0.1 mm) and 10 mL three-necked round bottom flask.

3.2 General procedure for the annulation of *N*-arylglycine with Cyclic Aldimines:

In 10 mL three-necked round bottom flask, a mixture of *N*-sulfonyl ketimines **1** (0.2 mmol, 1.0 equiv), *N*-arylglycines **2** (0.6 mmol, 3.0 equiv) and "Bu₄NClO₄ (0.2 mmol, 1.0 equiv) and MeCN (4.0 mL), H₂O (1.0 mL) were added. The flask was equipped with graphite plate anode (10 mm \times 10 mm \times 3 mm) and platinum cathode (10 mm \times 10 mm \times 0.1 mm). The reaction mixture was stirred and electrolyzed at a constant current of 6 mA under 35 °C for 5 h. After the reaction finished, the mixture was cooled to room temperature, then diluted with 10 mL water and extracted with EtOAc (3*10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, evaporated under vacuum. The residue was purified with silica gel chromatography (petroleum ether/ethyl acetate) to provide pure product.

	H + H cc	OOH CE ☐ Pt Electrolyte, Solvent 35 °C, air, 6 mA, 5 h	O O S N Ph
	1a 2a		3a
Entry	Electrolyte	Solvent	Yield(%) ^{a)}
1	"Bu4NBF4	MeCN	47
2	ⁿ Bu ₄ NPF ₆	MeCN	66
3	ⁿ Bu ₄ NClO ₄	MeCN	74
4	ⁿ Bu ₄ NI	MeCN	25
5	ⁿ Bu ₄ NOAc	MeCN	50
6	ⁿ Bu ₄ NHSO ₄	MeCN	Trace
7	ⁿ Bu ₄ NClO ₄	H_2O	23
8	ⁿ Bu ₄ NClO ₄	TFE	45
9	ⁿ Bu ₄ NClO ₄	DCE	32
10	ⁿ Bu ₄ NClO ₄	$MeCN:H_2O = 4:1$	91
11^{b}	ⁿ Bu ₄ NClO ₄	$MeCN:H_2O = 4:1$	80
11^{c}	-	$MeCN:H_2O = 4:1$	N.R.
12^d	ⁿ Bu ₄ NClO ₄	$MeCN:H_2O = 4:1$	N.R.

^{*a*} Reaction condition: **1a** (0.2 mmol), **2a** (0.6 mmol), electrolyte (0.2 mmol, 1.0 equiv), solvent (5.0 mL), graphite plate (10 mm×10 mm×3 mm) as anode and platinum plate (10 mm×10 mm×0.1 mm)

as cathode electrolyzed under a constant current of 6 mA for 5 h in an undivided cell at 35 °C. Isolated yield. N.R. No reaction. ^{*b*} Ni plate as Cathode. ^{*c*} Without electrolyte. ^d Without current.

	O O O S N			Pt O	О S NH H
[Н	Ph	Electrolyte, Addi Solvent, Tempra air, 6 mA, 5 h	tive ture	N. Ph
	1a	2a			5a
Entry	Electrolyte	Solvent	Temperature (°C)	Time (h)	Yield $(\%)^b$
1	ⁿ Bu ₄ NClO ₄	H_2O	35	5	31
2	ⁿ Bu ₄ NClO ₄	TFE	35	5	28
3	ⁿ Bu ₄ NClO ₄	EtOH	35	5	trace $(61)^c$
4	ⁿ Bu ₄ NClO ₄	$H_{2}O/MeOH = 9:1$	35	5	24
5	ⁿ Bu ₄ NClO ₄	$H_2O/HFIP = 9:1$	35	5	29
6	ⁿ Bu ₄ NBF ₄	H_2O	35	5	20
7	ⁿ Bu ₄ NPF ₆	H_2O	35	5	18
8	ⁿ Bu ₄ NOAc	H_2O	35	5	23
9	ⁿ Bu ₄ NCl	H_2O	35	5	26
10	ⁿ Bu ₄ NClO ₄	H_2O	35	12	48
11^d	ⁿ Bu ₄ NClO ₄	H_2O	35	12	63
$12^{d,e}$	ⁿ Bu ₄ NClO ₄	H_2O	35	12	32
$13^{d,f}$	ⁿ Bu ₄ NClO ₄	H_2O	35	12	52
$14^{d,g}$	ⁿ Bu ₄ NClO ₄	H_2O	35	12	31
$15^{d,h}$	ⁿ Bu ₄ NClO ₄	H_2O	35	12	47
$16^{d,i}$	ⁿ Bu ₄ NClO ₄	H_2O	35	12	58
17^d	ⁿ Bu ₄ NClO ₄	H_2O	55	12	62
18^d	ⁿ Bu ₄ NClO ₄	H_2O	60	12	71
19^{d}	ⁿ Bu ₄ NClO ₄	H_2O	65	12	67
20^d	ⁿ Bu ₄ NClO ₄	H_2O	60	10	61
21^d	ⁿ Bu ₄ NClO ₄	H_2O	60	14	66

3.3 Table S2. Optimization of reaction conditions^a

^{*a*} Reaction condition: **1a** (0.2 mmol), **2a** (0.6 mmol), electrolyte (0.2 mmol, 1.0 equiv), solvent (5.0 mL), graphite plate (10 mm×10 mm×3 mm) as anode and platinum plate (10 mm×10 mm×0.1 mm) as cathode electrolyzed at constant current of 6 mA for 5 h in an undivided cell at 35 °C. ^{*b*} Isolated yields. ^{*c*} the yield of **3a**. ^{*d*} electrolyte (0.1 mmol, 0.5 equiv). ^{*e*} Addition: K₂CO₃ (0.2 mmol). ^{*f*} Addition: HOAc (0.2 mmol). ^{*g*} Pt plate as anode. ^{*h*} Fe plate as Cathode. ^{*i*} Ni plate as Cathode.

3.4 Synthetic applications

a) General procedure for the gram-scale synthesis.

Into a 250 mL beaker, with graphite plate anode (20 mm \times 20 mm \times 3 mm), platinum plate cathode (20 mm \times 20 mm \times 0.1 mm), a mixture of *N*-sulfonyl ketimines **1a** (5.5 mmol, 1.0 equiv), *N*-phenylglycines **2a** (16.5 mmol, 3.0 equiv), *"*Bu₄NClO₄ (5.5 mmol, 1.0 equiv) in MeCN (80 mL) and H₂O (20 mL) were stirred with constant current of 40 mA at 35 °C for 24 h. After the reaction were completed, the mixture was cooled to room temperature and diluted with water (50.0 mL) and extracted with EtOAc (3*50.0 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by column chromatography to afford the desired compounds.

