Supporting Information

Palladium-Catalyzed Distal γ - and ε -Benzylation, Allylation and Allenylation of Enones

Pooja Sah and Manmohan Kapur*

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India. E-mail: <u>mk@iiserb.ac.in</u>

Table of contents

General methods	S2
Preparation of silyldienol ethers	S2
General procedures and analytical data of the starting materials	S2
Optimization studies for the γ -alkylation of silyldienol ethers	S 8
Procedure for the γ -alkylation of silyldienol ethers	S 9
Procedure for the γ -allenylation of silyldienol ethers	S21
Optimization studies for the γ -alkylation of silyl ketene acetal	S25
Procedure for the γ -alkylation and alkynylation of silyl ketene acetal	S25
Control experiments	S29
X-ray diffraction data	S31
References	S34
¹ H, ¹³ C, ¹⁹ F Spectra and ESI-HRMS of all new compounds	S35

Experimental: (1) General Methods:

All commercially available compounds were used without purification. Unless otherwise noted, all reactions were performed in oven-dried glassware. All reactions were run under argon or nitrogen atmosphere. All solvents used in the reactions were purified before use. Dry tetrahydrofuran and toluene were distilled from Sodium and benzophenone, whereas dichloromethane and dichloroethane were distilled from CaH₂. Petroleum ether with a boiling range of 40–60 °C was used. Melting points are uncorrected. ¹H, ¹³C, and ¹⁹F NMR: Recorded on Bruker Avance III 400 MHz NMR Spectrometer, Bruker Avance III 500 MHz NMR Spectrometer and Bruker Avance III 700 MHz NMR Spectrometer; spectra were recorded at 295 K in CDCl₃; chemical shifts are calibrated to the residual proton and carbon resonance of the solvent: CDCl₃ (¹H δ 7.26; ¹³C δ 77.0). HRMS: Bruker Daltonics MicroTOF Q-II with electron spray ionization (ESI) and Atmospheric Pressure Chemical Ionization (APCI). IR: Perkin Elmer Spectrum BX FTIR, Shimadzu IRAffinity-1 FTIR and were recorded on an FT-IR Spectrometer System (PerkinElmer Spectrum Two) and are reported in the frequency of absorption (cm⁻¹). Single-crystal X-ray diffraction data were collected using a Bruker SMART APEX II CCD diffractometer with graphite monochromated Mo K α ($\lambda = 0.71073$ Å) radiation at different low temperatures for each crystal.

(1) **Preparation of silylenol ethers:** All silyldienol and silyltrienol ethers were prepared according to previously reported literature procedure.^{1,2}

(2) General procedures and analytical data of starting materials:

Scheme S1: General procedure (A) for the synthesis of benzyl bromide:¹

Procedure A: In an oven-dried round bottom flask equipped with a magnetic stir bar, the benzaldehyde (3.2 mmol, 1.0 equiv) was dissolved in methanol (20 mL) followed by the slow addition of NaBH₄ (4.8 mmol, 1.5 equiv) at 0 °C. The reaction mixture was stirred at room temperature for an hour. After completion of the reaction, it was quenched with ice-cold water and concentrated under reduced pressure. The resulting aqueous phase was extracted with EtOAc (2 x 10 mL). The combined organic extract was dried over anhyd. Na₂SO₄. Upon filtration and concentration under reduced pressure, the crude product was used as such without further purification.

Tribromophosphine (3.79 mmol, 1.2 equiv) was added dropwise to a stirred solution of the benzyl alcohol in dry DCM (15 mL) at 0 °C. The reaction mixture was stirred for 3 hours at room temperature (25 °C). After the completion, the reaction mixture was quenched with aq. NaHCO₃ and extracted with

DCM (30 mL). The combined organic extract was dried over anhyd. Na_2SO_4 and filtered. After concentration under reduced pressure, the residue was good enough to be used for the next step without any purification.

1-(bromomethyl)-4-methoxybenzene (2c):³

Br Reaction performed on 3.16 mmol scale (500 mg); Yield: 96% (696 mg); Physical appearance: Colorless gel; TLC R_f 0.3 (5:1 Petroleum ether: EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.35 (d, J = 8.7 Hz, 1H, merged with CHCl₃ peak), 6.89 (d, J = 8.7 Hz, 2H), 4.53 (s, 2H), 3.83 (s, 3H). Spectral data obtained were in good agreement with those reported in the literature.

1-(bromomethyl)-4-chlorobenzene (2d):³

Br Reaction performed on 2.10 mmol scale (300 mg); Yield: 91% (393 mg); Physical appearance: Brown gel; TLC R_f 0.5 (5:1 Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 4H), 4.48 (s, 2H). Spectral data obtained were in good agreement with those reported in the literature.

1-(bromomethyl)-4-(tert-butyl)benzene (2e):³

Reaction performed on 3.04 mmol scale (400 mg); Yield: 96% (661 mg); Physical appearance: Brown gel; TLC R_f 0.5 (5:1 Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.33 (m, 4H), 4.52 (s, 2H), 1.34 (s, 9H). Spectral data obtained were in good agreement with those reported in the literature.

4-(bromomethyl)benzonitrile (2f):³

Br Reaction performed on 2.25 mmol scale (300 mg); Yield: 83% (367 mg); Physical appearance: Brown gel; TLC R_f 0.3 (5:1 Petroleum ether: EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.67 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 4.50 (s, 2H). Spectral data obtained were in good agreement with those reported in the literature.

1-(bromomethyl)-4-phenoxybenzene (2g):³

Br Reaction performed on 2.50 mmol scale (500 mg); Yield: 97% (449 mg); Physical appearance: Brown gel; TLC R_f 0.3 (5:1 Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.32 (t, J = 7.9 Hz, 1H), 7.19 – 7.13 (m, 2H), 7.08 – 7.03 (m, 3H), 6.98 – 6.94 (m, 1H), 4.47 (s, 2H). Spectral data obtained were in good agreement with those reported in the literature.

1-(bromomethyl)-4-(trifluoromethyl)benzene (2h):³

Reaction performed on 2.84 mmol scale (500 mg); Yield: 91% (613 mg); Physical appearance: colorless gel; TLC R_f 0.3 (5:1 Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 4.53 (s, 2H). Spectral data obtained were in good agreement with those reported in the literature.

1-(bromomethyl)-3-methoxybenzene (2i):³

Reaction performed on 3.16 mmol scale (500 mg); Yield: 97% (701 mg); Physical appearance: Brown gel; TLC R_f 0.3 (5:1 Petroleum ether: EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.96 (t, J = 2.2 Hz,

1H), 6.87 (dd, J = 8.3, 2.3 Hz, 1H), 4.49 (s, 2H), 3.84 (s, 3H). Spectral data obtained were in good agreement with those reported in the literature.

5-(bromomethyl)benzo[d][1,3]dioxole (2j):³

Reaction performed on 3.29 mmol scale (500 mg); Yield: 92% (650 mg); Physical appearance: Brown gel; TLC R_f 0.3 (5:1 Petroleum ether: EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 6.92 – 6.87 (m, 2H), 6.77 (d, J = 7.7 Hz, 1H), 5.99 (s, 2H), 4.48 (s,

2H). Spectral data obtained were in good agreement with those reported in the literature.

(E)-(3-bromoprop-1-en-1-yl)benzene (2k):³

Reaction performed on 3.73 mmol scale (500 mg); Yield: 59% (434 mg); Physical appearance: Brown gel; TLC R_f 0.3 (5:1 Petroleum ether: EtOAc); ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.36 (d, J = 7.2 Hz, 2H), 7.31 (d, J = 7.2 Hz, 1H), 6.68 (d, J = 15.8 Hz, 1H), 6.48 – 6.38 (m, 1H), 4.19 (d, J = 7.8 Hz, 2H). Spectral data obtained

were in good agreement with those reported in the literature.

Compound (21): Reaction performed on 0.87 mmol scale (200 mg); Yield: 64% (230 mg); Physical

appearance: colorless gel; TLC $R_f 0.5$ (5:1 Petroleum ether:EtOAc); <u>¹H</u> <u>NMR</u> (500 MHz, CDCl₃) δ 7.51 – 7.42 (m, 4H), 5.28 (s, 2H), 4.85 (t, J = 1.8 Hz, 2H), 4.52 (s, 2H), 4.43 (t, J = 1.8 Hz, 2H), 4.14 (s, 5H); <u>¹³C</u> <u>NMR</u> (101 MHz, CDCl₃) δ 171.50, 137.78, 136.93, 129.26, 128.81, 128.64, 128.59, 71.47, 70.89, 70.24, 69.76, 65.35; <u>HRMS</u> (ESI-ToF)

m/z: [M] Calcd. for C₁₉H₁₇BrFeO₂ 411.9758 and 413.9736; Found 411.9752 and 413.9747; **IR** (Thin Film, neat, cm⁻¹): 3091, 2921, 2875, 1720, 1341, 1268, 1157, 1102, 1086, 992, 739, 602.

3-(4-nitrophenethyl)cyclohex-2-en-1-one (2m):^{4a}

Reaction performed on 0.81 mmol scale (200 mg); Yield: 46% (160 mg); Physical appearance: colorless solid; M.p. 72–74 °C; TLC R_f 0.4 (5:1 Petroleum ether:EtOAc); <u>¹H</u> <u>NMR</u> (500 MHz, CDCl₃) δ 7.59 – 7.54 (m, 2H), 7.50 – 7.42 (m, 2H), 7.42 – 7.36 (m, 4H), 7.26 (s, 2H), 7.18 – 7.10

(m, 2H), 5.16 (dd, J = 12.5 Hz, 2H), 4.50 (s, 2H), 3.83 (q, J = 7.2 Hz, 1H), 1.57 (d, J = 7.1 Hz, 3H, merged with H₂O); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 173.70, 141.52, 137.79, 136.09, 135.47, 130.80, 129.22, 128.95 (d, $J_{C-F} = 2.98$ Hz), 128.42 (d, $J_{C-F} = 9.54$ Hz), 127.82, 127.69, 123.58 (d, $J_{C-F} = 3.24$ Hz), 115.27 (d, $J_{C-F} = 23.74$ Hz), 99.99, 66.17, 45.03, 32.97, 18.31; <u>¹⁹F NMR</u> (471 MHz, CDCl₃) –117.41; <u>HRMS</u> (ESI-ToF) *m*/*z*: [M+Na]⁺ Calcd. for C₂₃H₂₀BrFO₂ 449.0523 and 451.0504; Found 449.0509 and 451.0496; <u>IR</u> (Thin Film, neat, cm⁻¹): 2926, 2821, 1701, 1641, 1322, 1317, 1160, 1128, 1037, 1016, 807, 821.

4-(bromomethyl)benzyl 4-(N,N-dipropylsulfamoyl)cyclohexa-1,5-diene-1-carboxylate (2n):^{4b}

Reaction performed on 0.70 mmol scale (200 mg); Yield: 43% (141 mg); Physical appearance: colorless solid; M.p. 92–94 °C, TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.5 Hz, 2H), 7.89 (d, J = 8.5 Hz, 2H), 7.45 (s, 4H), 5.40 (s, 2H), 4.53 (s, 2H), 3.16 – 3.05 (m, 4H), 1.65 – 1.49 (m, 4H), 0.89 (t, J = 7.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.03, 144.46, 138.16, 135.75, 133.27, 130.34, 129.39, 128.81, 127.04, 66.81, 49.91, 32.88, 21.92, 11.16; <u>HRMS</u> (ESI-ToF) m/z: [M-H]⁺ Calcd. for C₂₁H₂₈BrNO₄S 468.0839 and 470.0819; Found 468.0830 and

470.0842; **IR** (Thin Film, neat, cm⁻¹): 2965, 2933, 2875, 1720, 1341, 1268, 1157, 1102, 1086, 992, 739, 602.

