Supporting Information

Metal-free four-component coupling of cyclic diarylchloronium salts,

tetrahydrothiophene, amines and carbon dioxide

Bangxiong Kang, Li Wei, Huanfeng Jiang and Chaorong Qi*

Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640, China

E-mail: crqi@scut.edu.cn

List of contents

A. General methods	S2
B. Optimization of reaction conditions	S2
C. General procedure for synthesis of carbamates	S3
D. Gram-scale synthesis of 4a	S4
E. Procedures for the synthesis of compounds 50-53	S4
F. Mechanistic Investigations	S6
G. Analytical data	S11
H. Crystal data and structure refinement	S35
I. Copies of NMR Spectroscopies	S37

A. General methods

All cyclic diarylchloronium salts were synthesized according to previously described methods.¹ Other reagents were obtained from commercial suppliers and used without further purification. ¹H and ¹³C NMR spectra were recorded with a Bruker AV 400 spectrometer using CDCl₃ or DMSO-*d6* as solvent and TMS as an internal standard. Reference values for residual solvents were taken as $\delta = 7.26$ ppm (CDCl₃), 2.50 ppm (DMSO-*d6*) for ¹H NMR; $\delta = 77.00$ ppm (CDCl₃), $\delta = 40.00$ ppm (DMSO-*d6*) for ¹³C NMR. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Coupling constants were given in Hertz (Hz). IR spectra were obtained as potassium bromide pellets between two potassium bromide pellets with a spectrometer. The data of HRMS was determined on a high-resolution mass spectrometer (LCMS-IT-TOF). X-ray structural analyses were conducted on an x-ray analysis instrument. Reactions were monitored by thin-layer chromatography (TLC) using UV light.

B. Optimization of reaction conditions

Table S1. The influence of solvent, base, reaction time and temperature on the reaction^a

6 ^c	K ₃ PO ₄	DCM	67/16/12/1
7	K ₃ PO ₄	THF	62/6/17/3
8	K ₃ PO ₄	MeCN	1/89/7/1
9	K ₃ PO ₄	DMC	61/21/15/0
10	K ₃ PO ₄	CHCl ₃	89/6/3/1
11	K ₃ PO ₄	^t BuOH	93/4/2/0
12 ^{<i>d</i>}	K ₃ PO ₄	^t BuOH	85/12/1/0
13 ^d	Cs_2CO_3	^t BuOH	99/0/1/0
14 ^e	Cs_2CO_3	^t BuOH	99/0/1/0
15 ^f	Cs ₂ CO ₃	^t BuOH	99(92)/0/1/0
16	Cs_2CO_3	MeOH	Complex mixture
17	Cs_2CO_3	EtOH	Complex mixture
18 ^g	Cs_2CO_3	'BuOH	97/2/0/1

^{*a*} Reaction conditions: **1a** (0.10 mmol), **2a** (0.20 mmol), **3a** (0.20 mmol), CO₂ (1 atm), base (0.30 mmol), solvent (2.0 mL), room temperature, 12 h. ^{*b*}The ratio was determined by GC-MS; the number in parentheses was isolated yield. ^{*c*}K₃PO₄ (2 equiv). ^{*d*} 6 h. ^{*e*}3 h. ^{*f*} 1 h. ^{*g*} 60 °C.

C. General procedure for synthesis of carbamates

To a 25 mL oven-dried Schlenk tube equipped with a magnetic stirring bar was added 1 (0.10 mmol, 1 equiv), Cs_2CO_3 (97.8 mg, 0.30 mmol, 3 equiv) successively. The tube was capped with a rubber septum, evacuated and backfilled with 1 atm CO₂. This evacuation/backfill sequence was repeated three times. Then, a solution of 2 (0.20 mmol, 2 equiv) in *tert*-butanol (1.0 mL) and 3 (0.20 mmol, 2 equiv) in *tert*-butanol (1.0 mL) was added to the vessel by syringe through the rubber septum cap respectively. The mixture was then stirred at room temperature for 1 h. After the reaction was completed, the reaction mixture was quenched with water, and extracted with ethyl acetate (3×10 mL) three times. The organic layer was then dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum and the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to give the desired product.

D. Gram-scale synthesis of 4a

To a 50 mL oven-dried two-necked round flask containing a magnetic stir bar was added **1a** (0.604 g, 2.0 mmol, 1 equiv), Cs₂CO₃ (1.9549 g, 6.0 mmol, 3 equiv) successively. The side-neck was capped with a rubber septum and the central neck is connected with a CO₂ balloon via a 3-way value. Then, the flask was evacuated and backfilled with CO₂ through the 3-way value. Subsequently, a solution of **2a** (353 μ L, 4.0 mmol, 2 equiv) in *tert*-butanol (5 mL) and **3a** (412 μ L, 4.0 mmol, 2 equiv) in *tert*-butanol (5 mL) was added to the vessel by syringe through the rubber septum cap on the side-neck respectively. The mixture was stirred at room temperature for 12 h. After the reaction was completed, the reaction mixture was quenched with water, and extracted with ethyl acetate (3×10 mL) three times. The organic layer was then dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum and the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (30:1) as the eluent to give the product **4a** as a pale yellow oil (0.7877g, 94%, *m:o* = 91:9).