Reaction apparatus diagram

b) Suzuki coupling reaction

To an over-dried schlenk tube equipped with a magnetic stir bar, was added 8-bromo-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide **3l** (76.2 mg, 0.2 mmol, 1.0 equiv), phenylboronic acid (48.8 mg, 0.4 mmol, 2.0 equiv), $Pd(dppf)_2Cl_2 \cdot CH_2Cl_2$ (16.3 mg, 10 mol%), 'BuOK (49.4 mg, 0.44 mmol, 2.2 equiv), CsF (45.6 mg, 0.3 mmol, 1.5 equiv) and dioxane (2.0 mL) under N₂. The reaction mixture was allowed to stir in oil bath at 80 °C for 24 h. After the reaction were completed, the mixture was cooled to room temperature, diluted with water (10.0 mL) and extracted with EtOAc (3*10.0 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, concentrated under vacuum. The residue was purified with column chromatography to provide pure product **6**.

a) Gram-scale synthesis.

Scheme S2 Gram-scale synthesis and synthetic application.

3.5 X-Ray Crystallographic Data

Synthesis was carried out by reaction of **1a** (0.2 mmol), **2a** (0.6 mmol) and ^{*n*}Bu₄NClO₄ (0.1 mmol) and electrolyzed at a constant current of 6 mA under 60 °C for 12 h. Single crystals suitable for X-ray analysis were grown from ethyl acetate solution of **5a** by slow vapor diffusion of petroleum ether.

Single crystal X-ray diffraction data was collected with a Rigaku XtaLAB Synergy (Dualflex, HyPix) diffractometer system equipped with a Cu sealed tube ($\lambda = 1.54184$). The structures were solved by direct methods with Olex2^[2] program suite. The CCDC number for the compound **5a** is 2335625. In addition, the supplementary crystallographic data for this paper can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.

Figure S2 Thermal ellipsoid plot of the crystal structure of 5a

Identification code	5a	
Empirical formula	$C_{14}H_{14}N_2O_3$	s
Formula weight	290.33	
Temperature	100(10)	
Wavelength	1.54184 A	
Crystal system	orthorhombi	c
space group	P n a 21	
Unit cell dimensions		
a=11.3873(2)	b=7.62710(10)	c=15.5891(3)
alpha=90	beta=90	gamma=90
Volume	1353.95(4)	
Z, Calculated density	4, 1.424 Mg	/m ³
Absorption coefficient	2.214 mm ⁻¹	l de la constante de
F(000)	608	
Crystal size	0.14 ×0.12	×0.08 mm
Theta range for data co	llection	5.676 to 75.261 deg
Limiting indices	-14≦h≦14	, -9≦k≦8, -17≦1≦19
Reflections collected/un	ique	13463/2425 [Rint=0.0504 Rsigma=0.0587]
Data/restraints/parame	ters	2521/1/181
GOOF		1.060
R indices (all data)		R ₁ =0.0379, wR ₂ =0.0895
Final R indices [I > 2sig	ma (I)]	R ₁ =0.0349, wR ₂ =0.0883
Largest diff. peak and h	ole	0.245/-0.377 e.A ⁻³

4. Preliminary mechanistic studies

4.1 Procedure for cyclic voltammetry (CV)

The redox property of each compound was measured in solvent containing $^{n}Bu_{4}NCIO_{4}$ as the supporting electrolyte. Cyclic voltammetry was carried out in conventional three-electrode electrochemical cell with CHI660E electrochemical workstation under air at room temperature. The working electrode was a disc glassy-carbon electrode (d = 3 mm). A platinum plate electrode (10 mm × 10 mm × 0.1 mm) was used as the counter electrode. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. The working electrode was polished before recording each CV curve. All voltammograms were measured using the following parameters:

Segments	2
Initial Potential	0 V
Vertex Potential	2.50V
Final Potential	0 V
Scan rate (V/s)	0.05

4.2 Cyclic voltammetry (CV) curves of the annulation and the aminomethylation of *N*-phenyl glycine with cyclic aldimines

Figure S3 Cyclic voltammetry (CV) curves on a working glassy-carbon electrode under a scan rate of 0.05 V/s for (i): (a) background, (b) cyclic aldimine **1a** (0.1 mmol), (c) *N*-phenyl glycine **2a** (0.1 mmol), in "Bu₄NClO₄ (0.1 mmol) solution in MeCN/H₂O (V/V=4:1, 10.0 mL); (ii) (a) background, (b) cyclic aldimine **1a** (0.1 mmol), (c) *N*-phenyl glycine **2a** (0.1 mmol), in "Bu₄NClO₄ (0.1 mmol) solution in H₂O (10.0 mL).

4.3 Radical trapping experiments

a) the Annulation of N-phenyl glycine with Cyclic Aldimines:

To a 10 mL three-necked round bottom flask equipped with a magnetic bar was added cyclic aldimine **1a** (0.2 mmol, 1.0 equiv), *N*-phenyl glycine **2a** (0.6 mmol, 3.0 equiv), and "Bu₄NClO₄ (0.2 mmol, 1.0 equiv). The TEMPO (1.0 mmol, 5.0 equiv) and MeCN (4.0 mL), H₂O (1.0 mL) were added subsequently. The flask was equipped with graphite plate anode (10 mm \times 10 mm \times 3 mm) and platinum cathode (10 mm \times 10 mm \times 0.1 mm). The reaction mixture was stirred and electrolyzed at a constant current of 6 mA under 35 °C for 5 h. After the reaction finished, the GC-MS detected the addition product formed by the radical scavenger with cyclohexyl radical.

b) the Aminomethylation of *N*-phenylglycine with Cyclic Aldimines:

To a 10 mL three-necked round bottom flask equipped with a magnetic bar was added cyclic aldimine **1a** (0.2 mmol, 1 equiv), *N*-phenyl glycine **2a** (0.6 mmol, 3.0 equiv), and "Bu₄NClO₄ (0.1 mmol, 0.5 equiv). The TEMPO (1.0 mmol, 5.0 equiv) and H₂O (5.0 mL) were added subsequently. The flask was equipped with graphite plate anode (10 mm \times 10 mm \times 3 mm) and platinum cathode (10 mm \times 10 mm \times 0.1 mm). The reaction mixture was stirred and electrolyzed at a constant current of 6 mA under 60 °C for 12 h. After the reaction finished, the GC-MS detected the addition product formed by the radical scavenger with cyclohexyl radical.

Redical trapping experiment

Scheme S3. Radical trapping studies

4.4 Control experiment

In 10 mL three-necked round bottom flask, a mixture of 4-((phenylamino)methyl)-3,4dihydrobenzo[e][1,2,3] oxathiazine 2,2-dioxide **5a** (0.2 mmol, 1.0 equiv), HCHO (16 µL, 1.0 equiv, 37-40% in H₂O), "Bu₄NClO₄ (0.2 mmol, 1.0 equiv) and MeCN (4.0 mL), H₂O (1.0 mL) were added. The flask was equipped with graphite plate anode (10 mm × 10 mm × 3 mm) and platinum cathode (10 mm × 10 mm × 0.1 mm). The reaction mixture was stirred and electrolyzed at a constant current of 6 mA under 35 °C for 5 h. After the reaction finished, the mixture was cooled to room temperature, then diluted with 10 mL water and extracted with EtOAc (3*10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, evaporated under vacuum. The residue was purified with silica gel chromatography (petroleum ether/ethyl acetate) to provide pure product **3a** in 86% yield.