4-(bromomethyl)benzyl-2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate (20):^{4b}

Reaction performed on 0.33 mmol scale (100 mg); Yield: 57% (92 mg); Physical appearance: colorless solid, M.p. 75–77 °C ; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹H NMR (500 MHz,

CDCl₃) δ 7.71 (d, *J* = 8.7 Hz, 2H), 7.66 (d, *J* = 8.9 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.79 (d, *J* = 8.9 Hz, 2H), 5.20 (s, 2H), 4.46 (s, 2H), 1.70 (s, 6H); ¹³C <u>NMR</u> (101 MHz, CDCl₃) δ 199.57, 194.17, 173.49, 159.53, 153.41, 139.41, 138.47, 136.33, 133.39,

131.96, 131.18, 130.35, 129.43, 129.24, 128.79, 128.58, 117.30, 79.45, 67.11, 40.55, 37.83, 36.74, 28.60, 25.45, 25.42; **HRMS** (ESI-ToF) *m*/*z*: [M+Na]⁺ Calcd. for C₅₅H₂₂BrClO₄ 525.0262 and 527.0247; Found 525.0237 and 527.0309; **IR** (Thin Film, neat, cm⁻¹): 2923, 2864, 1457, 1410, 1372, 1255, 1157, 1017, 814.

4-(bromomethyl)benzyl 4-(N,N-dipropylsulfamoyl)cyclohexa-1,5-diene-1-carboxylate (2p):^{4b}

Reaction performed on 0.46 mmol scale (200 mg); Yield: 57% (163 mg); Physical

appearance: colorless solid, M.p. 84–86 °C; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>**H NMR**</u> (500 MHz, CDCl₃) δ 7.50 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 8.1 Hz, 2H), 4.71 (s, 2H), 4.55 (s, 2H), 2.61 (t, J = 6.8 Hz, 2H), 2.23 (s, 3H), 2.18 (s, 3H), 2.13 (s, 3H), 1.91 – 1.74 (m, 2H), 1.60 – 1.54 (m, 6H), 1.45 – 1.35 (m, 4H), 1.32 – 1.26 (m, 10H), 1.19 – 1.06 (m, 6H), 0.91 – 0.84 (m, 13H). Spectral data obtained were in good agreement with those reported in the literature.

4-(bromomethyl)benzyl (3r,5r,7r)-adamantane-1-carboxylate (2q):4b

Reaction performed on 1.1 mmol scale (200 mg); Yield: 74% (301 mg); Physical appearance: colorless solid, M.p. 62–64 °C; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (500 MHz, CDCl₃) δ 7.41 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 5.11 (s, 2H), 4.52 (s, 2H),

2.08 - 2.01 (m, 5H), 1.94 (s, 3H), 1.76 - 1.73 (m, 7H). Spectral data obtained were in good agreement with those reported in the literature.

Scheme S2: General procedure (B) for the synthesis of propargyl bromides:⁶

Procedure B: To a solution of the iodobenzene (4.90 mmol, 1.0 equiv) in toluene (1 mL/mmol), $Pd(PPh_3)_2Cl_2$ (0.14 mmol, 0.03 equiv), CuI (0.29 mmol, 0.06 equiv) and piperidine (9.36 mmol, 1.91 equiv) were added. This was followed by a dropwise addition of the propargyl alcohol (5.0 mmol, 1.02 equiv) (Caution: exothermic reaction). The reaction mixture turned brown and was then stirred at room temperature (25 °C) for overnight. Then, the reaction mixture was filtered through Celite and washed with Et₂O. The solvent was evaporated under reduced pressure giving an oily mixture, which was

purified by silica gel flash column chromatography. Analytical data of the propargyl alcohols (**4a–4f**) matched well with that reported in the literature.

Tribromophosphine (1.2 equiv) was added dropwise to a stirred solution of the propargylic alcohol in freshly distilled DCM (15 ml) at 0 °C. The reaction mixture was stirred for 3 hours at room temperature (25 °C). After the completion, the reaction mixture was carefully quenched with aq. NaHCO₃ and extracted with DCM (30 mL). The combined organic extract was dried over anhyd. Na₂SO₄ and filtered. After concentration under reduced pressure, the crude product was used as it is without further purification.

1-(3-bromoprop-1-yn-1-yl)-3-methoxybenzene (4a):⁶

Reaction performed on 1.85 mmol scale (300 mg); Yield: 49% (205 mg); Physical appearance: colorless gel; TLC R_f 0.3 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.25 (t, J = 8.0 Hz, 1H), 7.08 – 7.04 (m, 1H), 7.01 - 6.98 (m, 1H), 6.94 – 6.90 (m, 1H), 4.18 (s, 2H), 3.82 (s, 3H). Spectral data obtained were in good agreement ported in the literature

with those reported in the literature.

1-(3-bromoprop-1-yn-1-yl)-4-nitrobenzene (4b):⁶

Reaction performed on 1.69 mmol scale (300 mg); Yield: 50% (301 mg); Physical appearance: colorless gel; TLC R_f 0.3 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) <u>¹H NMR</u> (500 MHz, CDCl₃) δ 8.21 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 4.56 (s, 2H). Spectral data obtained were in good agreement with those reported in the literature.

1-(3-bromoprop-1-yn-1-yl)-4-methylbenzene (4c):⁶

Reaction performed on 2.74 mmol scale (400 mg); Yield: 55% (235 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 4.19 (s, 2H), 2.38 (s, 2H). Spectral data obtained were in good agreement with those reported in the literature.

3-(3-bromoprop-1-yn-1-yl)phenyl 4-methylbenzenesulfonate (4d):⁶

Reaction performed on 0.99 mmol scale (300 mg); Yield: 51% (122 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.73 (d, J = 7.7 Hz, 2H), 7.39 – 7.31 (m, 3H), 7.25 (t, J = 7.8 Hz, 1H), 7.12 (t, J = 1.8 Hz, 1H), 6.98 (dd, J = 8.2, 2.1 Hz, 1H), 4.14 (s, 2H), 2.48 (s, 3H). Spectral data obtained were in good agreement with those reported in the literature.

methyl 3-(3-bromoprop-1-yn-1-yl)benzoate (4e):⁶

Reaction performed on 1.58 mmol scale (300 mg); Yield: 64% (197 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.96 (dd, J = 7.9, 1.4 Hz, 1H), 7.57 (dd, J = 7.9, 1.4 Hz, 1H), 7.49 (td, J = 7.5, 1.4 Hz, 1H), 7.40 (td, J = 7.5, 1.4 Hz, 1H), 4.57 (s, 2H), 3.94 (s, 3H). Spectral data obtained were in good agreement with those reported in the literature.

4-(3-bromoprop-1-yn-1-yl)benzonitrile (4f):⁶

Reaction performed on 1.91 mmol scale (300 mg); Yield: 63% (265 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.64 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 4.17 (s, 2H), 1.58 (s, 3H). Spectral data obtained were in good agreement with those reported in the literature.

(2) Scheme S3: Optimization studies for the γ -alkylation of silyldienol ethers:

Pd(OAc)₂ (10 mol %), D^tBPF (10 mol %) Bu₃SnF (1.4 equiv.), CsF (1.4 equiv.), DCM, 70 °C, 3 h

Sr. No.	Deviation from standard condition	Yield
1.	None	75%
2.	[Pd(Cl) ₂], D'BPF	14%
3.	[Pd(TFA) ₂], D'BPF	19%
4.	[Pd(OPiv) ₂], D ^t BPF	<5%
5.	[Pd(acac) ₂], D'BPF	<5%

6.	[Pd(CH ₃ CN) ₂ Cl ₂], D'BPF	18%
7.	[Pd(PPh ₃) ₄]	Trace
8.	Only Bu ₃ SnF (2.8 equiv)	0%
9.	Only CsF (2.8 equiv)	0%
10.	Only ZnF ₂ (2 equiv)	0%
11.	Only AgF (2 equiv)	0%
12.	Only TBAF (2 equiv)	0%
13.	(<i>R</i>)-BINAP as a ligand	0%
14.	dppp as a ligand	<10%
15.	PPh ₃ (20 mol%) as a ligand	37%
16.	Toluene as the solvent	Trace
17.	THF as the solvent	0%
18.	DCE as the solvent	Trace
19.	DMF as the solvent	0%
20.	at 50 °C	<5%
21.	at 90 °C	Trace
22.	With benzyl chloride as a benzyl source	58%

(4) General procedures and analytical data of the γ alkylation of di- and trienones: Scheme S4: Procedure for the γ alkylation of silyldi- and trienol ethers:

In a pressure tube equipped with a magnetic stir bar, the silyldienol ether (0.41 mmol, 2.8 equiv) and benzyl bromide (0.15 mmol, 1 equiv) were dissolved in dry DCM (2 mL) and the solution was degassed for 10 min with argon. The tube was sealed and moved into a glovebox. This was followed by the addition of $Pd(OAc)_2$ (3.3 mg, 0.015 mmol, 0.1 equiv), D'BPF (7.8 mg, 0.015 mmol, 0.1 equiv), CsF (31 mg, 0.21 mmol, 1.4 equiv) and Bu₃SnF (64 mg, 0.21 mmol, 1.4 equiv). The tube was fitted tightly with a Teflon screw cap and moved out of the glovebox. The reaction mixture was heated to 70 °C in an oil bath and maintained at that temperature for 3 hours. Upon cooling to room temperature, the reaction mixture was diluted with about 20 mL of DCM, and the resulting slurry was filtered through a pad of Celite, eluting with DCM. The filtrate was washed successively with 1 M NaOH and water. The combined organic extract was dried over anhyd. Na₂SO₄ and filtered. Upon concentration under reduced pressure, the crude product was purified by silica gel flash column chromatography.

4-(4-fluorobenzyl)cyclohex-2-en-1-one (3a):

Reaction performed on 0.20 mmol scale (40 mg); Yield: 93% (40 mg); Physical appearance: colorless gel; TLC $R_f 0.5$ (9:1 Petroleum ether:EtOAc); ¹H NMR (500 MHz, CDCl₃) 7.22 – 7.15 (m, 2H), 7.07 – 7.00 (m, 2H), 6.84 (d, J = 10.3 Hz, 2H), 6.02 (d, J = 10.3 Hz, 2H), 2.84 – 2.77 (m, 1H), 2.76 - 2.65 (m, 2H), 2.58 – 2.47 (m, 1H), 2.43 – 2.31 (m, 1H), 2.12 – 2.03 (m, 1H), 1.79 – 1.67 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 199.53, 161.59 (d, J_{C-F} = 245.33 Hz), 153.36, 134.5 (d, J_{C-F} = 3.22 Hz), 130.4 (d, $J_{C-F} = 7.7$ Hz), 129.46, 115.4 (d, $J_{C-F} = 21.2$ Hz), 40.10, 38.02, 36.76, 28.55; ¹⁹F NMR (471 MHz, CDCl₃) δ –116.48; **HRMS** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₃H₁₃FO 205.1023; Found

4-(4-nitrobenzyl)cyclohex-2-en-1-one (3b):

Reaction performed on 0.093 mmol scale (20 mg); Yield: 75% (16 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.23 \text{ (d, } J = 8.7 \text{ Hz}, 2\text{H}), 7.40 \text{ (d, } J = 8.7 \text{ Hz}, 2\text{H}), 6.83 - 6.79$ (m, 1H), 6.07 – 6.03 (m, 1H), 2.99 – 293 (m, 1H), 2.89 – 2.84 (m, 1H), 2.83 – 2.76 (m, 1H), 2.58 – 2.51 (m, 1H), 2.43 – 2.35 (m, 1H), 2.12 – 2.05 (m, 1H), 1.81 – 1.72 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 198.96, 152.19, 146.66, 129.94,

129.88, 123.92, 40.74, 37.59, 36.63, 28.57; HRMS (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₃H₁₃NO₃ 232.0968; Found 232.0942; **IR** (Thin Film, neat, cm⁻¹): 2981, 2911, 1732, 1612, 1587, 1517, 1463, 1356, 1219, 1040,769.