E. Procedures for the synthesis of compounds 50-53

a) Procedure for the synthesis of compound 50 ref.2

To a 50 mL flame-dried round bottom flask was added **4a** (41.9 mg, 0.1 mmol, 1 equiv) and dry DCM (3 mL) and a magnetic stir bar. Then, a solution of *m*-CPBA (19 mg, 0.11 mmol) in 2 mL DCM was added dropwise to the reaction mixture at room temperature under stirring for 2 h. After the reaction was completed, the reaction mixture was quenched with NaHCO₃ (aq.), and extracted with ethyl acetate (3×10 mL) three times. The organic layer was then dried over anhydrous

 Na_2SO_4 , filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1) as the eluent to give the desired product **50** as a light yellow oil (37.0 mg, 85%).

b) Procedure for the synthesis of compound 51 ref.2

To a 50 mL flame-dried round bottom flask with a magnetic stir bar was added *m*-CPBA (38 mg, 0.22 mmol) and dry DCM (2 mL) as solvent. Then, a solution of **4a** (41.9 mg, 0.1 mmol) in 3 mL DCM was added dropwise under stirring at room temperature for 4 h. After the reaction was completed, the reaction mixture was quenched with NaHCO₃ (aq.), and extracted with ethyl acetate (3×10 mL) three times. The organic layer was then dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (5:1) as the eluent to give the desired product **51** as a light yellow oil (41.5 mg, 92%).

c) Procedure for the synthesis of compound 52 ref.3

To a 25 mL tube with a magnetic stir bar was added $Pd(OAc)_2$ (1.2 mg, 5 mol%), X-Phos (14.3 mg, 10 mol%), Cs₂CO₃ (97.8 mg, 0.30 mmol, 3 equiv) and **4a** (41.9 mg, 0.1 mmol, in 1 mL toluene) under a N₂ atmosphere, and the resultant solution was stirred at room temperature for 10 mins. Then, *p*-toluidine (16.1 mg, 0.15 mmol, 1.5 equiv, in 1 mL toluene) was added to the reaction mixture and stirred at 110 °C for 12 h under an N₂ atmosphere. After the reaction was completed, the mixture was cooled to room temperature, washed with water and then extracted with ethyl acetate (10 mL×3). The organic layer was then dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (30:1) as the eluent to give the

desired product 52 as a light yellow oil (44.1 mg, 90%).

d) Procedure for the synthesis of compound 53 ref.3

To a 25 mL tube with a magnetic stir bar was added $Pd(OAc)_2$ (1.2 mg, 5 mol%), X-Phos (14.3 mg, 10 mol%), Cs₂CO₃ (97.8 mg, 0.30 mmol, 3 equiv) and **4a** (41.9 mg, 0.1 mmol, in 1 mL toluene) under a N₂ atmosphere, and the resultant solution was stirred at room temperature for 10 mins. Then, 4-Tolylboronic acid (20.4 mg, 0.15 mmol, 1.5 equiv, in 1 mL toluene) was added to the reaction mixture and stirred at 110 °C for 12 h under an N₂ atmosphere. After the reaction was completed, the mixture was cooled to room temperature, washed with water and then extracted with ethyl acetate (10 mL×3). The organic layer was then dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (20:1) as the eluent to give the desired product **53** as a light yellow oil (40.8 mg, 86%).

F. Mechanistic Investigations

a) Cycloadditions with cyclic diarylchlorodonium salts (aryne capture experiment) ref.1

A 25 mL oven-dried Schlenk tube was charged with **1b-BF**₄ (27.4 mg, 0.10 mmol, 1 equiv.) and Cs_2CO_3 (97.8 mg, 0.30 mmol, 3 equiv). The Schlenk tube was evacuated and back refilled with Nitrogen three times. Subsequently, under Nitrogen, 2,5-dimethylfuran (16 µL, 0.15 mmol, 1.5 equiv) was added followed by *tert*-butanol (2.0 mL). The resulting heterogeneous mixture was stirred at room temperature for 1 hours. The conversion was controlled by GC-MS and TLC. After the reaction was completed, the reaction mixture was quenched with water, and extracted with ethyl acetate (3×10 mL) three times. The organic layer was then dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum and the residue was purified by column chromatography

on silica gel using petroleum ether/ethyl acetate (50:1) as the eluent to afford the desired product **100** as colorless oil (92%, 25.9 mg). ¹H NMR ratio of 70:30. ¹H NMR (400 MHz, CDCl₃): δ 7.49 – 7.42 (m, 1H), 7.33 – 7.25 (m, 3H), 7.15 (d, *J* = 7.2 Hz, 1H), 7.06 – 7.01 (m, 2H), 6.86 – 6.75 (m, 2H), 1.92 (d, *J* = 5.2 Hz, 3H), 1.33 (d, *J* = 12.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.0, 152.7, 150.7, 149.9, 147.3, 146.6, 146.5, 145.8, 139.0, 138.6, 133.5, 133.3, 132.0, 131.9, 131.4, 131.1, 129.6, 129.0(2), 129.0(0), 128.9, 126.6(8), 126.6(6), 126.5, 126.1, 125.1, 124.2, 117.7, 117.6, 89.6(4), 89.6(0), 88.1, 87.9, 16.4, 16.0, 15.4, 15.2.

b) Intermediate validation experiment: synthesis of aryl sulfide carbamates with cyclic sulfonium salts, diethylamine, and CO₂