Scheme S4. Control experiment

4.5 Proposed mechanism.

Scheme S5. Plausible mechanism

4. Experimental data

2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3a)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 4/1), the desired product **3a** was obtained as a white solid (55.1 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 7.06 (d, *J* = 8.2 Hz, 1H), 6.88 (t, *J* = 7.4 Hz, 1H), 6.62 – 6.58 (m, 1H), 5.46 (t, *J* = 3.7 Hz, 1H), 4.97 (d, *J* = 4.7 Hz, 1H), 4.67 (d, *J* = 4.7 Hz, 1H), 3.96 (d, *J* = 3.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 145.0, 129.7, 129.4, 126.5, 126.0, 120.8, 119.2, 118.8, 113.2, 65.9, 61.8, 54.4. This compound is known.^[3]

7-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3b)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **3b** was obtained as a white solid (55.9 mg, 88% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.4 Hz, 1H), 6.90 – 6.84 (m, 1H), 6.62 – 6.58 (m, 2H), 5.44 (t, *J* = 3.6 Hz, 1H), 4.97 (d, *J* = 4.8 Hz, 1H), 4.67 (d, *J* = 4.8 Hz, 1H), 3.95 (d, *J* = 3.9 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.4, 145.0, 131.1, 129.4, 128.3, 125.2 123.9, 120.6, 119.2, 113.2, 66.0, 61.9, 54.7, 15.3. This compound is known. ^[4]

8-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3c)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **3c** was obtained as a white solid (50 mg, 80% yield); 1H NMR (400 MHz, CDCl3) δ 7.31 – 7.25 (m, 2H), 7.14 (d, *J* = 7.9 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 7.3 Hz, 2H), 6.59 (d, *J* = 8.4 Hz, 2H), 5.42 (t, *J* = 3.7 Hz, 1H), 4.94 (d, *J* = 4.8 Hz, 1H), 4.66 (d, *J* = 4.7 Hz, 1H), 3.94 (d, *J* = 3.7 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 145.0, 140.3, 129.4 , 126.8, 126.2, 119.1, 117.6, 115.0, 113.1, 65.9, 61.7, 54.4, 20.9. This compound is known. ^[3]

9-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3d)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **3d** was obtained as a white solid (51.8 mg, 81% yield); ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 7.12 (d, *J* = 8.4 Hz, 1H), 7.04 (s, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.87 (t, *J* = 7.4 Hz, 1H), 6.60 (d, *J* = 7.9 Hz, 2H), 5.43 – 5.38 (m, 1H), 4.94 (d, *J* = 4.7 Hz, 1H), 4.65 (d, *J* = 4.7 Hz, 1H), 3.98 – 3.93 (m, 2H), 2.35 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 148.9, 145.0, 135.9, 130.3, 129.4, 126.7, 120.3, 119.2, 118.5, 113.1, 65.9, 61.8, 54.4, 20.8. This compound is known. ^[3]

9-methoxy-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **3e** was obtained as a yellow solid (49.6 mg, 74% yield); ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 6.99 (d, *J* = 9.0 Hz, 1H), 6.87 (t, *J* = 7.3 Hz, 2H), 6.74 (d, *J* = 2.6 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 2H), 5.40 (t, *J* = 3.3 Hz, 1H), 4.94 (d, *J* = 4.7 Hz, 1H), 4.66 (d, *J* = 4.7 Hz, 1H), 3.95 (d, *J* = 3.7

Hz, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 145.0, 144.6, 129.4, 121.6, 119.8, 119.3, 114.9, 113.2, 111.5, 66.0, 61.9, 55.8, 54.5. This compound is known. ^[4]

9-(tert-butyl)-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3f)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **3f** was obtained as a yellow solid (62.4 mg, 87% yield); ¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.35 – 7.26 (m, 3H), 7.02 (d, *J* = 8.7 Hz, 1H), 6.90 (t, *J* = 7.3 Hz, 1H), 6.64 (d, *J* = 7.8 Hz, 2H), 5.49 (d, *J* = 5.7 Hz, 1H), 4.99 (d, *J* = 4.7 Hz, 1H), 4.71 (d, *J* = 4.7 Hz, 1H), 4.08 – 3.96 (m, 2H), 1.37 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.2, 148.6, 145.0, 129.4, 126.9, 123.0, 119.9, 119.1, 118.2, 113.1, 65.9, 62.0, 54.6, 34.5, 31.2. This compound is known. ^[4]

9-fluoro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3g)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **3g** was obtained as a white solid (48.2 mg, 76% yield); ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 2H), 7.10 – 7.04 (m, 2H), 7.00 (d, *J* = 7.8 Hz, 1H), 6.91 (t, *J* = 7.4 Hz, 1H), 6.63 (d, *J* = 7.9 Hz, 2H), 5.44 (dd, *J* = 5.2, 2.1 Hz, 1H), 4.99 (d, *J* = 4.8 Hz, 1H), 4.68 (d, *J* = 4.8 Hz, 1H), 4.04 – 3.89 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 159.6 (d, ¹*J*_{C-F} = 247.0 Hz), 146.9, 144.9, 129.5, 122.5 (d, ⁵*J*_{C-F} = 7.0 Hz), 120.5 (d, ⁴*J*_{C-F} = 8.4 Hz), 119.5, 116.8 (d, ²*J*_{C-F} = 23.8 Hz), 113.3, 113.1 (d, ³*J*_{C-F} = 24.6 Hz), 66.1, 61.8, 54.4. This compound is known. ^[3]

9-chloro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e] imidazo[1,5-c][1,2,3] oxathiazine 5,5-dioxide and a statistical s

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **3h** was obtained as a yellow solid (53.3 mg, 79% yield); ¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 4H), 7.02 (d, *J* = 8.8 Hz, 1H), 6.90 (t, *J* = 7.4 Hz, 1H), 6.62 (d, *J* = 7.8 Hz, 2H), 5.42 (t, *J* = 3.4 Hz, 1H), 4.97 (d, *J* = 4.8 Hz, 1H), 4.66 (d, *J* = 4.8 Hz, 1H), 3.96 (d, *J* = 3.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.5, 144.8, 131.2, 129.8, 129.5, 126.4, 122.5, 120.4, 119.6, 113.4, 66.1, 61.6, 54.4. This compound is known. ^[3]