205.1032; **IR** (Thin Film, neat, cm⁻¹): 2925, 1663, 1625, 1508, 1157, 1219, 885, 832, 531.

4-(4-(tert-butyl)benzyl)cyclohex-2-en-1-one (3c):

Reaction performed on 0.18 mmol scale (40 mg); Yield: 65% (27 mg); Physical appearance: colorless gel; TLC $R_f 0.5$ (9:1 Petroleum ether: EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 6.89 (dt, J = 10.0, 1.8 Hz, 1H), 6.01 (dd, J = 10.4, 1.03 Hz, 1H), 2.80 – 2.69 (m, 3H), 2.58 – 2.48 (m, 1H), 2.43 – 2.32 (m, 1H), 2.14 – 2.05 (m, 1H), 1.82 – 1.69 (m, 1H), 1.34 (s, 9H); ¹³C <u>NMR</u> (101 MHz, CDCl₃) δ 199.87, 154.11, 149.41, 135.85, 129.20, 128.71, 125.46,

40.38, 38.01, 36.85, 34.44, 31.38, 28.70; **HRMS** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₇H₂₂O 243.1743; Found 243.1725; **IR** (Thin Film, neat, cm⁻¹): 2958, 1920, 1864, 1680, 1510, 1461, 1388, 1109, 853.

4-benzylcyclohex-2-en-1-one (3d):

Reaction performed on 0.12 mmol scale (20 mg, Benzyl bromide); Yield: 64% (19 mg); Physical appearance: brown gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (500 MHz, CDCl₃) δ 7.35 (t, J = 7.5 Hz, 2H), 7.26 (d, J = 7.5 Hz, 1H), 7.22 (d, J = 7.1 Hz, 2H), 6.87 (d, J = 10.0 Hz, 1H), 6.01 (dd, J = 10.2, 1.6 Hz, 1H), 2.87 – 2.70 (m, 3H), 2.53 (dt, J = 16.8, 4.8 Hz, 1H), 2.42 – 2.33 (m, 1H), 2.13 – 2.05 (m, 1H), 1.80 – 1.71 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 199.72, 153.79, 138.96, 129.32, 129.05, 128.61,

126.55, 40.93, 38.00, 36.81, 28.65; **<u>HRMS</u>** (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₃H₁₄O 186.1117; Found 186.1134; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2961, 2920, 1653, 1619, 1577, 1507, 1363, 1326, 1215, 1030,769.

Reaction performed on 0.16 mmol scale (20 mg, Benzyl chloride); Yield: 58% (17 mg)

4-(4-phenoxybenzyl)cyclohex-2-en-1-one (3e):

Reaction performed on 0.76 mmol scale (20 mg); Yield: 61% (13 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.30 (t, J = 7.7 Hz, 1H), 7.17 – 7.12 (m, 1H), 7.07 – 7.00 (m, 2H), 6.96 (dt, J = 7.6, 1.3 Hz, 1H), 6.92 – 6.88 (m, 2H), 6.87 – 6.83 (m, 1H), 6.03 – 5.99 (m, 1H), 2.84 – 2.76 (m, 1H), 2.76 – 2.68 (m, 2H), 2.56 – 2.48 (m, 1H), 2.42 – 2.32 (m, 1H), 2.13 – 2.05 (m, 1H), 1.79 – 1.69 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 199.60, 157.54, 157.07, 153.50, 141.01, 129.85, 129.80, 129.43, 123.92, 123.38, 119.38, 118.94, 116.88, 40.74, 37.83, 36.79, 28.61; **HRMS** (ESI-ToF) *m*/*z*: [M+H]⁺ Calcd. for C₁₉H₁₈O₂ 279.1380; Found 279.1358; **IR** (Thin Film, neat, cm⁻¹): 3031, 2921, 1675, 1581, 1485, 1247, 1212, 1162, 1143, 758, 692.

4-((4-oxocyclohex-2-en-1-yl)methyl)benzonitrile (3f):

Reaction performed on 0.15 mmol scale (30 mg); Yield: 59% (19 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 6.79 (d, J = 9.6 Hz, 1H), 6.04 (d, J = 10.2 Hz, 1H), 2.96 – 2.85 (m, 1H), 2.84 – 2.72 (m, 2H), 2.59 – 2.17 (m, 1H), 2.43 – 2.33 (m, 1H), 2.13 – 2.00 (m, 1H), 1.82 – 1.69 (m,

1H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 199.04, 152.39, 144.54, 132.44, 129.83, 118.73, 110.65, 40.98, 37.54, 36.63, 28.55; <u>HRMS</u> (ESI-ToF) *m*/*z*: [M+H]⁺ Calcd. for C₁₄H₁₃NO 212.1070; Found 212.1057; **IR** (Thin Film, neat, cm⁻¹): 2918, 1677, 1322, 1160, 1107, 1066, 1018, 855, 821.

4-(4-methoxybenzyl)cyclohex-2-en-1-one (3g):

Reaction performed on 0.20 mmol scale (40 mg); Yield: 58% (25 mg); Physical appearance: Brown gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (500 MHz, CDCl₃) δ 7.13 (d, J = 8.6 Hz, 2H), 6.92 – 6.83 (m, 3H), 6.01 (dd, J = 10.1, 1.3 Hz, 1H), 3.83 (s, 3H), 2.80 – 2.65 (m, 3H), 2.57 - 2.46 (m, 1H), 2.41 – 2.31 (m, 1H), 2.13 – 2.03 (m, 1H), 1.81 – 1.67 (m, 1H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 199.78,

158.27, 153.94, 130.95, 129.97, 129.25, 113.98, 55.29, 40.04, 38.18, 36.83, 28.60; **<u>HRMS</u>** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₄H₁₆O₂ 217.1223; Found 217.1227; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2918, 1850, 1674, 1511, 1244, 1177, 848, 563.

4-(4-(trifluoromethyl)benzyl)cyclohex-2-en-1-one (3h):

Reaction performed on 0.17 mmol scale (40 mg); Yield: 54% (23 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 6.85 – 6.80 (m, 1H), 6.06 – 6.01 (m, 1H), 2.93 – 2.86 (m, 1H), 2.84 – 2.79 (m, 1H), 2.79 – 2.73 (m, 1H), 2.53 (dt, J = 16.8, 4.8 Hz, 1H), 2.42 – 2.33 (m, 1H), 2.12 – 2.04 (m, 1H), 1.80 – 1.70 (m, 1H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 199.27, 152.83, 143.06, 129.67,

129.37, 129.02 (d, $J_{C-F} = 32.77$ Hz), 125.57 (q, $J_{C-F} = 4.37$ Hz), 124.09 (d, $J_{C-F} = 271.00$ Hz), 40.71, 37.71, 36.70, 28.58; ¹⁹F NMR (471 MHz, CDCl₃) δ –62.43; <u>HRMS</u> (ESI-ToF) *m*/*z*: [M+H]⁺ Calcd. for C₁₄H₁₃F₃O 255.0991; Found 255.1002; <u>IR</u> (Thin Film, neat, cm⁻¹): 2924, 2858, 1677, 1322, 1161, 1108, 1018, 855, 637.

4-(4-chlorobenzyl)cyclohex-2-en-1-one (3i):

Reaction performed on 0.19 mmol scale (40 mg); Yield: 49% (27 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 7.15 (d, J = 8.2 Hz, 2H), 6.83 (d, J = 10.1 Hz, 1H), 6.01 (d, J = 10.1 Hz, 1H), 2.84 – 2.67 (m, 3H), 2.57 – 2.47 (m, 1H), 2.42 – 2.30 (m, 1H), 2.12 – 2.03 (m, 1H), 1.79 – 1.66 (m, 1H); ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ

199.45, 153.21, 137.38, 132.40, 130.36, 129.52, 128.75, 40.25, 37.85, 36.73, 28.55; **<u>HRMS</u>** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₃H₁₃ClO 221.0728; Found 221.0720; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2923, 1849, 1656, 1501, 1234, 1169, 845, 561.

Reaction performed on 0.12 mmol scale (20 mg, 4-chlorobenzyl chloride); Yield: 40% (11 mg).

4-(3,5-dimethylbenzyl)cyclohex-2-en-1-one (3j):

Reaction performed on 0.20 mmol scale (40 mg); Yield: 93% (40 mg); Physical appearance: colorless gel; TLC $R_f 0.5$ (9:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (500 MHz, CDCl₃) δ 6.91 (s, 1H), 6.90 – 6.86 (m, 1H), 6.84 (s, 2H), 6.01 (dd, J = 10.2, 1.4Hz, 1H), 2.76 – 2.63 (m, 3H), 2.53 (dt, J = 16.8, 4.1 Hz, 1H), 2.43 – 2.36 (m, 1H), 2.34 (s, 6H), 2.15 - 2.03 (m, 1H), 1.85 - 1.68 (m, 1H); $\frac{13}{C}$ NMR (101 MHz, CDCl₃) δ 199.82, 154.11, 138.88, 138.06, 129.16, 128.13, 126.87, 40.78, 38.02, 36.88, 28.76, 21.30; **HRMS** (ESI-ToF) *m*/*z*: [M+H]⁺ Calcd. for C₁₅H₁₈O 215.1430; Found 215.1417; **IR** (Thin Film,

neat, cm⁻¹): 3014, 2916, 2859, 1673, 1604, 1387, 1450, 1208, 850, 702.

4-(3-nitrobenzyl)cyclohex-2-en-1-one (3k):

Reaction performed on 0.20 mmol scale (40 mg); Yield: 51% (22 mg); Physical appearance: colorless gel; TLC R_f 0.5 (4:1 Petroleum ether:EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.5 Hz, 1H), 8.12 (s, 1H), 7.59 – 7.50 (m, 2H), 6.82 (d, J = 10.4 Hz, 1H), 6.06 (d, J = 10.4 Hz, 1H), 3.01 – 2.92 (m, 1H), 2.91 – 2.76 (m, 2H), 2.60 – 2.50 (m, 1H), 2.46 – 2.34 (m, 1H), 2.15 – 2.05 (m, 1H), 1.84 - 1.73 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 199.04, 152.22, 140.97, 135.24,

129.95, 129.60, 123.80, 121.86, 40.52, 37.63, 36.65, 28.53; HRMS (ESI-ToF) m/z: [M+H]+ Calcd. for C₁₃H₁₃NO₃ 232.0968; Found 232.0966; **IR** (Thin Film, neat, cm⁻¹): 2961, 2901, 1715, 1602, 1577, 1501, 1421, 1354, 1209, 1011,769.

4-(3-methoxybenzyl)cyclohex-2-en-1-one (3l):

Reaction performed on 0.20 mmol scale (40 mg); Yield: 33% (14.5 mg); Physical appearance: colorless gel; TLC $R_f 0.5$ (4:1 Petroleum ether: EtOAc); ¹H **NMR** (500 MHz, CDCl₃) δ 7.30 – 7.23 (m, 1H), 6.87 (d, J = 10.2 Hz, 1H), 6.83-6.87 (m, 2H), 6.76 (s, 1H), 6.00 (d, J = 10.2 Hz, 1H), 3.83 (s, 3H), 2.80 – 2.67 (m, 3H), 2.59 – 2.40 (m, 1H), 2.42 – 2.29 (m, 1H), 2.14 – 2.02 (m, 1H), 1.79 – 1.69 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 199.69, 159.78, 153.79, 140.56,

129.58, 129.28, 121.41, 115.00, 111.56, 55.19, 40.93, 37.90, 36.82, 28.67; **HRMS** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₄H₁₆O₂ 217.2223; Found 217.2222; **IR** (Thin Film, neat, cm⁻¹): 2923, 1849, 1656, 1501, 1234, 1169, 845, 561.