To a 25 mL oven-dried Schlenk tube equipped with a magnetic stirring bar was added **56** (32.4 mg, 0.10 mmol, 1 equiv.), Cs₂CO₃ (97.8 mg, 0.30 mmol) successively. The Schlenk tube was capped with a rubber septum, evacuated and backfilled with 1 atm CO₂. This evacuation/backfill sequence was repeated three times. Then, a solution of diethylamine (20 μ L, 0.20 mmol) in *tert*-butanol (2.0 mL) was added to the vessel by syringe through the rubber septum cap. The mixture was then stirred at room temperature for 1 h. After the reaction was completed, the reaction mixture was quenched with water, and extracted with ethyl acetate (3×10 mL) three times. The organic layer was then dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum and the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (30:1) as the eluent to afford the desired product **57** as a pale yellow oil (95%, 28.0 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 4.06 (t, *J* = 6.0 Hz, 2H), 3.24 (s, 4H), 2.90 (t, *J* = 7.2 Hz, 2H), 2.31 (s, 3H), 1.77 – 1.65 (m, 4H), 1.08 (t, *J* = 7.2 Hz, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 155.9, 136.1, 132.5, 130.1, 129.6, 64.4, 41.7, 41.2, 34.1, 28.2, 25.8, 20.9, 14.0, 13.6. HRMS-ESI (m/z): calcd for C₁₆H₂₆NO₂S [M + H]⁺: 296.1679, found 296.1673.

c) Deuterated amine: synthesis of aryl sulfide carbamates with cyclic diarylchlorodonium salts, deuterated diethylamine, tetrahydrothiophene and CO₂

To a 25 mL oven-dried Schlenk tube equipped with a magnetic stirring bar was added 1c (33.2 mg, 0.10 mmol, 1 equiv.), Cs₂CO₃ (97.8 mg, 0.30 mmol) successively. The Schlenk tube was capped with a rubber septum, evacuated and backfilled with 1 atm CO₂. This evacuation/backfill sequence was repeated three times. Then, a solution of 2a (19 µL, 0.20 mmol) in CHCl₃ (1.0 mL) and d-3a (20 μ L, 0.20 mmol) in CHCl₃ (1.0 mL) was added to the vessel by syringe through the rubber septum cap respectively. The mixture was then stirred at room temperature for 1 h. After the reaction was completed, the reaction mixture was quenched with water, and extracted with ethyl acetate (3×10 mL) three times. The organic layer was then dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum and the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (30:1) as the eluent to afford the desired product as a pale yellow oil (80%, 35.9 mg). Regioselective ratio determined by ¹H NMR m:o = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, J = 7.6 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.10 - 7.04 (m, 2H), 6.94 (d, J = 2.4 Hz, 1H), 6.75 (dd, J = 8.4, 2.5 Hz, 1H), 4.10 - 4.01 (m, 4H), 3.23 (s, 4H), 2.80 (t, J = 6.4 Hz, 2H), 2.44 (s, 3H), 1.67 - 1.64 (m, 4H), 1.44 (t, J = 7.2 Hz, 3H), 1.08 (t, J = 7.6 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.7, 155.9, 139.5, 137.1, 136.5, 134.2, 133.0, 131.0, 130.1, 129.4, 125.8, 114.5, 110.9, 64.4, 63.5, 41.5, 41.2, 32.9, 28.3, 25.5, 20.8, 14.8, 13.9, 13.5.

S9

d) Proposed mechanism

On the basis of the above-mentioned observations and previous literatures,^{ref.3} a plausible mechanism for the formation of 4a is proposed in Scheme S1. Initially, deprotonation of cyclic diarylchloronium salt 1a in the presence of the base Cs₂CO₃ occurs to give an aryne intermediate **A**. Then, tetrahydrothiophene (2a) undergoes a *meta*-selective nucleophilic attack on the aryne intermediate **A**, generating an aryl anion **B**. Subsequently, intramolecular 1,4-proton shift of **B** will form a sulfur ylide intermediate **C**, which can undergo protonation to give a sulfonium ion **D**. Finally, the carbamate anion **E**, which is generated in situ from CO₂ and diethylamine (3a) in the presence of base, will readily interact with intermediate **D** to afford the carbamate product 4a.

Scheme S1

G. Analytical data

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (4a)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **4a** (41.4 mg, 99% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 91:9. ¹H NMR (400 MHz, CDCl₃): δ 7.32 - 7.29 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.14 - 7.05 (m, 2H), 4.09 (t, *J* = 6.0 Hz, 2H), 3.23 (d, *J* = 20.8 Hz, 4H), 2.96 (t, *J* = 6.8

Hz, 2H), 2.40 (s, 3H), 2.37 (s, 3H), 1.81 - 1.76 (m, 4H), 1.08 (s, 6H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 155.9, 138.7, 137.5, 137.0, 136.4, 135.6, 132.1, 131.0, 130.4, 129.7, 128.3, 127.7, 126.4, 64.4, 41.6, 41.1, 32.5, 28.4, 25.6, 20.8, 20.1, 13.9, 13.5. HRMS-ESI (*m/z*): calcd for C₂₃H₃₁CINO₂S [M + H]⁺: 420.1759, found 420.1750.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)-N,N-diethylbutan-1-amine (4b)