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **3i** was obtained as a yellow solid (52.9 mg, 69% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 1H), 7.41 – 7.38 (m, 1H), 7.32 – 7.26 (m, 2H), 6.94 (d, *J* = 8.7 Hz, 1H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.64 – 6.57 (m, 2H), 5.41 (t, *J* = 3.6 Hz, 1H), 4.96 (d, *J* = 4.8 Hz, 1H), 4.64 (d, *J* = 4.8 Hz, 1H), 3.93 (d, *J* = 3.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 144.8, 132.7, 129.5, 129.4, 122.9, 120.6, 119.6, 118.6, 113.3, 66.1, 61.5, 54.4. This compound is known. ^[3]

9-iodo-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3j)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 10/1), the desired product **3j** was obtained as a yellow solid (57.4 mg, 67% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 8.6, 1.6 Hz, 1H), 7.57 (s, 1H), 7.31 – 7.25 (m, 2H), 6.88 (t, J = 7.4 Hz, 1H), 6.80 (d, J = 8.6 Hz, 1H), 6.61 (d, J = 7.9 Hz, 2H), 5.45 – 5.37 (m, 1H), 4.95 (d, J = 4.8 Hz, 1H), 4.64 (d, J = 4.8 Hz, 1H), 3.96 – 3.88 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.0, 144.9, 138.7, 135.3, 129.5, 123.2, 120.9, 119.6, 113.4, 89.2, 66.1, 61.3, 54.5. This compound is known. ^[3]

8-chloro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3k)

3k

Following the general procedure (eluent: petroleum ether/ethyl acetate = 10/1), the desired product **3k** was obtained as a yellow solid (49.9 mg, 74% yield); ¹**H** NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.6 Hz, 1H), 7.52 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.48 (d, *J* = 1.9 Hz, 1H), 3.13 (t, *J* = 11.4 Hz, 1H), 1.92 (dd, *J* = 11.9, 4.5 Hz, 4H), 1.79 (d, *J* = 12.6 Hz, 1H), 1.68 – 1.55 (m, 2H), 1.42 (q, *J* = 12.8 Hz, 2H), 1.34 – 1.27 (m, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 149.6, 144.8, 131.2, 129.8, 129.5, 126.4, 122.5, 120.4, 119.6, 113.4, 66.1, 61.7, 54.5. This compound is known.^[3]

8-bromo-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3l)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 10/1), the desired product **31** was obtained as a yellow solid (60.0 mg, 79% yield); ¹H NMR (400 MHz, CDCl₃) 7.38 (dd, J = 8.3, 2.0 Hz, 1H), 7.32 – 7.25 (m, 2H), 7.22 (d, J = 2.0 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 6.59 (d, J = 8.1 Hz, 2H), 5.41 – 5.35 (m, 1H), 4.96 (d, J = 4.8 Hz, 1H), 4.64 (d, J = 4.8 Hz, 1H), 3.97 – 3.88 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 144.8, 129.5, 129.2, 127.7, 122.5, 122.1, 119.9, 119.6, 113.3, 66.1, 61.7, 54.4. This compound is known.^[3]

7-allyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3m)

3m

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **3m** was obtained as a yellow solid (53.5 mg, 78% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.9 Hz, 2H), 7.21 (q, *J* = 7.5, 6.7 Hz, 2H), 7.14 (dd, *J* = 7.0, 2.4 Hz, 1H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.62 (d, *J* = 8.1 Hz, 2H), 5.98 (ddt, *J* = 16.8, 10.2, 6.6 Hz, 1H), 5.45 (t, *J* = 3.8 Hz, 1H), 5.20 – 5.08 (m, 2H), 4.98 (d, *J* = 4.8 Hz, 1H), 4.68 (d, *J* = 4.8 Hz, 1H), 3.96 (d, *J* = 4.2 Hz, 2H), 3.57 – 3.37 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 145.0, 134.9, 130.3, 130.2, 129.3, 125.5, 124.5, 120.7, 119.2, 116.8, 113.2, 66.1, 61.9, 54.7, 33.2. This compound is known. ^[3]

2-phenyl-1,2,3,12c-tetrahydroimidazo[1,5-c]naphtho[1,2-e][1,2,3]oxathiazine 5,5-dioxide (3n)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 10/1), the desired product **3n** was obtained as a yellow solid (41.0 mg, 58% yield); ¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.2 Hz, 1H), 7.86 (d, *J* = 9.0 Hz, 1H), 7.71 (dd, *J* = 16.1, 7.6 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.27 (t, *J* = 7.9 Hz, 2H), 7.20 (d, *J* = 9.0 Hz, 1H), 6.88 (t, *J* = 7.4 Hz, 1H), 6.63 (d, *J* = 8.1 Hz, 2H), 5.96 (dd, *J* = 7.0, 2.6 Hz, 1H), 5.08 (d, *J* = 5.2 Hz, 1H), 4.83 (d, *J* = 5.2 Hz, 1H), 4.29 (dd, *J* = 9.3,

7.0 Hz, 1H), 3.99 (dd, *J* = 9.3, 2.7 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 148.6, 145.0, 131.6, 130.8, 129.9, 1294, 127.8, 125.9, 122.4, 119.6, 118.3, 115.2, 113.7, 66.9, 60.9, 55.1. This compound is known.^[3]

methyl 2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine-9-carboxylate 5,5-dioxide (30)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 4/1), the desired product **30** was obtained as a yellow solid (33.4 mg, 46% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 6.7 Hz, 2H), 7.26 (t, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 9.1 Hz, 1H), 6.86 (t, *J* = 7.3 Hz, 1H), 6.59 (d, *J* = 8.1 Hz, 2H), 5.47 (d, *J* = 5.3 Hz, 1H), 4.97 (d, *J* = 4.7 Hz, 1H), 4.65 (d, *J* = 4.7 Hz, 1H), 4.03 – 3.96 (m, 2H), 3.93 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 165.4, 154.3, 144.9, 131.0, 129.5, 128.4, 127.9, 121.1, 119.6, 119.2, 113.8, 66.1, 61.8, 54.6, 52.5. This compound is known. ^[3]

2-(p-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4a)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **4a** was obtained as a yellow solid (55.0 mg, 87% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 3H), 7.14 (d, *J* = 7.4 Hz, 2H), 7.08 (d, *J* = 7.7 Hz, 1H), 6.57 (d, *J* = 7.9 Hz, 2H), 5.46 (s, 1H), 5.00 (d, *J* = 4.4 Hz, 1H), 4.65 (d, *J* = 4.3 Hz, 1H), 3.95 (s, 2H), 2.33 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 151.0, 142.9, 129.9, 129.6, 128.7, 126.5, 125.9, 121.0, 118.8, 113.4, 66.4, 61.8, 54.9, 20.3. This compound is known. ^[4]