4-(3,5-bis(trifluoromethyl)benzyl)cyclohex-2-en-1-one (3m):

Reaction performed on 0.098 mmol scale (30 mg); Yield: 37% (12 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.69 (s, 2H), 6.83 – 6.76 (m, 1H), 6.07 (dd, J = 10.2, 2.2 Hz, 1H), 3.05 – 2.95 (m, 1H), 2.93 – 2.85 (m, 1H), 2.85 – 2.77 (m, 1H), 2.60 – 2.50 (m, 1H), 2.46 – 2.36 (m, 1H), 2.14 – 2.05 (m, 1H), 1.83 – 1.72 (m, 1H); <u>¹³C</u> <u>NMR</u> (101 MHz, CDCl₃) δ 198.82, 151.73, 141.41, 132.0 (d, $J_{C-F} = 34.8$ Hz), 130.10, 129.09, 123.17 (d, $J_{C-F} = 273.89$ Hz), 120.84 (q, $J_{C-F} = 4.03$ Hz), 40.60,

37.54, 36.60, 28.55; ¹⁹**F NMR** (471 MHz, CDCl₃) δ –62.85; **<u>HRMS</u>** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₅H₁₂F₆O 323.0865; Found 323.0889; <u>**IR**</u> (Thin Film, neat, cm⁻¹): 2956, 2924, 2855, 1681, 1382, 1277, 1106, 988, 532.

4-(2-methoxybenzyl)cyclohex-2-en-1-one (3n):

Reaction performed on 0.20 mmol scale (40 mg); Yield: 26% (11 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.25 (dt, J = 7.4, 1.7 Hz, 1H, merged with CHCl₃), 7.14 (dd, J = 7.4, 1.7 Hz, 1H), 6.97 – 6.86 (m, 3H), 5.99 (dd, J = 10.3, 1.9 Hz, 1H), 3.86 (s, 3H), 2.86 – 2.73 (m, 3H), 2.58 – 2.49 (m, 1H), 2.41 – 2.30 (m, 1H), 2.11 – 2.00 (m, 1H), 1.81 – 1.68 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 200.12, 157.62, 154.84, 130.92, 128.85,

127.88, 127.37, 120.41, 110.45, 55.23, 36.92, 36.42, 35.42, 28.74; **<u>HRMS</u>** (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₆O₂ 217.1223; Found 217.1220; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2917, 2836, 1672, 1493, 1463, 1242, 1110, 1026, 752.

4-(benzo[d][1,3]dioxol-5-ylmethyl)cyclohex-2-en-1-one (3o):

Reaction performed on 0.093 mmol scale (20 mg); Yield: 75% (16 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (500 MHz, CDCl₃) δ 6.88 – 6.83 (m, 1H), 6.78 (d, J = 7.8 Hz, 1H), 6.70 (s, 1H), 6.66 (dd, J = 7.9, 1.7 Hz, 1H), 6.00 (d, J = 10.3 Hz, 1H), 5.97 (s, 2H), 2.76 – 2.62 (m, 3H), 2.56- 2.48 (m, 1H), 2.41 – 2.31 (m, 1H), 2.13 – 2.02 (m, 1H), 1.79 – 1.67 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 199.70, 153.69, 147.80, 146.19, 132.66,

129.32, 121.99, 109.24, 108.29, 100.96, 40.64, 38.15, 36.80, 28.56; **<u>HRMS</u>** (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₄O₃ 231.1016; Found 231.1022; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2919, 1674, 1502, 1488, 1441, 1244, 1207, 1189, 1036, 923, 808.

4-(naphthalen-1-ylmethyl)cyclohex-2-en-1-one (3p):

Reaction performed on 0.090 mmol scale (20 mg); Yield: 41% (8 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.04 (d, J = 8.39 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.61 – 7.51 (m, 2H), 7.49 – 7.43 (m, 1H), 7.39 – 7.34 (m, 1H), 6.95 – 6.90 (m, 1H), 6.03 (dd, J = 10.2, 2.3 Hz, 1H), 3.29 (dd, J = 13.4, 7.7 Hz, 1H), 3.19 (dd, J = 13.4, 7.7 Hz, 1H), 3.01 – 2.87 (m, 1H), 2.63 – 2.49 (m, 1H), 2.43 – 2.31 (m, 1H), 2.18 – 2.06 (m, 1H), 1.94 – 1.78 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 207.88, 153.81, 129.20, 129.07,

127.49, 126.17, 125.71, 125.39, 123.46, 99.97, 38.08, 37.11, 36.88, 29.17; **<u>HRMS</u>** (ESI-ToF) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₆O 259.1093; Found 259.1111; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 3042, 2924, 2861, 1675, 1390, 1251, 1211, 800, 780.

3-(4-fluorophenethyl)cyclohex-2-en-1-one (3q):

Reaction performed on 0.21 mmol scale (40 mg); Yield: 70% (31 mg); Physical appearance: Brown gel; TLC R_f 0.3 (5:1 Petroleum ether: EtOAc); <u>¹H NMR</u> (500 MHz, CDCl₃) 7.19 – 7.10 (m, 2H), 6.99 (t, J = 8.5 Hz, 2H), 5.90 (s, 1H), 2.82 (t, J = 7.5 Hz, 2H), 2.52 (t, J = 8.0 Hz, 2H), 2.37 (t, J = 6.7 Hz, 2H), 2.30 (t, J = 5.9 Hz, 2H), 2.04 – 1.96 (m, 2H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 199.71, 164.92, 161.42 (d, $J_{C-F} = 244.49$ Hz), 136.29 (d, $J_{C-F} = 3.3$ Hz), 129.60 (d, J_{C-F}

= 7.9 Hz), 126.13, 115.31 (d, J = 21.2 Hz), 39.70, 37.31, 32.56, 29.90, 22.67; ¹⁹F NMR (471 MHz, CDCl₃) δ –116.95; <u>HRMS</u> (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₅FO 219.1180; Found 219.1181; <u>IR</u> (Thin Film, neat, cm⁻¹): 2925, 1663, 1625, 1508, 1219, 1157, 885, 832, 531.

3-(4-nitrophenethyl)cyclohex-2-en-1-one (3r):

Reaction performed on 0.14 mmol scale (30 mg); Yield: 68% (23 mg, *rotational isomers* 1:0.11); Physical appearance: brown gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (500 MHz, CDCl₃) δ 8.19 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 5.91 (s, 1H), 2.97 (t, J = 7.8 Hz, 2H), 2.59 (t, J = 7.8 Hz, 2H), 2.39 (t, J = 6.4 Hz, 2H), 2.33 (t, J = 6.1 Hz, 2H), 2.07 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 199.47, 163.71,

148.37, 129.10, 126.34, 123.88, 38.78, 37.28, 33.08, 29.88, 22.63; **<u>HRMS</u>** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₄H₁₅NO₃ 246.1125; Found 246.1100; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2932, 1669, 1615, 1498, 1231, 1210, 1137, 874, 829, 533.

3-(4-nitrophenethyl)cyclopent-2-en-1-one (3s):

Reaction performed on 0.093 mmol scale (20 mg); Yield: 70% (15 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹<u>H NMR</u> (500 MHz, CDCl₃) 8.20 (t, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 6.01 (s, 1H), 3.06 (t, J = 7.6 Hz, 2H), 2.80 (t, J = 7.9 Hz, 2H), 2.67 – 2.60 (m, 2H), 2.48 – 2.41 (m, 2H); ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 209.43, 179.99, 148.10, 146.76, 130.17, 129.04, 123.93, 35.26, 34.31, 33.08, 31.71;

<u>HRMS</u> (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₃H₁₃NO₃ 232.0968; Found 232.0965; <u>**IR**</u> (Thin Film, neat, cm⁻¹): 2915, 1711, 1637, 1518, 1467, 1127, 1209, 855, 832, 521.

3-(3,5-dimethylphenethyl)cyclopent-2-en-1-one (3t):

Reaction performed on 0.15 mmol scale (30 mg); Yield: 65% (21 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (500 MHz, CDCl₃) δ 6.88 (s, 1H), 6.84 (s, 2H), 6.02 (s, 1H), 2.89 – 2.82 (m, 2H), 2.77 – 2.70 (m, 2H), 2.64 – 2.58 (m, 2H), 2.45 – 2.40 (m, 2H), 2.32 (s, 6H); <u>¹³C</u> <u>NMR</u> (101 MHz, CDCl₃) δ 210.04, 182.02, 140.47, 138.10, 129.73, 127.98, 125.99, 35.30, 35.16, 33.16, 31.72, 21.27; <u>HRMS</u> (ESI-ToF) m/z: [M+H]⁺

Calcd. for C₁₅H₁₈O 215.1430; Found 215.1417; **IR** (Thin Film, neat, cm⁻¹): 2918, 1705, 1674, 1614, 1437, 1183, 843, 676.

6,6-dimethyl-3-(4-nitrophenethyl)cyclohex-2-en-1-one (3u):

Reaction performed on 0.093 mmol scale (20 mg); Yield: 67% (17 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.18 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H), 5.80 (s, 1H), 2.96 (t, J = 7.9 Hz, 2H), 2.56 (t, J = 7.9 Hz, 2H), 2.33 (t, J = 6.1 Hz, 2H), 1.83 (t, J = 6.1 Hz, 2H), 1.10 (s, 6H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 204.27, 161.36, 148.47, 146.65, 129.11,

124.83, 123.84, 40.46, 38.43, 36.24, 33.22, 27.29, 24.10; **<u>HRMS</u>** (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₉NO₃ 274.1438; Found 274.1427; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2941, 1672, 1516, 1343, 1240,1135, 855.

5-methyl-3-(4-nitrophenethyl)cyclohex-2-en-1-one (3v):

Reaction performed on 0.14 mmol scale (20 mg); Yield: 64% (15.4 mg, mixture of rotamers, 1:1); Physical appearance: red solid; M.p. 89–91 °C; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.17 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 5.88 (s, 1H), 3.31 – 3.16 (m, 2H), 2.95 (t, J = 7.7 Hz, 2H), 2.56 (t, J = 8.2 Hz, 2H), 2.53 – 2.41 (m, 3H), 2.41 – 2.30 (m, 3H), 2.23 – 2.13 (m, 4H), 2.10 – 2.02 (m, 4H), 1.10

- 1.05 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 199.67, 161.30, 148.34, 146.68, 129.31, 129.12, 125.26, 123.87, 51.00, 44.13, 38.75, 33.65, 32.96, 28.32; <u>HRMS</u> (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₅H₁₇NO₃ 260.1281; Found 260.1273; <u>IR</u> (Thin Film, neat, cm⁻¹): 2923, 1671, 1566, 1373, 1230, 1125, 845.

5,5-dimethyl-3-(4-nitrophenethyl)cyclohex-2-en-1-one (3w):

Reaction performed on 0.093 mmol scale (20 mg); Yield: 63% (16 mg, mixture of rotamers, 1.0:0.2); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 5.91 (s, 1H), 2.96 (t, J = 7.8 Hz, 2H), 2.56 (t, J = 7.8 Hz, 2H), 2.27 – 2.19 (m, 4H), 1.06 (s,

6H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 199.67, 161.30, 148.34, 146.68, 129.31, 129.12, 125.26, 123.96, 123.87, 123.82, 51.00, 44.13, 38.75, 33.65, 32.96, 28.32; <u>**HRMS**</u> (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₆H₁₉NO₃ 274.1438; Found 274.1418; <u>**IR**</u> (Thin Film, neat, cm⁻¹): 2942, 1675, 1509, 1453, 1239,1145, 845.