The crude product was purified by silica gel chromatography (PE: EA = 2:1 as the eluent) to give **4b** as a colorless oil. Regioselective ratio determined by ¹H NMR *m*:o = 91:9. ¹H NMR (400 MHz, CDCl₃): δ 7.30 (dd, J = 8.4, 2.0 Hz, 2H), 7.21 (dd, J = 7.6, 3.2 Hz, 2H), 7.14 – 7.10 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.54 (q, J = 7.2 Hz, 4H), 2.46 (t, J = 7.2 Hz, 2H), 2.39 (d, J = 10.0 Hz, 6H), 1.72 – 1.60 (m, 4H),

1.02 (t, J = 7.2 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 138.7, 137.5, 137.1, 136.3, 135.8, 132.1, 131.0, 130.4, 129.7, 128.3, 127.7, 126.3, 52.3, 46.8, 32.7, 29.7, 29.3, 27.0, 26.0, 20.8, 20.1, 11.4. HRMS-ESI (*m/z*): calcd for C₂₂H₃₁ClNS [M + H]⁺: 376.1860, found 376.1861.

2'-chloro-N,N-diethyl-4,4'-dimethyl-[1,1'-biphenyl]-3-amine (4c) and

2'-chloro-N,N-diethyl-4,4'-dimethyl-[1,1'-biphenyl]-2-amine (4c')

The crude product was purified by silica gel chromatography (PE as the eluent) to give **4c** and **4c**' as a yellow oil. Regioselective ratio determined by ¹H NMR m:o = 75:25. ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, J =6.4 Hz, 1H), 7.28 – 7.22 (m, 2H), 7.17 – 6.87 (m, 3H), 3.04 (q, J = 7.2 Hz, 3H), 2.91 – 2.85 (m, 1H), 2.38 (m, 6H), 1.05 (t, J = 7.2 Hz, 4.5H), 0.89 (t, J = 7.2 Hz, 1.5H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 149.2, 138.3, 137.8, 137.1, 134.4, 132.2, 132.1, 131.7, 131.1, 130.5, 130.4, 129.9, 127.6, 127.1, 124.0, 123.7, 122.2, 121.6, 47.4, 46.3, 20.8, 18.1, 12.5, 12.3.
HRMS-ESI (*m/z*): calcd for C₁₈H₂₃ClN [M + H]⁺: 288.1514, found 288.1513.

2-chloro-4,4'-dimethyl-1,1'-biphenyl (4d)

The crude product was purified by silica gel chromatography (PE as the eluent) to give **4d** as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 2.0 Hz, 1H), 7.33 (dd, *J* = 8.0, 5.6 Hz, 3H), 7.20 (dd, *J* = 7.6, 2.0 Hz, 1H), 2.51 (s, 3H), 2.46 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 138.4, 137.5, 137.1, 136.5, 132.1, 131.1, 130.3, 129.3, 128.7, 127.6, 21.2, 20.7. HRMS-ESI (*m/z*): calcd for C₁₄H₁₄Cl [M + H]⁺: 217.0779, found 217.0778.

4-((2'-chloro-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (5a-BF₄) and

4-((2'-chloro-[1,1'-biphenyl]-2-yl)thio)butyl diethylcarbamate (5a-BF₄)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **5a-BF**₄ and

5a-BF₄' (38.3 mg, 98% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR m:o = 75:25. ¹H NMR (400 MHz, CDCl₃): δ 7.47 – 7.44 (m, 1H), 7.43 – 7.39 (m, 1H), 7.35 – 7.28 (m, 4H), 7.27 – 7.15 (m, 2H), 4.09 (t, J = 6.0 Hz, 1.5H), 4.02 (t, J = 6.4 Hz, 0.5H), 3.23 (s, 4H), 2.99 (t, J = 6.8 Hz, 1.5H), 2.80 (t, J = 6.8 Hz, 0.5H), 1.81 – 1.74 (m, 3H), 1.69 – 1.60 (m, 1H), 1.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.8, 139.9(3), 139.9(0), 139.7, 139.3, 136.3, 135.8, 133.4, 132.2, 131.3, 131.1, 130.1, 129.8, 129.7, 129.2, 128.8, 128.6, 128.3, 128.2, 128.0, 126.8, 126.7, 126.2, 125.3, 64.2(0), 64.1(7), 41.5, 41.1, 33.1, 32.9, 28.1(0), 28.0(8), 25.6, 25.3, 13.8, 13.4. HRMS-ESI (m/z): calcd for C₂₁H₂₇ClNO₂S [M + H]⁺: 392.1446, found 392.1440.

4-((2'-chloro-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (5a-OMs) and 4-((2'-chloro-[1,1'-biphenyl]-2-yl)thio)butyl diethylcarbamate (5a-OMs['])

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **5a-OMs**

and **5a-OMs**' (37.5 mg, 96% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 75:25. ¹H NMR (400 MHz, CDCl₃): δ 7.47 – 7.44 (m, 1H), 7.43 – 7.39 (m, 1H), 7.35 – 7.28 (m, 4H), 7.27 – 7.15 (m, 2H), 4.09 (t, J = 6.0 Hz, 1.5H), 4.02 (t, J = 6.4 Hz, 0.5H), 3.23 (s, 4H), 2.99 (t, J = 6.8 Hz, 1.5H), 2.80 (t, J = 6.8 Hz, 0.5H), 1.81 – 1.74 (m, 3H), 1.69 – 1.60 (m, 1H), 1.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.8, 139.9(3), 139.9(0), 139.7, 139.3, 136.3, 135.8, 133.4, 132.2, 131.3, 131.1, 130.1, 129.8, 129.7, 129.2, 128.8, 128.6, 128.3, 128.2, 128.0, 126.8, 126.7, 126.2, 125.3, 64.2(0), 64.1(7), 41.5, 41.1, 33.1, 32.9, 28.1(0), 28.0(8), 25.6, 25.3, 13.8, 13.4. HRMS-ESI (*m*/*z*): calcd for C₂₁H₂₇CINO₂S [M + H]⁺: 392.1446, found 392.1440.