2-(m-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4b)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 4/1), the desired product **4b** was obtained as a yellow solid (38.2 mg, 60% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 1H), 7.29 (d, *J* = 2.9 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 8.3 Hz, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 6.44 (d, *J* = 8.0 Hz, 2H), 5.47 (t, *J* = 3.5 Hz, 1H), 4.99 (d, *J* = 4.8 Hz, 1H), 4.69 (d, *J* = 4.7 Hz, 1H), 4.07 – 3.96 (m, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.0, 145.0, 139.3, 129.6, 129.3 126.5, 125.9, 120.9, 120.2, 118.8, 113.9, 110.3, 66.0, 61.8, 54.5, 21.6. This compound is known. ^[4]

2-(o-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4c)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **4c** was obtained as a yellow solid (38.7 mg, 61% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (t, *J* = 7.8 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.24 (d, *J* = 4.9 Hz, 2H), 7.17 – 7.08 (m, 4H), 5.31 – 5.18 (m, 1H), 4.87 (d, *J* = 7.2 Hz, 1H), 4.63 (d, *J* = 7.2 Hz, 1H), 3.96 (dd, *J* = 10.7, 6.4 Hz, 1H), 3.61 (dd, *J* = 10.8, 4.4 Hz, 1H), 2.26 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 150.7, 145.5, 132.2, 131.4, 129.1, 126.8, 126.4, 125.9, 124.5, 122.3, 118.9, 118.7, 70.1, 60.5, 60.3, 18.3. This compound is known. ^[4]

2-(4-methoxyphenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5dioxide (4d)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 4/1), the desired product **4d** was obtained as a yellow solid (60.2 mg, 90% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (t, *J* = 8.6 Hz, 1H), 7.25 – 7.21 (m, 2H), 7.04 (d, *J* = 8.2 Hz, 1H), 6.85 (d, *J* = 9.0 Hz, 1H), 6.58 (d, *J* =

9.0 Hz, 2H), 5.39 (t, J = 3.7 Hz, 1H), 4.95 (d, J = 4.9 Hz, 1H), 4.56 (d, J = 4.9 Hz, 1H), 3.86 (d, J = 4.2 Hz, 2H), 3.75 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 153.4, 151.0, 139.5, 129.5, 126.4, 125.9, 121.2, 118.8, 114.9, 114.9, 67.1, 61.8, 55.8, 55.6. This compound is known. ^[4]

2-(4-fluorophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4e)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **4e** was obtained as a white solid (44.0 mg, 64% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.36 (t, *J* = 7.3 Hz, 1H), 7.27 (dd, *J* = 6.8, 2.5 Hz, 2H), 7.08 (d, *J* = 8.2 Hz, 1H), 6.99 (t, *J* = 8.7 Hz, 2H), 6.60 – 6.53 (m, 2H), 5.46 (d, *J* = 5.0 Hz, 1H), 4.96 (d, *J* = 4.8 Hz, 1H), 4.63 (d, *J* = 4.8 Hz, 1H), 3.99 – 3.87 (m, 2H). ¹³**C** NMR (101 MHz, CDCl₃) δ 156.9 (d, ¹*J*_{C-F} = 238.6 Hz), 151.0, 141.7 (d, ⁴*J*_{C-F} = 2.2 Hz), 129.8, 126.4, 126.1, 120.9, 119.0, 116.0 (d, ²*J*_{C-F} = 22.6 Hz), 114.5 (d, ³*J*_{C-F} = 7.6 Hz), 66.7, 61.9, 55.4. This compound is known. ^[4]

2-(4-chlorophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4f)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **4f** was obtained as a yellow solid (43.8 mg, 65% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 1H), 7.30 – 7.25 (m, 2H), 7.22 (d, *J* = 8.9 Hz, 2H), 7.07 (d, *J* = 8.2 Hz, 1H), 6.51 (d, *J* = 8.9 Hz, 2H), 5.47 (d, *J* = 5.5 Hz, 1H), 4.92 (d, *J* = 4.7 Hz, 1H), 4.64 (d, *J* = 4.7 Hz, 1H), 4.00 – 3.89 (m, 2H). ¹³**C** NMR (101 MHz, CDCl₃) δ 150.9, 143.6, 129.8, 129.3, 126.5, 126.1, 124.3, 120.6, 118.9, 114.3, 65.9, 61.8, 54.6. This compound is known.^[4]

2-(4-brom ophenyl)-1,2,3,10b-tetrahydrobenzo[e] imidazo[1,5-c][1,2,3] oxathiazine 5,5-dioxide and a statistical statistical

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **4g** was obtained as a yellow solid (52.5 mg, 69% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.6 Hz, 3H), 7.27 (d, *J* = 7.6 Hz, 2H), 7.07 (d, *J* = 8.2 Hz, 1H), 6.46 (d, *J* = 8.8 Hz, 2H), 5.47 (d, *J* = 5.5 Hz, 1H), 4.91 (d, *J* = 4.7 Hz, 1H), 4.65 (d, *J* = 4.7 Hz, 1H), 4.01 – 3.88 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 150.9, 144.0, 132.2, 129.9, 126.5, 126.1, 120.5, 119.0, 114.7, 111.5, 65.8, 61.8, 54.5. This compound is known. ^[4]

2-(4-iodophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4h)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **4h** was obtained as a yellow solid (35.4 mg, 40% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.9 Hz, 2H), 7.40 – 7.34 (m, 1H), 7.29 – 7.25 (m, 2H), 7.07 (d, *J* = 8.5 Hz, 1H), 6.36 (d, *J* = 8.9 Hz, 2H), 5.48 (d, *J* = 5.6 Hz, 1H), 4.91 (d, *J* = 4.7 Hz, 1H), 4.65 (d, *J* = 4.7 Hz, 1H), 4.02 – 3.88 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 150.9, 144.5, 138.0, 129.9, 129.4, 126.5, 126.1, 120.5, 119.0, 115.2, 65.7, 61.8, 54.3.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{15}H_{13}IN_2O_3S$ 428.97644; found 428.97773.