6,6-dimethyl-4-(4-nitrophenethyl)bicyclo[3.1.1]hept-3-en-2-one (3x):

Reaction performed on 0.093 mmol scale (20 mg); Yield: 57% (14.3 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.19 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 5.77 (s, 1H), 2.95 (t, J = 7.9 Hz, 2H), 2.90 – 2.80 (m, 1H), 2.73 – 2.59 (m, 3H), 2.52 (t, J = 5.8 Hz, 1H), 2.07 (d, J = 9.2 Hz, 1H), 1.54 (s, 3H), 1.02 (s, 3H): ¹³C NMR (101 MHz, CDCl₃) δ

203.56, 170.93, 148.30, 146.68, 129.08, 123.86, 120.72, 57.83, 54.03, 48.76, 40.97, 37.76, 32.50, 26.59, 22.34; **<u>HRMS</u>** (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₉NO₃ 286.1438; Found 286.1425; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2956, 1681, 1516, 1463, 1140, 1125, 755.

(*E*)-3-(4-(4-nitrophenyl)but-1-en-1-yl)cyclohex-2-en-1-one (3y):

Reaction performed on 0.19 mmol scale (40 mg); Yield: 64% (32 mg); ¹H NMR analysis of the crude mixture of the products shows only the ε -product (*E* isomer); Physical appearance: colorless gel; TLC *R*_f 0.5 (5:1 Petroleum ether:EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 6.24 – 6.13 (m, 2H), 5.87 (s, 1H), 2.89 (t, *J* = 7.7 Hz, 2H), 2.62 – 2.52 (m, 2H), 2.47 – 2.36 (m, 4H), 2.08 – 1.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 200.26, 156.78, 148.83, 146.55,

136.15, 132.71, 132.68, 129.20, 129.17, 127.12, 123.75, 123.72, 37.66, 35.08, 34.24, 25.04, 22.28; **HRMS** (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₇NO₃ 272.1281; Found 272.1272; **IR** (Thin Film, neat, cm⁻¹): 3384. 2941, 1660, 1598, 1513, 1341, 1255, 1191, 1133, 854.

(*E*)-3-(4-(4-fluorophenyl)but-1-en-1-yl)cyclohex-2-en-1-one (3z):

NO₂

Reaction performed on 0.21 mmol scale (40 mg); Yield: 54% (23 mg); ¹H NMR analysis of the crude mixture of the products shows only the ε -product (*E* isomer); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.15 (dd, J = 8.4, 5.5 Hz, 2H), 7.00 (t, J = 8.4 Hz, 2H), 6.24 – 6.20 (m, 2H), 5.90 (s, 1H), 2.76 (t, J = 7.7 Hz, 2H), 2.55 – 2.49 (m, 2H), 2.47 – 2.41 (m, 4H), 2.08 – 2.01 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 200.41, 161.41 (d, $J_{C-F} = 244.69$

Hz), 157.18, 137.31, 136.65, 132.21, 129.70 (d, $J_{C-F} = 8.66$ Hz), 128.70 (d, $J_{C-F} = 15.1$ Hz), 126.86, 115.22 (d, $J_{C-F} = 21.1$ Hz), 37.70, 35.05, 34.47, 25.07, 22.33; ¹⁹F NMR (471 MHz, CDCl₃) –116.71; HRMS (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₇OF 245.1336; Found 245.1312; <u>IR</u> (Thin Film, neat, cm⁻¹): 3371. 2931, 1657, 1578, 1510, 1311, 1155, 1111, 1101, 854.

(E)-3-(4-(3,5-dimethylphenyl)but-1-en-1-yl)cyclohex-2-en-1-one (3aa):

Reaction performed on 0.10 mmol scale (20 mg); Yield: 27% (7 mg, *E*:*Z* 1.0:0.16); ¹H NMR analysis of the crude mixture of the products shows only the ε -product; Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 1H), 6.83 (s, 2H), 6.28 – 6.23 (m, 2H), 5.90 (s, 1H), 2.71 (t, *J* = 7.5 Hz, 1H), 2.56 – 2.51 (m, 1H), 2.49 – 2.45 (m, 2H), 2.42 (t, *J* = 6.7 Hz, 2H), 2.32 (s, 6H), 2.10 – 2.01 (m, 3H), 1.91 (d, *J* = 5.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 200.45, 157.51, 157.42, 141.02, 138.04, 137.94, 133.81, 132.80, 131.85,

127.72, 126.72, 126.30, 126.18, 37.73, 35.17, 35.09, 25.09, 25.05, 22.38, 22.36, 21.29, 18.90; HRMS

(ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₈H₂₂O 255.1743; Found 255.1713; **IR** (Thin Film, neat, cm⁻¹): 3427, 2921, 2852, 1667, 1605, 1454, 1190, 1133, 1039, 966, 846, 702.

4-cinnamylcyclohex-2-en-1-one (3ab):

Reaction performed on 0.10 mmol scale (20 mg); Yield: 51% (11 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 4H), 6.98 – 6.91 (m, 1H), 6.53 – 6.46 (m, 1H), 6.28 – 6.18 (m, 1H), 6.04 (dd, J = 10.2, 2.4 Hz, 1H), 2.69 – 2.59 (m, 1H), 2.59 – 2.49 (m, 1H), 2.48 – 2.34 (m, 3H), 2.24 – 2.12 (m, 1H), 1.88 – 1.73 (m, 1H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 193.85, 154.04, 132.73, 129.43, 128.60, 127.39, 126.87,

126.08, 38.15, 36.94, 36.34, 28.69; **<u>HRMS</u>** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₅H₁₆O 213.1274; Found 213.1275; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 3417, 2911, 2752, 1777, 1601, 1464, 1180, 1123, 1019, 956, 841, 701.

Compound 3ac: Reaction performed on 0.097 mmol scale (40 mg); Yield: 80% (33 mg); Physical

appearance: red gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H</u> <u>NMR</u> (500 MHz, CDCl₃) δ 7.45 (d, J = 7.1 Hz, 2H), 7.24 (d, J = 7.1 Hz, 2H), 6.84 (d, J = 9.8 Hz, 1H), 5.98 (d, J = 9.9 Hz, 1H), 5.27 (s, 2H), 4.85 (s, 2H), 4.42 (s, 2H), 4.11 (s, 5H), 2.87 – 2.67 (m, 3H), 2.55 – 2.42 (m, 1H), 2.39 – 2.25 (m, 1H), 2.13 – 2.01 (m, 1H), 1.80

- 1.64 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 199.61, 171.50, 153.61, 139.08, 134.97, 129.38, 129.25, 128.81, 71.46, 71.03, 70.25, 69.73, 65.56, 40.63, 37.96, 36.77, 28.61; <u>HRMS</u> (ESI-ToF) *m/z*: [M+Na]⁺ Calcd. for C₂₅H₂₄FeO₃ 451.0967; Found 451.0959; <u>IR</u> (Thin Film, neat, cm⁻¹): 3095, 3026, 2920, 1706, 1673, 1456, 1378, 1270, 1124, 1105, 819.

4-((4-oxocyclohex-2-en-1-yl)methyl)benzyl (3r,5r,7r)-adamantane-1-carboxylate (3ad):

Reaction performed on 0.11 mmol scale (20 mg); Yield: 75% (13 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>**1H NMR**</u> (400 MHz, CDCl₃) δ 7.31 (d, J = 7.9 Hz, 2H), 7.21 (d, J = 7.9 Hz, 2H), 6.86 (d, J = 10.0 Hz, 1H), 6.01 (dd, J = 10.2, 1.4 Hz, 1H), 5.10 (s, 2H), 2.88 – 2.68 (m, 3H), 2.57 – 2.47 (m, 1H), 2.43 – 2.31 (m, 1H), 2.14 – 2.06 (m, 1H), 2.06 – 2.01 (m,

3H), 1.98 - 1.92 (m, 6H), 1.79 - 1.69 (m, 7H): <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 199.61, 177.49, 153.63, 138.68, 134.90, 129.36, 129.17, 127.96, 65.47, 40.79, 40.63, 38.85, 37.93, 36.81, 36.49, 28.65, 27.95; <u>**HRMS**</u> (ESI-ToF) *m*/*z*: [M+H]⁺ Calcd. for C₂₅H₃₀O₃ 379.2268; Found 379.2265; <u>**IR**</u> (Thin Film, neat, cm⁻¹): 2904, 2850, 1723, 1675, 1451, 1225, 1181, 1071, 976.

4-((4-oxocyclohex-2-en-1-yl)methyl)benzyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate (3ae):

Reaction performed on 0.36 mmol scale (76 mg); Yield: 66% (44 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹H NMR

(400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.7 Hz, 2H), 7.66 (d, *J* = 8.9 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 6.85 – 6.77 (m, 3H), 6.00 (dd, *J* = 10.1, 1.7 Hz, 1H), 5.20 (s, 2H), 2.82 – 2.67 (m, 3H), 2.50 (dt, *J* = 16.8, 4.8 Hz, 1H), 2.35 (ddd, *J* = 17.0, 12.4, 4.9 Hz, 1H), 2.09 – 2.01 (m, 1H), 1.76 – 1.71 (m, 1H), 1.70 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 199.57, 194.17, 173.49, 159.53, 153.41, 139.41, 138.47, 136.33, 133.39, 131.96, 131.18, 130.35, 129.43, 129.24, 128.79, 128.58, 117.30, 79.45, 67.11, 40.55, 37.83, 36.74, 28.60, 25.45, 25.42; **HRMS** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₃₁H₂₉ClO₅ 517.1776; Found 517.1758; **IR** (Thin Film, neat, cm⁻¹): 2923, 2854, 1736, 1653, 1596, 1282, 1248, 1131, 926, 762.

4-((4-oxocyclohex-2-en-1-yl)methyl)benzyl 4-(N,N-dipropylsulfamoyl)benzoate (3af):

Reaction performed on 0.64 mmol scale (30 mg); Yield: 56% (18 mg); Physical appearance: brown gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (500 MHz, CDCl₃) δ 8.20 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 7.8 Hz, 2H), 7.26 (d, J = 7.8 Hz, 2H), 6.86 (d, J = 10.5 Hz, 1H), 6.02 (dd, J = 10.2, 1.8 Hz, 1H), 5.40 (s, 2H), 3.11 (t, J = 7.3

Hz, 4H), 2.87 – 2.70 (m, 3H), 2.53 (dt, J = 16.7, 4.8 Hz, 1H), 2.37 (ddd, J = 17.0, 12.4, 4.9 Hz, 1H), 2.14 – 2.04 (m, 1H), 1.80 – 1.70 (m, 4H), 0.88 (t, J = 7.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 199.55, 165.11, 153.46, 144.41, 139.43, 133.81, 133.39, 130.34, 129.44, 129.40, 128.78, 127.03, 67.08, 49.93, 40.64, 37.90, 36.79, 28.63, 21.93, 11.17; **HRMS** (ESI-ToF) m/z: [M+Na]⁺ Calcd. for C₂₇H₃₃NO₅S 506.1972; Found 506.1966; **IR** (Thin Film, neat, cm⁻¹): 2924, 1732, 1676, 1623, 1484, 1417, 1222, 1170, 1132, 1075, 766, 698.