4-((2'-chloro-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (5a-OTf) and 4-((2'-chloro-[1,1'-biphenyl]-2-yl)thio)butyl diethylcarbamate (5a-OTf)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **5a-OTf** and

5a-OTf (20.3 mg, 52% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 75:25. ¹H NMR (400 MHz, CDCl₃): δ 7.47 – 7.44 (m, 1H), 7.43 – 7.39 (m, 1H), 7.35 – 7.28 (m, 4H), 7.27 – 7.15 (m, 2H), 4.09 (t, J = 6.0 Hz, 1.5H), 4.02 (t, J = 6.4 Hz, 0.5H), 3.23 (s, 4H), 2.99 (t, J = 6.8 Hz, 1.5H), 2.80 (t, J = 6.8 Hz, 0.5H), 1.81 – 1.74 (m, 3H), 1.69 – 1.60 (m, 1H), 1.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.8, 139.9(3), 139.9(0), 139.7, 139.3, 136.3, 135.8, 133.4, 132.2, 131.3, 131.1, 130.1, 129.8, 129.7, 129.2, 128.8, 128.6, 128.3, 128.2, 128.0, 126.8, 126.7, 126.2, 125.3, 64.2(0), 64.1(7), 41.5, 41.1, 33.1, 32.9, 28.1(0), 28.0(8), 25.6, 25.3, 13.8, 13.4. HRMS-ESI (*m*/*z*): calcd for C₂₁H₂₇CINO₂S [M + H]⁺: 392.1446, found 392.1440.

4-((2'-chloro-4,4'-dimethoxy-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (6)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **6** (44.2 mg, 98% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, *J* = 8.4 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 7.01 (d, *J* = 2.4 Hz, 1H), 6.92 (d, *J* = 2.4 Hz, 1H), 6.84 (dd, *J* = 8.4, 2.4 Hz, 1H),

6.75 (dd, J = 8.4, 2.6 Hz, 1H), 4.02 (t, J = 6.0 Hz, 2H), 3.83 (d, J = 3.6 Hz, 6H), 2.80 (t, J = 6.8 Hz, 2H), 1.70 – 1.64 (m, 4H), 1.07 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 159.5, 159.3, 155.8, 137.7, 134.4, 132.3, 131.9, 131.4, 131.3, 114.5, 113.7, 112.5, 110.2, 64.3, 55.4, 55.2, 41.6, 41.1, 32.7, 28.2, 25.3, 13.9, 13.4. HRMS-ESI (*m*/*z*): calcd for C₂₃H₃₁ClNO₄S [M + H]⁺: 452.1657, found 452.1653.

4-((2',4,4'-trichloro-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (7) and 4-((2',4,4'-trichloro-[1,1'-biphenyl]-2-yl)thio)butyl diethylcarbamate (7['])

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give 7 and 7'

(32.1 mg, 70% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 60:40. ¹H NMR (400 MHz, CDCl₃): δ 7.49 (t, *J* = 2.0 Hz, 1H), 7.42 - 7.32 (m, 1H), 7.31 - 7.26 (m, 2H), 7.24 - 7.16 (m, 1H), 7.13 - 7.04 (m, 1H), 4.10 (t, *J* = 5.6 Hz, 1.2H), 4.05 (t, *J* = 6.0 Hz, 0.8H), 3.24 (d, *J* = 16.0 Hz, 4H), 2.99 (t, *J* = 6.8 Hz, 1.2H), 2.85 (t, *J* = 7.2 Hz, 0.8H), 1.82 - 1.79 (m, 2.4H), 1.72 - 1.65 (m, 1.6H), 1.09 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.7(8), 155.7(7), 138.5, 137.5, 137.2, 136.6, 136.4, 136.0, 134.5, 134.4, 134.3, 134.1, 133.0, 132.8, 132.1, 131.8, 131.1, 129.8, 129.3, 128.6, 127.2, 127.0, 126.9(4), 126.8(8), 125.3, 64.2, 64.1, 41.6, 41.1, 32.6, 32.0, 28.3, 28.1, 25.1(4), 25.1(1), 14.0, 13.9. HRMS-ESI (*m*/*z*): calcd for C₂₁H₂₅Cl₃NO₂S [M + H]⁺: 460.0666, found 460.0663.