2-(4-(trifluoromethoxy)phenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4i)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **4i** was obtained as a white solid (62.8 mg, 81% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.35 (dt, *J* = 8.4, 4.1 Hz, 1H), 7.27 (d, *J* = 4.3 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 8.1 Hz, 1H), 6.57 – 6.52 (m, 2H), 5.47 (d, *J* = 5.3 Hz, 1H), 4.92 (d, *J* = 4.7 Hz, 1H), 4.65 (d, *J* = 4.7 Hz, 1H), 4.01 – 3.91 (m, 2H). ¹³**C** NMR (101 MHz, CDCl₃) δ 150.9, 143.7, 141.8, 129.9, 126.5, 126.1, 122.5, 120.6 (q, *J* = 255.8 Hz), 120.5, 118.9, 113.6, 65.9, 61.9, 54.6. This compound is known. ^[4]

4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5a)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 4/1), the desired product **5b** was obtained as a yellow oil (32.4 mg, 53% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 7.8 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 1H), 7.06 (s, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.82 (t, *J* = 7.3 Hz, 1H), 6.71 (d, *J* = 8.3 Hz, 2H), 5.14 (s, 1H), 4.94 (s, 1H), 3.88 – 3.72 (m, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ 149.3, 148.3, 134.9, 130.3, 129.5, 128.1, 121.1, 118.4, 116.8, 112.9, 55.5, 46.6, 20.8. This compound is known.^[3]

7-methyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5c)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 4/1), the desired product **5c** was obtained as a yellow oil (34.0 mg, 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, *J* = 7.9 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 1H), 7.06 (d, *J* = 7.9 Hz, 1H), 6.86 (s, 1H), 6.80 (t, *J* = 7.4 Hz, 1H), 6.69 (d, *J* = 7.7 Hz, 2H), 5.26 (s, 1H), 4.89 (t, *J* = 5.3 Hz, 1H), 3.78 – 3.71 (m, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 146.8, 140.5, 129.5, 126.5, 126.0, 119.4, 119.1, 116.5, 113.8, 56.1, 46.6, 21.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₆N₂O₃S 305.09544; found 305.09592.

8-methyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5d)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 4/1), the desired product **5d** was obtained as a yellow oil (32.0 mg, 52% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.9 Hz, 3H), 7.17 – 7.09 (m, 2H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.71 (d, *J* = 7.7 Hz, 3H), 5.17 (s, 1H), 5.01 – 4.93 (m, 1H), 3.88 – 3.72 (m, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 146.8, 131.4, 129.5, 128.7, 125.0, 123.6, 119.4, 119.2, 113.9, 56.3, 46.7, 15.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₆N₂O₃S 305.09544; found 305.09596.

6-methoxy-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5e)

5e

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **5e** was obtained as a yellow oil (21.9 mg, 34 % yield); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dd, *J* = 8.5, 7.4 Hz, 2H), 6.99 (d, *J* = 9.0 Hz, 1H), 6.88 (dd, *J* = 9.0, 2.8 Hz, 1H), 6.81 (t, *J* = 7.4 Hz, 1H), 6.76 (d, *J* = 2.8 Hz, 1H), 6.69 (d, *J* = 7.7 Hz, 2H), 5.24 (s, 1H), 4.89 (t, *J* = 5.3 Hz, 1H), 3.81 (s, 3H), 3.75 (dd, *J* = 5.5, 1.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 146.0, 145.3, 129.6, 120.4, 120.1, 119.8, 114.9, 114.4, 111.4, 56.1, 55.8, 47.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₆N₂O₄S 305.09035; found 321.09097.

6-(tert-butyl)-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5f)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **5f** was obtained as a yellow oil (16.1 mg, 23% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.25 – 7.19 (m, 3H), 6.98 (d, *J* = 8.7 Hz, 1H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 2H), 5.37 (s, 1H), 4.93 (t, *J* = 5.7 Hz, 1H), 3.89 – 3.69 (m, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 148.8, 146.6, 129.5, 127.0, 122.9, 119.3, 118.8, 118.6, 114.0, 56.4, 47.0, 34.6, 31.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₂N₂O₃S 347.14239; found 347.14298.

8-allyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5g)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **5g** was obtained as a yellow solid (39.9 mg, 60% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.11 (m, 5H), 6.83 (t, J = 7.4 Hz, 1H), 6.74 (d, J = 7.7 Hz, 2H), 5.94 (td, J = 16.9, 6.6 Hz, 1H), 5.17 – 5.07 (m, 2H), 4.99 (dd, J = 6.5, 4.5 Hz, 1H), 3.87 – 3.72 (m, 2H), 3.42 (d, J = 6.6 Hz, 2H). ¹³C

NMR (101 MHz, CDCl₃) δ 146.2, 135.0, 130.7, 130.5, 129.5, 125.2, 124.3, 119.6, 119.5, 116.9, 114.3, 99.9, 56.1, 47.2, 33.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₈N₂O₃S 331.11109; found 331.11207.

6-fluoro-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5h)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **5h** was obtained as a yellow oil (30.6 mg, 49% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.22 (m, 3H), 7.10 – 6.99 (m, 3H), 6.88 (t, *J* = 7.4 Hz, 1H), 6.79 (d, *J* = 7.8 Hz, 2H), 5.04 – 4.99 (m, 1H), 3.87 – 3.74 (m, 2H). ¹³C NMR (101 MHz, DMSO-d6) δ 158.8 (d, ¹*J*_{C-F} = 241.9 Hz), 148.0, 147.3 (d, ⁶*J*_{C-F} = 2.4 Hz), 129.32, 123.1 (d, ⁵*J*_{C-F} = 7.7 Hz), 120.3 (d, ⁴*J*_{C-F} = 8.5 Hz), 116.7, 116.6 (d, ³*J*_{C-F} = 23.7 Hz), 114.5 (d, ²*J*_{C-F} = 25.0 Hz), 112.8, 55.1, 46.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₃FN₂O₃S 309.07037; found 309.07102.

6-chloro-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5i)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **5i** was obtained as a yellow oil (27.4 mg, 42% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.29 – 7.22 (m, 3H), 7.02 (d, *J* = 8.8 Hz, 1H), 6.88 (t, *J* = 7.4 Hz, 1H), 6.79 (d, *J* = 7.8 Hz, 2H), 5.05 – 4.98 (m, 1H), 3.81 (qd, *J* = 13.8, 5.5 Hz, 2H). ¹³C NMR (101 MHz, DMSO-d6) δ 150.1, 148.2, 129.8, 129.5, 129.5, 127.8, 123.4, 120.5, 116.9, 113.0, 55.2, 46.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₃ClN₂O₃S 325.04082; found 325.04134.

7-chloro-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5j)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **5j** was obtained as a yellow oil (29.6 mg, 45% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.18 (m, 3H), 7.06 (d, *J* = 1.6 Hz, 1H), 6.83 (t, *J* = 7.4 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 2H), 4.98 – 4.88 (m, 1H), 3.82 – 3.68 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 146.1, 135.2, 129.6, 127.3, 125.9, 119.7, 119.5, 118.0, 114.2, 55.8, 46.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₃ClN₂O₃S 325.04082; found 325.04132.

6-bromo-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5k)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **5k** was obtained as a yellow solid (29.1 mg, 39% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, J = 8.8, 2.2 Hz, 1H), 7.41 (d, J = 2.2 Hz, 1H), 7.28 – 7.21 (m, 2H), 6.95 (d, J = 8.8 Hz, 1H), 6.87 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 7.8 Hz, 2H), 5.03 – 4.93 (m, 1H), 3.87 – 3.70 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 145.4, 133.0, 129.7, 129.3, 121.5, 121.0, 120.4, 118.3, 114.8, 55.6, 47.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₃BrN₂O₃S 368.99030; found 368.99102.