4-((4-oxocyclohex-2-en-1-yl)methyl)benzyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (3ag):

Reaction performed on 0.70 mmol scale (30 mg); Yield: 55% (17 mg); Physical appearance: colorless gel; TLC R_f 0.2 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.56 (d, J = 7.9 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.43 –

7.37 (m, 2H), 7.26 (d, J = 7.8 Hz, 2H), 7.21 – 7.16 (m, 3H), 7.12 (dd, J = 11.5, 1.7 Hz, 1H), 6.84 (dt, J

= 10.0, 1.7 Hz, 1H), 6.00 (dd, J = 10.2, 1.9 Hz, 1H), 5.16 (dd, J = 12.3 Hz, 2H), 3.83 (q, J = 7.1 Hz, 1H), 2.86 – 2.68 (m, 3H), 2.51 (dt, J = 16.9, 4.8 Hz, 1H), 2.35 (ddd, J = 17.0, 12.4, 4.9 Hz, 1H), 2.11 – 2.01 (m, 1H), 1.78 – 1.67 (m, 1H), 1.58 (d, J = 7.2 Hz, 3H); $\frac{13}{2}$ **C NMR** (101 MHz, CDCl₃) δ 199.59, 173.77, 159.61 (d, $J_{C-F} = 248.29$ Hz), 153.52, 141.66 (d, $J_{C-F} = 7.6$ Hz), 139.06, 135.47, 134.12, 130.77 (d, $J_{C-F} = 4.2$ Hz), 129.38, 129.20, 128.92 (d, $J_{C-F} = 3.0$ Hz), 128.48, 128.36, 127.90, 127.72, 123.62, 115.27 (d, $J_{C-F} = 23.5$ Hz), 66.42, 45.05, 40.61, 37.90, 36.78, 28.63, 18.33; $\frac{19}{F}$ **NMR** (471 MHz, CDCl₃) δ –117.65; **HRMS** (ESI-ToF) m/z: [M+Na]⁺ Calcd. for C₂₉H₂₇O₃F 465.1836; Found 465.1827; **IR** (Thin Film, neat, cm⁻¹): 2964, 2932, 2875, 1720, 1675, 1341, 1269, 1157, 1102, 991, 739, 602.

4-(4-((((*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6yl)oxy)methyl)benzyl)cyclohex-2-en-1-one (3ah):

appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (500 MHz, CDCl₃) δ 7.49 (d, J = 7.8 Hz, 2H), 7.26 (d, J = 7.8 Hz, 2H), 6.89 (d, J = 10.2 Hz, 1H), 6.02 (d, J = 10.3 Hz, 1H), 4.70 (s, 2H), 2.89 – 2.73 (m, 3H), 2.62 (t, J = 6.8 Hz, 2H), 2.58 – 2.50 (m, 1H), 2.44- 2.32 (m, 2H), 2.25 (s, 3H), 2.20 (s, 3H), 2.13 (s, 3H), 1.91 – 1.74 (m, 3H), 1.68 – 1.48 (m, 6H), 1.46 – 1.38 (m, 4H), 1.32 – 1.23 (m, 9H), 1.20 – 1.05 (m, 7H), 0.91 – 0.85 (m, 11H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 199.68, 153.74, 148.04, 138.53, 136.37, 129.35, 129.14, 128.09, 127.89, 125.92, 122.96, 117.62, 74.85, 74.43, 40.68, 39.38, 38.04, 37.41, 36.82, 32.79, 32.72, 28.66, 27.99, 24.82, 24.46, 23.91, 22.74, 22.64, 21.06, 20.70, 19.70, 12.89, 12.02, 11.84; **HRMS** (ESI-ToF) m/z: [M]⁺ Calcd. for C₄₃H₆₅O₃ 629.4928; Found 629.4918; **IR** (Thin Film, neat, cm⁻¹): 2923, 2855, 1680, 1457, 1375, 1411, 1252, 1086, 1016, 809.

(5) General procedures and analytical data of the γ -allenylated enones:

Scheme S5: Procedure for the *p*-allenylation of silyldienol ethers:

In a pressure tube equipped with a magnetic stir bar, the silyldienol ether (0.41 mmol, 2.8 equiv.) and benzyl bromide (0.15 mmol, 1 equiv.) were dissolved in dry DCM (2 mL) and the solution was degassed for 10 min with argon. The tube was sealed and moved into the glovebox. This was followed by the addition of Pd(OAc)₂ (3.3 mg, 0.015 mmol, 0.1 equiv), D'BPF (7.8 mg, 0.015 mmol, 0.1 equiv), CsF

(31 mg, 0.21 mmol, 1.4 equiv) and Bu₃SnF (64 mg, 0.21 mmol, 1.4 equiv). The tube was fitted tightly with a Teflon screw cap and moved out of the glovebox. The reaction mixture was heated to 70 °C in an oil bath and maintained at that temperature for 8 h. Upon cooling to room temperature, the reaction mixture was diluted with about 20 mL of DCM, and the resulting slurry was filtered through a pad of Celite, eluting with DCM. The filtrate was extracted with DCM and washed successively with 1 M NaOH and water. The combined organic extract was dried over anhyd. Na₂SO₄ and filtered. Upon concentration under reduced pressure, the crude product was purified by silica gel flash column chromatography.

4-(1-(4-nitrophenyl)propa-1,2-dien-1-yl)cyclohex-2-en-1-one (5a):

Reaction performed on 0.12 mmol scale (30 mg); Yield: 81% (26 mg, allenyl:propargyl 1.0:0.13); Physical appearance: brown gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.25 (d, J = 8.9 Hz, 2H), 7.60 (d, J = 8.9 Hz, 2H), 6.94 – 6.90 (m, 1H), 6.13 (dd, J = 10.2, 2.4 Hz, 1H), 5.39 – 5.29 (m, 2H), 3.75 – 3.69 (m, 1H), 2.66 – 2.58 (m, 1H), 2.55 – 2.46 (m, 1H), 2.40 – 2.33 (m, 1H), 2.13 – 2.02 (m, 1H); <u>¹³C NMR</u>

(101 MHz, CDCl₃) δ 209.64, 198.76, 150.51, 141.84, 130.07, 126.90, 124.03, 106.04, 81.46, 36.50, 35.62, 28.48; <u>**HRMS**</u> (ESI-ToF) *m*/*z*: [M+H]⁺ Calcd. for C₁₅H₁₃NO₃ 256.0968; Found 256.0962; <u>**IR**</u> (Thin Film, neat, cm⁻¹): 3441, 2960, 2871, 1719, 1654, 1511, 1462, 1365, 1266, 1038, 850, 569.

methyl 3-(1-(4-oxocyclohex-2-en-1-yl)propa-1,2-dien-1-yl)benzoate (5b):

Reaction performed on 0.14 mmol scale (30 mg); Yield: 77% (25 mg); Physical appearance: brown gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.96 (dt, J = 7.7, 1.4 Hz, 1H), 7.64 (dt, J = 7.7, 1.4 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 6.10 (dd, J = 10.2, 2.3 Hz, 1H), 5.30 – 5.20 (m, 2H), 3.96 (s, 3H), 3.77 – 3.69 (m, 1H), 2.67 – 2.58 (m, 1H), 2.53 – 2.45 (m, 1H), 2.38 –

2.30 (m, 1H), 2.12 – 2.02 (m, 1H); ${}^{13}C$ NMR (101 MHz, CDCl₃) δ 208.51, 199.28, 166.90, 151.39, 135.30, 131.01, 130.72, 129.67, 128.83, 128.38, 127.15, 106.19, 80.84, 52.30, 36.58, 35.78, 28.42; **HRMS** (ESI-ToF) *m*/*z*: [M+H]⁺ Calcd. for C₁₇H₁₆O₃ 269.1172; Found 269.1180; **IR** (Thin Film, neat, cm⁻¹): 3439, 2951, 2771, 1619, 1632, 1491, 1443, 1395, 1216, 1018, 840, 579.

3-(1-(4-oxocyclohex-2-en-1-yl)propa-1,2-dien-1-yl)phenyl 4-methylbenzenesulfonate (5c):

Reaction performed on 0.82 mmol scale (30 mg); Yield: 77% (24 mg, allenyl:propargyl 1.0:0.07); Physical appearance: brown gel; TLC R_f 0.2 (4:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.75 (d, J = 8.4 Hz, 2H), 7.37 – 7.29 (m, 4H), 7.00 (t, J = 1.9 Hz, 1H), 6.90 (dt, J = 7.4, 1.9 Hz, 1H), 6.87 – 6.82 (m, 1H), 6.07 (dd, J = 10.2, 2.3 Hz, 1H), 5.23 – 5.13 (m, 2H), 3.56 – 3.48 (m, 1H), 2.63 – 2.52 (m, 1H), 2.47 (s, 3H),

2.45 – 2.39 (m, 1H), 2.29 – 2.17 (m, 1H), 2.05 – 1.90 (m, 1H); ${}^{13}C$ NMR (101 MHz, CDCl₃) δ 208.47, 199.05, 151.13, 150.05, 145.41, 136.76, 132.45, 129.77, 128.59, 125.07, 121.01, 120.25, 105.82, 80.86, 36.55, 35.67, 28.33, 21.74; **HRMS** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₂₂H₂₀O₄S 381.1155; Found 381.1173; **IR** (Thin Film, neat, cm⁻¹): 2933, 1713, 1445, 1269, 1174, 1161, 1053, 961, 793, 730.

4-(1-(3-methoxyphenyl)propa-1,2-dien-1-yl)cyclohex-2-en-1-one (5d):

Reaction performed on 0.13 mmol scale (30 mg); Yield: 75% (24 mg); Physical appearance: brown gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H</u> <u>NMR</u> (400 MHz, CDCl₃) δ 7.31 (t, J = 7.9 Hz, 1H), 7.03 (d, J = 7.9 Hz, 1H), 7.00 – 6.94 (m, 2H), 6.83 (dd, J = 8.5, 2.6 Hz, 1H), 6.08 (dd, J = 10.2, 2.3 Hz, 1H), 5.24 – 5.13 (m, 2H), 3.85 (s, 3H), 3.70 – 3.62 (m, 1H), 2.65 – 2.56 (m,

1H), 2.51 - 2.42 (m, 1H), 2.38 - 2.28 (m, 1H), 2.13 - 2.01 (m, 1H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 208.40, 199.44, 159.94, 151.89, 136.25, 129.68, 129.44, 118.72, 112.55, 112.41, 106.63, 80.29, 55.29, 36.66, 35.98, 28.50; <u>HRMS</u> (ESI-ToF) *m/z*: [M+Na]⁺ Calcd. for C₁₆H₁₆O₂ 263.1043; Found 263.1074; <u>IR</u> (Thin Film, neat, cm⁻¹): 3443, 2955, 2923, 2852, 1713, 1677, 1597, 1581, 1487, 1430, 1377, 1260, 1167, 783, 699.

3-(2-(p-tolyl)buta-2,3-dien-1-yl)cyclohex-2-en-1-one (5e):

Reaction performed on 0.096 mmol scale (20 mg); Yield: 53% (12 mg); Physical appearance: colorless gel; TLC R_f 0.3 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.25 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 6.01 (s, 1H), 5.11 (t, J = 2.5 Hz, 2H), 3.39 – 3.35 (m, 2H), 2.41 – 2.35

(m, 4H), 2.35 (s, 3H), 2.04 – 1.96 (m, 2H); ${}^{13}C$ NMR (101 MHz, CDCl₃) δ 209.23, 199.87, 164.35, 163.41, 136.84, 132.11, 129.27, 127.37, 127.02, 125.76, 100.93, 78.20, 39.27, 37.34, 29.39, 22.61, 21.07; <u>HRMS</u> (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₇H₁₈O 239.1430; Found 239.1424; <u>IR</u> (Thin Film, neat, cm⁻¹): 3440, 2925, 1718, 1556, 1607, 1411, 1351, 1182, 817.