4-((2'-chloro-5,5'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (8) and 4-((2'-chloro-5,5'-dimethyl-[1,1'-biphenyl]-2-yl)thio)butyl diethylcarbamate (8')

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the

eluent) to give **8** and **8**' (37.7 mg, 90% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 76:24. ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.31 (m, 1H), 7.20 (d, J = 2.0 Hz, 1H), 7.15 – 7.11 (m, 2H), 7.10 – 7.05 (m, 1H), 7.03 – 6.99 (m, 1H), 4.09 (t, J = 6.0 Hz, 1.52H), 4.01 (t, J = 5.6 Hz, 0.48H), 3.23 (t, J = 18.4 Hz, 4H), 2.98 (t, J = 6.8 Hz, 1.52H), 2.76 (t, J = 7.2 Hz, 0.48H), 2.36 (s, 2.3H), 2.34 (s, 3.7H), 1.79 – 1.75 (m, 3H), 1.68 – 1.57 (m, 1H), 1.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.8, 140.6, 139.9, 139.5, 139.3, 138.1, 136.5, 136.0, 135.9, 135.5, 131.9, 131.8, 130.8, 130.2, 129.5(0), 129.4(8), 129.4, 129.2, 129.1, 129.0, 128.8, 128.7, 127.7, 126.8, 64.2(9), 64.2(8), 41.5, 41.0, 33.4, 33.1, 28.1(4), 28.1(0), 25.7, 25.4, 21.2, 20.8, 20.7(1), 20.7(0), 13.9, 13.4. HRMS-ESI (*m*/*z*): calcd for C₂₃H₃₁ClNO₂S [M + H]⁺: 420.1759, found 420.1753.

4-((2'-chloro-3'-methyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (9) and

4-((2'-chloro-3'-methyl-[1,1'-biphenyl]-2-yl)thio)butyl diethylcarbamate (9')

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **9** and **9**' (38.9 mg, 96% yield) as a

pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 73:27. ¹H NMR (400 MHz, CDCl₃): δ 7.42 – 7.37 (m, 1H), 7.35 – 7.27 (m, 2H), 7.25 – 7.21 (m, 2H), 7.20 – 7.08 (m, 2H), 4.09 (t, J = 6.0 Hz, 1.44H), 4.03 (t, J = 6.0 Hz, 0.56H), 3.24 (s, 4H), 2.99 (t, J = 6.8 Hz, 1.44H), 2.82 (d, J = 6.8 Hz, 0.56H), 2.45 (s, 3H), 1.82 – 1.75 (m, 3H), 1.69 – 1.63 (m, 1H), 1.09 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.9, 140.7, 140.6, 140.3, 139.7, 136.9, 136.5, 136.2, 135.8, 133.6, 132.6, 130.2, 130.1, 130.0, 129.8, 128.8, 128.7, 128.4, 128.2, 128.1, 128.0, 127.0, 126.1,

125.8, 125.3, 64.3(3), 64.3(0), 41.6, 41.1, 33.2, 32.9, 28.2, 25.7, 25.4, 20.9, 20.8, 14.0, 13.5. HRMS-ESI (*m/z*): calcd for C₂₂H₂₉ClNO₂S [M + H]⁺: 406.1602, found 406.1598.

4-((2'-chloro-3',5-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (10) and 4-((2'-chloro-3',5-dimethyl-[1,1'-biphenyl]-2-yl)thio)butyl diethylcarbamate (10')

as the eluent) to give **10** and **10**' (41.1 mg, 98% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 76:24. ¹H NMR (400 MHz, CDCl₃): δ 7.35 – 7.06 (m, 5H), 7.02 – 7.00 (m, 1H), 4.09 (t, J = 5.6 Hz, 1.52H), 4.01 (t, J = 6.0 Hz, 0.48H), 3.24 (s, 4H), 2.98 (t, J = 6.8 Hz, 1.52H), 2.98 (t, J = 6.8 Hz, 0.48H), 2.45 (s, 3H), 2.36 (d, J = 8.0 Hz, 3H), 1.79 – 1.73 (m, 3H), 1.67 – 1.57 (m, 1H), 1.09 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.9, 141.2, 140.6, 140.5, 140.0, 138.1, 136.9, 136.4, 135.9, 135.6, 133.6, 132.6, 131.9, 130.9, 130.1, 129.9, 129.4, 129.0, 128.8, 128.6(9), 128.6(5), 127.8, 126.9, 126.1, 125.7, 64.4, 64.3, 41.6, 41.1, 33.5, 33.2, 28.2, 28.1, 25.7, 25.5, 21.3, 20.9, 20.8(4), 20.8(0), 14.0, 13.5. HRMS-ESI (*m*/*z*): calcd for C₂₃H₃₁CINO₂S [M + H]⁺: 420.1759, found 420.1752.

4-((2'-chloro-3',4-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (11)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **11** (41.1 mg, 98% yield) as a pale yellow oil. Regioselective ratio determined by 1H NMR m:o = 85:15. ¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, *J* = 1.6 Hz, 1H), 7.24 –

7.16 (m, 4H), 7.12 (dd, J = 8.0, 2.0 Hz, 1H), 4.10 (t, J = 6.0 Hz, 2H), 3.24 (d, J = 11.6 Hz, 4H), 2.96 (t, J = 6.8 Hz, 2H), 2.46 (s, 3H), 2.42 (s, 3H), 1.83 – 1.76 (m, 4H), 1.09 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.9, 140.4, 138.2, 136.9, 136.3, 135.5, 132.7, 129.9, 129.6, 128.8, 128.3, 126.4, 126.1, 64.4, 41.6, 41.2, 32.4, 28.3, 25.6, 21.0, 20.0, 13.9, 13.5. HRMS-ESI (m/z): calcd for C₂₃H₃₁ClNO₂S [M + H]⁺: 420.1759, found 420.1753.