7-bromo-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5l)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **51** was obtained as a yellow solid (30.1 mg, 40% yield); ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (dd, *J*

= 8.3, 2.0 Hz, 1H), 7.25 – 7.18 (m, 3H), 7.14 (d, J = 8.3 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 6.71 (d, J = 7.8 Hz, 2H), 4.90 (t, J = 5.5 Hz, 1H), 3.87 – 3.65 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 146.1, 129.6, 128.8, 127.6, 122.7, 122.4, 119.7, 118.6, 114.2, 55.9, 46.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₃BrN₂O₃S 368.99030; found 368.99075.

4-((m-tolylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5m)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **5n** was obtained as a yellow oil (23.0 mg, 37% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (t, *J* = 8.6 Hz, 1H), 7.29 (d, *J* = 5.1 Hz, 2H), 7.17 – 7.06 (m, 2H), 6.66 (d, *J* = 7.4 Hz, 1H), 6.54 (d, *J* = 6.4 Hz, 2H), 4.98 (t, *J* = 5.4 Hz, 1H), 3.91 – 3.71 (m, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 146.6, 139.4, 129.9, 129.4, 126.3, 125.6, 120.2, 119.6, 119.2, 114.8, 110.9, 56.2, 46.6 , 21.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₆N₂O₃S 305.09544; found 305.09632.

4-((o-tolylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5n)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **50** was obtained as a yellow oil (30.7 mg, 50% yield); ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.33 (m, 1H), 7.30 – 7.25 (m, 2H), 7.16 (t, *J* = 7.7 Hz, 1H), 7.07 (t, *J* = 8.3 Hz, 2H), 6.79 – 6.69 (m, 2H), 5.25 (s, 1H), 4.92 (t, *J* = 5.9 Hz, 1H), 3.79 (d, *J* = 6.0 Hz, 2H), 2.09 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 151.4, 144.6, 130.6, 129.8, 127.2, 126.4, 125.6, 123.4, 119.6, 119.1, 118.6, 110.4, 56.0, 46.6, 17.3.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₆N₂O₃S 327.07738; found 327.07840.

4-(((2-methoxyphenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (50)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 6/1), the desired product **5p** was obtained as a yellow oil (38.9 mg, 60% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, *J* = 7.6 Hz, 1H), 7.31 – 7.22 (m, 2H), 7.05 (d, *J* = 8.2 Hz, 1H), 6.89 (dt, *J* = 8.0, 4.2 Hz, 1H), 6.81 – 6.72 (m, 3H), 5.41 (s, 1H), 5.05 – 4.90 (m, 1H), 3.80 (d, *J* = 10.9 Hz, 2H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 147.6, 136.2, 129.8, 126.4, 125.5, 121.2, 119.8, 119.2, 118.8, 111.2, 110.0, 56.3, 55.4, 46.8.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₆N₂O₄S 321.09035; found 321.09117.

4-(((3-fluorophenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5p)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **5q** was obtained as a yellow oil (34.8 mg, 56% yield); ¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (dt, *J* = 8.5, 4.3 Hz, 1H), 7.31 – 7.25 (m, 2H), 7.19 – 7.10 (m, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 6.53 – 6.43 (m, 2H), 6.38 (dt, *J* = 11.2, 2.2 Hz, 1H), 5.20 (d, *J* = 6.9 Hz, 1H), 5.02 – 4.87 (m, 1H), 4.06 (s, 1H), 3.87 – 3.68 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0 (d, ¹*J* _{C-F}= 244.1 Hz), 151.5, 148.6 (d, ⁴*J* _{C-F} = 10.4 Hz), 130.7 (d, ⁵*J* _{C-F} = 10.2 Hz), 130.0, 126.3, 125.8, 119.4, 119.3, 109.5 (d, ⁶*J* _{C-F} = 2.6 Hz), 105.5 (d, ³*J* _{C-F} = 21.3 Hz), 100.5 (d, ²*J* _{C-F} = 25.4 Hz), 56.2, 46.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₃FN₂O₃S 309.07037; found 309.07127.

4-(((4-chlorophenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5q)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **5r** was obtained as a yellow oil (21.0 mg, 32% yield); ¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (dt, *J* = 8.6, 4.4 Hz, 1H), 7.26 (d, *J* = 3.8 Hz, 2H), 7.16 (d, *J* = 8.8 Hz, 2H), 7.07 (t, *J* = 7.8 Hz, 1H), 6.70 – 6.61 (m, 2H), 5.46 (s, 1H), 4.97 (dd, *J* = 7.2, 4.3 Hz, 1H), 3.88 – 3.67 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 144.7, 130.0, 129.4, 126.4, 125.7, 124.4, 119.3, 119.3, 115.4, 56.0, 47.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₃ClN₂O₃S 325.04082; found 325.04184.

4-(((2-chlorophenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5r)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **5s** was obtained as a yellow oil (36.7 mg, 56% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 1H), 7.31 – 7.27 (m,2H), 7.19 (t, *J* = 7.9 Hz, 1H), 7.07 (d, *J* = 8.3 Hz, 1H), 6.81 (d, *J* = 8.1 Hz, 1H), 6.74 (t, *J* = 7.2 Hz, 1H), 5.27 (d, *J* = 7.8 Hz, 1H), 5.04 – 4.95 (m, 1H), 3.95 – 3.78 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 142.5, 130.0, 129.6, 128.0, 126.4, 125.7, 120.4, 119.3, 119.3, 119.2, 112.1, 56.2, 46.7.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₃ClN₂O₃S 325.04082; found 325.04172.

4-(((4-bromophenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5s)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 8/1), the desired product **5t** was obtained as a yellow oil (19.4 mg, 26% yield); ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.33 (m, 1H), 7.30 – 7.24 (m, 4H), 7.04 (d, *J* = 8.2 Hz, 1H), 6.58 (d, *J* = 8.8 Hz, 2H), 5.37 (s, 1H), 4.93

(dd, *J* = 7.3, 4.3 Hz, 1H), 3.88 – 3.59 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 145.8, 132.2, 132.0, 123.0, 126.3, 125.7, 119.4, 119.2, 115.35, 56.1, 46.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₃BrN₂O₃S 368.99030; found 368.99142.

7-phenyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (6)

Following the general procedure (eluent: petroleum ether/ethyl acetate = 3/1), the desired product **6** was obtained as a white oil (63.8 mg, 87% yield); ¹**H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.54 (m, 2H), 7.51 – 7.39 (m, 4H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.30 – 7.19 (m, 3H), 6.82 (t, *J* = 7.3 Hz, 1H), 6.76 – 6.69 (m, 2H), 5.30 (s, 1H), 4.99 (d, *J* = 5.6 Hz, 1H), 3.89 – 3.77 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.0, 146.7, 143.3, 138.7, 129.6, 129.0, 128.3, 126.9, 126.6, 124.2, 119.2, 118.2, 117.5, 113.9, 56.1, 46.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₈N₂O₃S 367.11109; found 367.11213.