3-(1-(3-oxocyclohex-1-en-1-yl)buta-2,3-dien-2-yl)phenyl 4-methylbenzenesulfonate (5f):

Reaction performed on 0.57 mmol scale (20 mg); Yield: 40% (8 mg); Physical appearance: colorless gel; TLC R_f 0.2 (4:1 Petroleum ether:EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.25 – 7.18 (m, 2H), 7.0 (s, 1H), 6.78 (dt, J = 7.1, 2.1 Hz, 1H), 5.92 (s, 1H), 5.12 (t, J = 8.4 Hz, 2H), 3.29 (s, 2H), 2.47 (s, 3H), 2.42 – 2.34 (m, 4H), 2.07 – 1.97 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 209.45, 199.63, 162.40, 149.96,

145.34, 137.23, 132.34, 129.76, 129.52, 128.55, 127.32, 124.46, 120.60, 119.86, 100.25, 78.90, 38.80, 37.31, 29.56, 22.58, 21.72; **HRMS** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₂₃H₂₂O₄S 395.1312; Found 395.1295; **IR** (Thin Film, neat, cm⁻¹): 2931, 1711, 1435, 1271, 1184, 1171, 1063, 965, 794, 731.

methyl (E)-3-(6-(3-oxocyclohex-1-en-1-yl)hexa-1,2,5-trien-3-yl)benzoate (5g):

Reaction performed on 0.057 mmol scale (40 mg); Yield: 31% (8.2 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.81 (dd, J = 7.7, 1.4 Hz, 1H), 7.49 (td, J = 7.6, 1.4 Hz, 1H), 7.38 – 7.31 (m, 2H), 6.32 – 6.23 (m, 2H), 5.91 (s, 1H), 4.90 (t, J = 3.1 Hz, 2H), 3.91 (s, 3H), 3.20 – 3.24 (m, 2H), 2.47 (t, J = 6.0 Hz, 2H), 2.42 (t, J = 6.6 Hz, 2H), 2.09 – 2.00 (m,

2H); ${}^{13}C$ NMR (101 MHz, CDCl₃) δ 207.29, 198.89, 180.68, 157.22, 135.14, 132.76, 131.66, 130.20, 129.60, 127.32, 127.00, 52.25, 37.68, 36.98, 25.10, 22.31; **HRMS** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₂₀H₂₀O₃ 309.1485; Found 309.1458 mass data; **IR** (Thin Film, neat, cm⁻¹): 2924, 1715, 1433, 1259, 1192, 1131, 1082, 965, 762, 734.

Unsuccessful substrates:

(6) General procedures and analytical data of the γ -alkylation and allenylation of α,β -unsaturated esters:

Scheme S6: Optimization studies for the *p*-alkylation of silyl ketene acetals:

EtO	+ R $\xrightarrow{Pd(OAc)_2, D^tBPF, Bu_3SnF(1.4 equiv)}_{CsF(1.4 equiv), DCM}$ Eto	R
Sr. No.	Condition	Yield
1.	Pd(OAc) ₂ (2.5 mol%), D'BPF (2.5 mol%), 70 °C, 8 h	Trace
2.	Pd(OAc) ₂ (2.5 mol%), D'BPF (2.5 mol%), 25 °C, 12 h	Trace
3.	Pd(OAc) ₂ (2.5 mol%), D'BPF (2.5 mol%), 60 °C, 6 h, toluene or THF	Trace
4.	Pd(OAc) ₂ (5 mol%), D'BPF (5 mol%), 50 °C, 24 h	50%
5.	Pd(OAc) ₂ (2.5 mol%), D'BPF (2.5 mol%), 50 °C, 20–24 h	87%

(7) General procedures and analytical data of the γ -alkylation and allenylation of α,β -unsaturated esters:

Scheme S7: Procedure for the *p*-alkylation and allenylation of silyl ketene acetal:

In a pressure tube equipped with a magnetic stir bar, the silyl ketene acetal (0.39 mmol, 2.8 equiv) and benzyl bromide (0.14 mmol, 1.0 equiv) were dissolved in dry DCM (2 mL) and the solution was degassed for 10 min with argon. The tube was sealed and moved into the glovebox. This was followed by the addition of Pd(OAc)₂ (3.3 mg, 0.0035 mmol, 0.025 equiv), D'BPF (3.9 mg, 0.0035 mmol, 0.025 equiv), CsF (29 mg, 0.19 mmol, 1.4 equiv) and Bu₃SnF (60 mg, 0.19 mmol, 1.4 equiv). The tube was tightly fitted with a Teflon screw cap and moved out of the glovebox. The reaction mixture was heated to 50 °C in an oil bath and maintained at that temperature for 24 hours. Upon cooling to room temperature, the reaction mixture was diluted with about 20 mL of DCM, and the resulting slurry was filtered through a pad of Celite, eluting with DCM. The filtrate was extracted with DCM and washed successively with 1 M NaOH and water. The combined organic extract was dried over anhyd. Na₂SO₄ and filtered. Upon concentration under reduced pressure, the crude product was purified by silica gel flash column chromatography.

ethyl (E)-5-(4-nitrophenyl)pent-2-enoate (7a):

Reaction performed on 0.093 mmol scale (20 mg); Yield: 87% (20 mg); Physical appearance: colorless gel; TLC R_f 0.4 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.18 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 7.02 – 6.91 (m, 1H), 5.86 (dt, J = 15.6, 1.6 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.92 (t, J = 7.4 Hz, 2H), 2.63 – 2.54 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.28, 148.42, 146.64, 146.50, 129.19,

123.81, 122.64, 60.38, 34.17, 33.12, 14.25; **HRMS** (ESI-ToF) *m*/*z*: [M+Na]⁺ Calcd. for C₁₅H₁₅NO₄ 274.1074; Found 274.1067; **IR** (Thin Film, neat, cm⁻¹): 2917, 1717, 1655, 1530, 1350, 1278, 1037, 853.

ethyl (E)-5-(4-cyanophenyl)pent-2-enoate (7b):

Reaction performed on 0.10 mmol scale (20 mg); Yield: 70% (17.5 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.61 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 6.96 (dt, J = 15.6, 6.8 Hz, 1H), 5.85 (dt, J = 15.6, 1.6 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 2.87 (t, J = 7.7 Hz, 2H), 2.60 – 2.51 (m, 2H), 1.30 (t, J = 7.1Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.33, 146.68, 146.30, 132.37,

129.18, 122.54, 118.93, 110.23, 60.37, 34.42, 33.14, 14.25; **<u>HRMS</u>** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₄H₁₅NO₂ 230.1176; Found 230.1188; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2961, 2924, 2852, 1718, 1033, 801, 762. 635.

ethyl (E)-5-(4-chlorophenyl)pent-2-enoate (7c):

Reaction performed on 0.097 mmol scale (20 mg); Yield: 65% (14 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H, merged with chloroform peak), 7.13 (d, J = 8.2 Hz, 2H), 6.99 (dt, J = 15.6, 6.7 Hz, 1H), 5.85 (dt, J =15.6, 1.5 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.77 (t, J = 7.5 Hz, 2H), 2.56 – 2.45 (m, 2H), 1.31 (t, J = 7.2 Hz, 3H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 166.48,

147.45, 139.17, 131.93, 129.68, 128.59, 122.14, 99.98, 60.27, 33.70, 33.69, 14.26; **<u>HRMS</u>** (ESI-ToF) *m*/*z*: [M+H]⁺ Calcd. for C₁₃H₁₅ClO₂ 239.0833; Found 239.0815; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2981, 2932, 1715, 1653, 1492, 1367, 1311, 1266, 1194, 1148, 1091, 1038, 1014, 807.

ethyl (E)-5-(p-tolyl)pent-2-enoate (7d):

CDCl₃) δ 166.62, 148.20, 137.74, 135.63, 135.60, 129.15, 128.19, 121.77, 60.19, 34.04, 33.92, 21.00, 14.28; **<u>HRMS</u>** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₄H₁₈O₂ 219.1380; Found 219.1383; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2927, 1718, 1654, 1515, 1446, 1367, 1147, 973, 807.

ethyl (E)-5-(4-(*tert*-butyl)phenyl)pent-2-enoate (7e):

Reaction performed on 0.088 mmol scale (20 mg); Yield: 44% (10 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.34 (d, J = 8.3 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 7.09 – 7.00 (m, 1H), 5.89 (dt, J = 15.7, 1.5 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.77 (t, J = 7.8 Hz, 2H), 2.59 – 2.49 (m, 2H), 1.34 (s, 9H), 1.30 (t, J = 7.1Hz, 3H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 166.65, 148.99, 148.31, 137.76,

127.96, 125.37, 121.71, 60.20, 34.39, 33.88, 33.79, 31.39, 14.28; **<u>HRMS</u>** (ESI-ToF) m/z: [M+Na]⁺ Calcd. for C₁₇H₂₄O₂ 283.1669; Found 283.1682; **<u>IR</u>** (Thin Film, neat, cm⁻¹): 2971, 2934, 1712, 1651, 1482, 1357, 1260, 1168, 1097, 1026, 817, 806.

ethyl (E)-5-(3,5-dimethylphenyl)pent-2-enoate (7f):

Reaction performed on 0.10 mmol scale (20 mg); Yield: 80% (18.5 mg); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.03 (dt, J = 15.7, 6.8 Hz, 1H), 6.87 (s, 1H), 6.83 (s, 2H), 5.87 (dt, J = 15.7, 1.6 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.72 (t, J = 7.1Hz, 2H), 2.56 – 2.49 (m, 2H), 2.32 (s, 6H), 1.31 (t, J = 7.1 Hz, 3H); ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 166.68, 148.33, 140.78, 137.99, 127.80, 126.15, 121.68,

60.20, 34.21, 34.00, 21.27, 14.28; **HRMS** (ESI-ToF) *m/z*: [M+H]⁺ Calcd. for C₁₅H₂₀O₂ 233.1536; Found 233.1528; **IR** (Thin Film, neat, cm⁻¹): 2980, 2935, 1716, 1654, 1492, 1367, 1266, 1178, 1092, 1036, 837, 807.