4-((2'-chloro-4-methoxy-3'-methyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (12)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **12** (43.1 mg, 99% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.25 - 7.23 (m, 1H), 7.18 (t, *J* = 7.6

Hz, 1H), 7.10 – 7.06 (m, 2H), 6.94 (d, J = 2.8 Hz, 1H), 6.76 (dd, J = 8.4, 2.8 Hz, 1H), 4.03 (t, J = 5.6 Hz, 2H), 3.83 (s, 3H), 3.23 (d, J = 21.6 Hz, 4H), 2.81 (t, J = 6.8 Hz, 2H), 2.44 (s, 3H), 1.67 – 1.65 (m, 4H), 1.08 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 159.1, 155.7, 139.2, 137.0, 136.3, 134.0, 132.9, 130.8, 130.0, 129.2, 125.7, 113.7, 110.2, 64.2, 55.1, 41.5, 41.0, 32.7, 28.1, 25.3, 20.7, 13.9, 13.4. HRMS-ESI (*m/z*): calcd for C₂₃H₃₁ClNO₃S [M + H]⁺: 436.1708, found 436.1704.

4-((2'-chloro-4-ethoxy-3'-methyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (13)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **13** (42.2 mg, 94% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.25 - 7.23 (m, 1H), 7.18 (t, *J* =

7.6 Hz, 1H), 7.10 – 7.04 (m, 2H), 6.93 (d, J = 2.4 Hz, 1H), 6.75 (dd, J = 8.4, 2.4 Hz, 1H), 4.10 – 4.01 (m, 4H), 3.23 (d, J = 20.4 Hz, 4H), 2.81 (t, J = 6.8 Hz, 2H), 2.44 (s, 3H), 1.67 – 1.65 (m, 4H), 1.44 (t, J = 6.8 Hz, 3H), 1.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.6, 155.9, 139.4, 137.0, 136.4, 134.1, 132.8, 130.9, 130.1, 129.3, 125.7, 114.3, 110.8, 64.3, 63.4, 41.6, 41.1, 32.8, 28.2, 25.4, 20.8, 14.8, 14.0, 13.5. HRMS-ESI (*m*/*z*): calcd for C₂₄H₃₃ClNO₃S [M + H]⁺: 450.1864, found 450.1859.

4-((2'-chloro-4-isopropoxy-3'-methyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (14)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **14** (44.4 mg, 96% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR m:o = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, J = 6.8 Hz, 1H), 7.17 (t, J

= 7.6 Hz, 1H), 7.10 – 7.03 (m, 2H), 6.91 (d, *J* = 2.0 Hz, 1H), 6.74 (dd, *J* = 8.4, 2.4 Hz, 1H), 4.61 – 4.55 (m, 1H), 4.02 (t, *J* = 5.2 Hz, 2H), 3.23 (d, *J* = 24.0 Hz, 4H), 2.80 (t, *J* = 6.8 Hz, 2H), 2.44

(s, 3H), 1.67 - 1.64 (m, 4H), 1.37 (d, J = 6.0 Hz, 6H), 1.08 (s, 6H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 157.6, 155.8, 139.4, 137.0, 136.4, 134.1, 132.7, 130.9, 130.0, 129.3, 125.7, 115.5, 111.9, 69.8, 64.3, 41.1(2), 41.1(0), 32.8, 28.2, 25.4, 22.1, 22.0, 20.8, 13.9, 13.5. HRMS-ESI (*m/z*): calcd for C₂₅H₃₆ClNO₃S [M + H]⁺: 464.2021, found 464.2017.

4-((2'-chloro-5-cyano-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (15a)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 20:1 as the eluent) to give **15a** (26.2 mg, 63% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR m:o = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.63 - 7.48 (m,

4H), 7.38 – 7.30 (m, 3H), 4.11 (t, J = 5.2 Hz, 2H), 3.22 (s, 4H), 3.01 (t, J = 6.4 Hz, 2H), 1.83 – 1.77 (m, 4H), 1.09 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.8, 140.8, 139.1, 137.6, 133.1, 132.1, 130.9, 130.1, 129.9, 129.8, 129.6, 127.1, 118.1, 112.9, 64.0, 41.7, 41.1, 32.6, 28.1, 25.4, 13.9, 13.4. HRMS-ESI (m/z): calcd for C₂₂H₂₆ClN₂O₂S [M + H]⁺: 417.1398, found 417.1393.

4-((2'-chloro-5'-cyano-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (15b)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 20:1 as the eluent) to give **15b** (10.4 mg, 25% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR m:o = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.39 – 7.32 (m, 4H), 7.22

(d, J = 6.8 Hz, 1H), 4.06 (t, J = 5.6 Hz, 2H), 3.23 (d, J = 6.8 Hz, 4H), 2.97 – 2.87 (m, 2H), 1.72 (t, J = 3.6 Hz, 4H), 1.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.8, 144.6, 139.0, 136.9, 133.3, 133.1, 131.6, 131.1, 129.9, 129.8, 126.8, 125.5, 118.7, 107.8, 64.0, 41.7, 41.2, 31.6, 28.3, 24.9, 13.9, 13.5. HRMS-ESI (m/z): calcd for C₂₂H₂₆ClN₂O₂S [M + H]⁺: 417.1398, found 417.1394.