5. References

- 1. Z.-H. Lua, S.-J. Yan, Chem. Commun., 2022, 58, 10194-10197.
- 2. J. A. K Howard, H. Puschmann, et al., J. Appl. Crystallogr., 2009, 42, 339-341.
- 3. Y.-F. Zhao, B. Yu, et al., Org. Lett. 2022, 24, 299-303.
- 4. X.-J. Huang, W.-M He, et al., ACS Catalysis. 2023, 13, 13071-13076.

6. ¹H NMR, ¹³C NMR spectra

2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3a)

¹H NMR (400 MHz, CDCl₃)

2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3a**) ¹³C NMR (101 MHz, CDCl₃)

7-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3b**) ¹³C NMR (101 MHz, CDCl₃)

8-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3c**) ¹³C NMR (101 MHz, CDCl₃)

8-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3c**) ¹H NMR (400 MHz, CDCl₃)

9-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3d**) ¹H NMR (400 MHz, CDCl₃)

9-methyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3d**) ¹³C NMR (101 MHz, CDCl₃)

9-methoxy-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3e**) ¹³C NMR (101 MHz, CDCl₃)

9-(tert-butyl)-2-phenyl-1,2,3,10b-tetrahydrobenzo[e] imidazo[1,5-c][1,2,3] oxathiazine 5,5-dioxide barrier (1,5-c)[1,2,3] oxathiazine 5,5-dioxide barrier (1,5-c)[1,

(**3f**)

9-(tert-butyl)-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3f**)

9-fluoro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3g**) ¹H NMR (400 MHz, CDCl₃)

9-fluoro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3g**) ¹³C NMR (101 MHz, CDCl₃)

9-chloro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3h**) ¹H NMR (400 MHz, CDCl₃)

9-chloro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3h**) ¹³C NMR (101 MHz, CDCl₃)

9-bromo-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3i**) ¹H NMR (400 MHz, CDCl₃)

 $9\label{eq:2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3] oxathiazine 5,5-dioxide (\textbf{3i})$

9-iodo-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3j)

9-iodo-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3j**) ¹³C NMR (101 MHz, CDCl₃)

8-chloro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3k)

8-chloro-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3k**) ¹³C NMR (101 MHz, CDCl₃)

8-bromo-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3l)

8-bromo-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3**) ¹³C NMR (101 MHz, CDCl₃)

7-allyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (3m)

7-allyl-2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**3m**) ¹³C NMR (101 MHz, CDCl₃)

2-phenyl-1,2,3,12c-tetrahydroimidazo[1,5-c]naphtho[1,2-e][1,2,3]oxathiazine 5,5-dioxide (**3n**)

2-phenyl-1,2,3,12c-tetrahydroimidazo[1,5-c]naphtho[1,2-e][1,2,3]oxathiazine 5,5-dioxide (**3n**)

methyl 2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine-9-carboxylate 5,5-

methyl 2-phenyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine-9-carboxylate 5,5dioxide (**3o**)

2-(p-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4a)

2-(m-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**4b**) ¹H NMR (400 MHz, CDCl₃)

 $\label{eq:control} 2-(m-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3] oxathiazine 5,5-dioxide (\textbf{4b})$

2-(o-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**4c**) ¹H NMR (400 MHz, CDCl₃)

2-(o-tolyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4c)

2-(4-methoxyphenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (4d)

2-(4-methoxyphenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide

(**4d**)

2-(4-fluorophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**4e**) ¹H NMR (400 MHz, CDCl₃)

2-(4-fluorophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**4e**) ¹³C NMR (101 MHz, CDCl₃)

2-(4-chlorophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**4f**) ¹H NMR (400 MHz, CDCl₃)

2-(4-chlorophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**4f**) ¹³C NMR (101 MHz, CDCl₃)

2-(4-bromophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**4g**)

2-(4-iodophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**4h**) ¹H NMR (400 MHz, CDCl₃)

2-(4-iodophenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-dioxide (**4h**) ¹³C NMR (101 MHz, CDCl₃)

2-(4-(trifluoromethoxy)phenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5dioxide (**4i**) ¹H NMR (400 MHz, CDCl₃)

2-(4-(trifluoromethoxy)phenyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-

4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5a) ¹H NMR (400 MHz, CDCl₃)

4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5a) ¹³C NMR (101 MHz, CDCl₃)

6-methyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (**5b**) ¹H NMR (400 MHz, CDCl₃)

6-methyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (**5b**) ¹³C NMR (101 MHz, DMSO-d6)

7-methyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5c) ¹H NMR (400 MHz, CDCl₃)

7-methyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5c) ¹³C NMR (101 MHz, CDCl₃)

8-methyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5d) ¹H NMR (400 MHz, CDCl₃)

8-methyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5d) ¹³C NMR (101 MHz, CDCl₃)

6-methoxy-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5e) ¹H NMR (400 MHz, CDCl₃)

6-methoxy-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5e)

6-(tert-butyl)-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5f) ¹H NMR (400 MHz, CDCl₃)

6-(tert-butyl)-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (**5f**) ¹³C NMR (101 MHz, CDCl₃)

8-allyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5g) ¹³C NMR (101 MHz, CDCl₃)

6-fluoro-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (**5h**) ¹H NMR (400 MHz, CDCl₃)

6-fluoro-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5h)

¹³C NMR (101 MHz, DMSO-d6)

6-chloro-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5i)

6-chloro-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5i)

7-chloro-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5j)

7-chloro-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5j)

6-bromo-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5k)

6-bromo-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5k)

7-bromo-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (51)

7-bromo-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (51)

4-((m-tolylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5m)

4-((m-tolylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5m)

4-((o-tolylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5n)

4-((o-tolylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5n)

4-(((2-methoxyphenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (50)

4-(((2-methoxyphenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (50)

4-(((3-fluorophenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5p)

 $\label{eq:constraint} 4-(((3-fluorophenyl)amino)methyl)-3, 4-dihydrobenzo[e][1,2,3] oxathiazine 2, 2-dioxide ({\bf 5p}) \\$

4-(((4-chlorophenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5q)

4-(((4-chlorophenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5q)

4-(((2-chlorophenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (**5r**)

¹H NMR (400 MHz, CDCl₃)

 $\label{eq:chlorophenyl} 4-(((2-chlorophenyl)amino)methyl)-3, 4-dihydrobenzo[e][1,2,3] oxathiazine 2, 2-dioxide ({\bf 5r})$

4-(((4-bromophenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5s)

4-(((4-bromophenyl)amino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (5s)

7-phenyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (6)

7-phenyl-4-((phenylamino)methyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (**6**)

78