(E)-5-(4-nitrophenyl)pent-2-enal (7g):

Reaction performed on 0.093 mmol scale (20 mg); Yield: 30% (6 mg); Rotational isomer: 1:0.1; Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 9.53 (d, J

= 7.8 Hz, 1H), 8.21 (d, J = 8.6 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 6.85 (dt, J = 15.7, 6.7 Hz, 1H), 6.20 – 6.13 (m, 1H), 2.98 (t, J = 7.7 Hz, 2H), 2.77 – 2.71 (m, 2H); ¹³C NMR (101 MHz, CDCl₃)) δ 193.50, 155.39, 147.87, 133.84, 129.18, 123.94, 33.88, 33.50; **HRMS** (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₁H₁₁NO₃ 206.0812; Found 206.0825; **IR** (Thin Film, neat, cm⁻¹): 3152, 2950, 1716, 1634, 1482, 1354, 1260, 1138, 1042, 1026, 830, 807.

ethyl (E)-7-(3-nitrophenyl)hept-2-en-6-ynoate (7h):

Reaction performed on 0.083 mmol scale (20 mg); Yield: 78% (16.7 mg, propagyl:allenyl 1.0:0.1); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.25 (t, J = 1.9 Hz, 1H), 8.15 (dd, J = 8.3, 2.2 Hz, 1H), 7.70 (dt, J = 7.6, 1.3 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.05 (dt, J = 15.6, 6.7 Hz, 1H), 5.97 (dt, J = 15.6, 1.7 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 2.63 (t, J = 6.7 Hz, 2H), 2.58 – 2.53 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H); <u>¹³C NMR</u> (101 MHz, CDCl₃) δ 166.37, 146.14, 137.36, 129.22, 126.47, 125.40, 122.79, 122.57, 91.36, 79.58, 60.42, 31.00, 18.38,

14.27; <u>**HRMS**</u> (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₅H₁₅NO₄ 274.1074; Found 274.1067; <u>**IR**</u> (Thin Film, neat, cm⁻¹): 2947, 1710, 1651, 1437, 1297, 1221, 1203, 754.

methyl (*E*)-3-(7-ethoxy-7-oxohept-5-en-1-yn-1-yl)benzoate (7i):

Reaction performed on 0.079 mmol scale (20 mg); Yield: 73% (16.5 mg, propargyl:allenyl, 1.0:0.22); Physical appearance: colorless gel; TLC R_f 0.5 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.99 – 7.94 (m, 1H), 7.61 – 7.56 (m, 1H), 7.39 (t, J = 7.7 Hz 1H), 7.12 – 6.99 (m, 1H), 5.99 – 5.92 (m, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.94 (s, 3H), 2.64 – 2.58 (m, 2H),

2.58 – 2.50 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.50, 166.43, 146.49, 135.79, 132.72, 130.30, 128.81, 128.36, 124.00, 122.57, 122.34, 89.38, 80.69, 60.35, 52.25, 31.26, 18.40, 14.27; **HRMS** (ESI-ToF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₈NO₄ 287.1278; Found 287.1290; **IR** (Thin Film, neat, cm⁻¹): 2953, 1720, 1655, 1438, 1296, 1229, 1202, 755.

ethyl (E)-7-(4-cyanophenyl)hept-2-en-6-ynoate (7j):

Reaction performed on 0.087 mmol scale (20 mg); Yield: 70% (16 mg, propagyl:allenyl 1:0.1); Physical appearance: colorless gel; TLC R_f 0.4 (5:1 Petroleum ether:EtOAc); <u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 7.04 (dt, J = 15.6, 6.7 Hz, 1H), 5.96 (d, J = 15.6 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 2.63 (t, J = 7.0 Hz, 2H), 2.54 (q, J = 6.9 Hz, 2H), 1.31 (t, J = 7.5 Hz, 3H); ¹³C NMR (101

MHz, CDCl₃) δ 166.33, 146.11, 132.15, 131.95, 128.56, 126.40, 122.76, 118.55, 111.16, 93.32, 80.45, 60.39, 30.98, 18.50, 14.27; **HRMS** (ESI-ToF) *m*/*z*: [M+Na]⁺ Calcd. for C₁₆H₁₅NO₂ 276.0995; Found 276.1017; **IR** (Thin Film, neat, cm⁻¹): 3468, 2925, 2229, 1720, 1607, 1405, 1370, 1212, 1095, 1019, 842.

(8) Control experiments (via GC):

We performed these studies to assess the role of the Pd-catalyst and exclude the possibility of a fluoridemediated vinylogous Mukaiyama-type alkylation.

(I) In a pressure tube equipped with a magnetic stir bar, the silyldienol ether (0.41 mmol, 2.8 equiv) and benzyl bromide (0.15 mmol, 1.0 equiv) were dissolved in dry DCM (2 mL) and the solution was degassed for 10 min with argon. The tube was sealed and moved into the glovebox. This was followed by the addition of CsF (62 mg, 0.42 mmol, 2.8 equiv) and dodecane (0.075 mmol, 0.5 equiv) as the internal standard. The tube was fitted tightly with a Teflon screw cap and moved out of the glovebox. The reaction mixture was heated to 70 °C in an oil bath. Aliquots were drawn at 15-minute intervals, and conversions were checked by GC-MS. The consumption of starting material(s) and the formation of product(s) was plotted with time (average of 3 runs).

Figure S1: Consumption of starting material(s) and product(s) formation

(II) In a pressure tube equipped with a magnetic stir bar, the silyldienol ether (0.41 mmol, 2.8 equiv) and benzyl bromide (0.15 mmol, 1 equiv) were dissolved in dry DCM (2 mL) and the solution was degassed for 10 min with argon. The tube was sealed and moved into the glovebox. This was followed by the addition of CsF (31 mg, 0.21 mmol, 1.4 equiv), Bu₃SnF (64 mg, 0.21 mmol, 1.4 equiv) and dodecane (0.075 mmol, 0.5 equiv) as the internal standard. The tube was fitted tightly with a Teflon screw cap and moved out of the glovebox. The reaction mixture was heated to 70 °C. Aliquots were drawn at 15-minute intervals, and conversions were checked by GC-MS. The consumption of starting material(s) and formation of product(s) was plotted with time (average of 3 runs).

Figure S2: Consumption of starting material and product formation

(III) In a pressure tube equipped with a magnetic stir bar, the silyl dienolether (0.41 mmol, 2.8 equiv) and benzyl bromide (0.15 mmol, 1 equiv) were dissolved in dry DCM (2 mL) and the solution was degassed for 10 min with argon. The tube was sealed and moved into the glovebox. This was followed by the addition of $Pd(OAc)_2$ (3.3 mg, 0.015 mmol, 0.1 equiv), D'BPF (7.8 mg, 0.015 mmol, 0.1 equiv), CsF (31 mg, 0.21 mmol, 1.4 equiv), Bu₃SnF (64 mg, 0.21 mmol, 1.4 equiv) and dodecane (0.075 mmol, 0.5 equiv) as the internal standard. The tube was fitted tightly with a Teflon screw cap and moved out of the glovebox. The reaction mixture was heated to 70 °C in an oil bath. Aliquots were drawn at 15-minute intervals, and conversions were checked by GC-MS. The consumption of starting material(s) and formation of product(s) was plotted with time (average of 3 runs).

Figure S3: Consumption of starting material and product formation

(9) X-ray Crystallographic Data:

X-ray crystallographic study of compound 3v

Sample preparation: 10 mg of 3v (red solid) was taken in a 10 mL beaker and dissolved in a minimal amount of chloroform. Hexane (5 mL) was added to the beaker along the wall. The beaker was capped loosely and kept at room temperature for slow evaporation. After about seven days, a single crystal was obtained which was subjected to X-ray diffraction.

Figure 1: Crystal structure of **3v** (CCDC 2343455), showing thermal ellipsoid at 50% probability level

Identification code	3v
Empirical formula	C15 H17 N O3
Formula weight	259.29
Temperature/K	99.00
Crystal system, space group	Orthorhombic, $P 2_1 2_1 2_1$
a/Å	7.1533(11)
b/Å	12.457(3)
c/Å	14.899(2)
α/°	90
β/°	90
γ/°	90
Volume/Å	1327.6(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.297
μ/mm^{-1}	0.090
F(000)	552.0
Crystal size/mm ³	0.153×0.136×0.124
Radiation Mo Kα	0.71073
2@ range for data collection/°	4.262 to 67.1
Index ranges	$-10 \le h \le 9, -17 \le k \le 18, -23 \le 1$ ≤ 20
Reflections collected	10550

Independent reflections	4670 [R _{int} = 0.0818, R _{sigma} =
	0.1163]
Data/restraints/parameters	4670/194/202
Goodness-of-fit on F ²	1.029
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0753, wR_2 = 0.1722$
Final R indexes [all data]	$R_1 = 0.1317, wR_2 = 0.2104$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.24

X-ray crystallographic study of compound 5a

Sample preparation: 10 mg of **5a** (red solid) was taken in a 10 mL beaker and dissolved in a minimal amount of chloroform. Hexane (5 mL) was added to the beaker along the wall. The beaker was capped loosely and kept at room temperature for slow evaporation. After about seven days, a single crystal was obtained which was subjected to X-ray diffraction.

Figure 2: Crystal structure of **5a** (CCDC 2343452), showing thermal ellipsoid at 50% probability level

Identification code	5a
Empirical formula	C15 H13 N O3
Formula weight	255.26
Temperature/K	99.00
Crystal system, space group	Monoclinic, Pc
a/Å	6.151(3)
b/Å	14.019(7)

c/Å	7.211(3)
α/°	90
β/°	95.579(17)
γ/°	90
Volume/Å	618.9(5)
Ζ	2
$\rho_{calc}g/cm^3$	1.370
μ/mm^{-1}	0.096
F(000)	268.0
Crystal size/mm ³	0.23×0.216×0.189
Radiation Mo Kα	0.71073
2Θ range for data collection/°	5.812 to 60.488
Index ranges	$-8 \le h \le 6, -19 \le k \le 19, -9 \le l \le 10$
Reflections collected	10262
Independent reflections	2984 [$R_{int} = 0.1178$, $R_{sigma} = 0.1163$]
Data/restraints/parameters	2984/274/235
Goodness-of-fit on F ²	1.024
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0684, wR_2 = 0.1446$
Final R indexes [all data]	$R_1 = 0.1289, wR_2 = 0.1762$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.28

(10) References:

- (a) G. Saini, A. Mondal and M. Kapur, *Org. Lett.*, 2019, **21**, 9071; (b) T. Q. Davies, J. J. Murphy, M. Dousset and A. Fürstner, *J. Am. Chem. Soc.*, 2021, **143**, 13489.
- 2. D. S. Huang and J. F. Hartwig, Angew. Chem., Int. Ed., 2010, 49, 5757.
- (a) S. Y. Min, H. X. Song, S. S. Yan, R. Yuan, J. H. Ye, B. Q. Wang, Y. Y. Gui and D. G. Yu, *Green Chem.*, 2023, 25, 6194. (b) Y. Gao, L. Y. Wang, T. Zhang, B. M. Yang and Y. Zhao, *Angew. Chem., Int. Ed.*, 2022, 61, e202200371, DOI: 10.1002/anie.202200371. (c) S. Kim, Y. Lee and E. J. Cho, *J. Org. Chem.* 2023, 88, 6382. (d) Z. Xiong, F. Xu, Y. Zhou, R. Zhang, Y. Zhang, Y. Chen, W. Yao and Z. Wang, *Org. Lett.* 2023, 25, 8302.
- 4. M. Yang, J. Fang, H. Liu, X. Lu, J. Zhou, Z. Mou and H. Wang, Adv. Synth. Catal., 2023, 365, 1806.
- 5. H. J. Zhang, Y. C. Xie and L. Yin, Nat. Commun., 2019, 10, 1.
- 6. Q. L. Yang, R. C. Ma, Z. H. Li, W. W. Li, G. R. Qu and H. M. Guo, Org. Chem. Front., 2022, 9, 4990.

(11) Copies of ¹H, ¹³C, ¹⁹F NMR and HRMS spectra:

S37

Display Report

Display Report

Bruker Compass DataAnalysis 4.0 printed: 13-05-2024 16:42:05 Page 1 of 1

S46

S51

Display Report

140 130 120 110 100 90 f1 (ppm) -10

MassHunter Qual 10.0 (End of Report)

Display Report

Display Report

Analysis Info

Acquisition Date 23-06-2023 10:45:06

Analysis Name D:\Data\USER DATA 20 Method HRLCMS-20 APR23.m Sample Name Prof.M.Kapur-PO-04-07 Comment

D:\Data\USER DATA 2023\June\22-june\Prof.M.Kapur-PO-04-07_1-A,6_01_2046.d

Operator Bruker

Instrument micrOTOF-Q 10330

Acquisition Parameter

Bruker Compass DataAnalysis 4.0 printed: 14-05-2024 14:18:23 Page 1 of 1

Bruker Compass DataAnalysis 4.0 printed: 13-08-2024 11:30:28 Page 1 of 1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S153

S159