Methyl 2'-chloro-5-((4-((diethylcarbamoyl)oxy)butyl)thio)-[1,1'-biphenyl]-3-carboxylate (16a)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 20:1 as the eluent) to give **16a** (32.7 mg, 73% yield) as a pale yellow oil. Regioselective ratio determined by

S18

¹H NMR *m*:*o* = 91:9. ¹H NMR (400 MHz, CDCl₃): δ 8.01 – 7.98 (m, 1H), 7.96 – 7.88 (m, 1H), 7.57 – 7.53 (m, 1H), 7.49 – 7.38 (m, 1H), 7.36 – 7.33 (m, 2H), 7.24 – 7.14 (m, 1H), 4.09 (t, *J* = 5.6 Hz, 2H), 3.92 (d, *J* = 1.6 Hz, 3H), 3.23 (d, *J* = 17.2 Hz, 4H), 3.01 (dt, *J* = 16.0, 6.8 Hz, 2H), 1.81 – 1.76 (m, 4H), 1.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.4, 166.1, 155.9, 140.2, 140.1, 139.1, 138.9, 137.5, 137.4, 136.7, 133.7, 132.4, 132.3, 131.1, 130.7, 130.2, 130.0, 129.7, 129.6, 129.2, 128.9, 128.6(4), 128.6(0), 128.4, 127.9, 127.0, 126.9, 64.3, 64.3, 52.3(2), 52.3(0), 41.7, 41.1, 33.2, 33.1, 28.2(3), 28.2(1), 25.7, 25.6, 14.0, 13.5. HRMS-ESI (m/z): calcd for C₂₃H₂₉CINO₄S [M + H]⁺: 450.1500, found 450.1494.

Methyl 6-chloro-3'-((4-((diethylcarbamoyl)oxy)butyl)thio)-[1,1'-biphenyl]-3-carboxylate

(16b)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 20:1 as the eluent) to give **16b** (9.0 mg, 20% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 8.00 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.81 (d, *J* = 2.0 Hz,

1H), 7.50 – 7.47 (m, 1H), 7.38 – 7.31 (m, 3H), 7.24 (d, J = 2.0 Hz, 1H), 4.06 (t, J = 6.0 Hz, 2H), 3.90 (s, 3H), 3.23 (d, J = 23.6 Hz, 4H), 2.98 – 2.89 (m, 2H), 1.74 – 1.70 (m, 4H), 1.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.7, 155.9, 143.6, 138.4, 138.3, 133.6, 131.3, 131.0, 129.6, 129.5, 129.4, 126.7, 126.4, 125.3, 64.2, 52.1, 41.7, 41.3, 31.9, 28.4, 25.2, 14.0, 13.5. HRMS-ESI (m/z): calcd for C₂₃H₂₉ClNO₄S [M + H]⁺: 450.1500, found 450.1497.

4-((2'-chloro-4'-methyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (17a) and

4-((2'-chloro-4-methyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (17b)

Following the general procedure, the crude product was purified by silica gel chromatography (PE:

EA = 30:1 as the eluent) to give **17a** and **17b** (38.9 mg, 96% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR

m:*o* = 85:15. ¹H NMR (400 MHz, CDCl₃): δ 7.46 - 7.38 (m, 1H), 7.33 - 7.27 (m, 3H), 7.25 - 7.05 (m, 3H), 4.10 - 4.01 (m, 2H), 3.22 (d, *J* = 18.0 Hz, 4H), 2.99 - 2.77 (m, 2H), 2.40 - 2.35 (m, 3H),

1.80 - 1.61 (m, 4H), 1.07 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.8, 139.9, 138.8, 137.4, 136.8, 136.5, 135.6, 132.3, 131.9, 131.1, 130.8, 130.3, 129.8(2), 129.8(0), 129.6, 128.4, 128.3, 128.2, 127.8, 127.6, 126.7, 126.3, 64.3, 41.6, 41.0, 33.1, 32.4, 28.2, 28.1, 25.6, 25.5, 20.7, 20.0, 13.9, 13.4. HRMS-ESI (*m/z*): calcd for C₂₂H₂₉ClNO₂S [M + H]⁺: 406.1602, found 406.1597.

4-((2'-chloro-6'-methyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (18a) and 4-((2'-chloro-6-methyl-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (18b) and 4-((2'-chloro-6'-methyl-[1,1'-biphenyl]-2-yl)thio)butyl diethylcarbamate (18a') and 4-((2'-chloro-6-methyl-[1,1'-biphenyl]-2-yl)thio)butyl diethylcarbamate (18b') and

general procedure, the crude product purified by was silica gel chromatography (PE: EA = 30:1 as the eluent) to give 18 and 18' (38.5 mg, 95% yield) as a pale yellow oil. Regioselective ratio

the

determined by ¹H NMR *m*:*o* = 67:33. ¹H NMR (400 MHz, CDCl₃): δ 7.50 - 7.29 (m, 3H), 7.25 -7.15 (m, 3H), 7.13 – 6.98 (m, 1H), 4.09 – 4.02 (m, 2H), 3.22 (d, J = 14.0 Hz, 4H), 2.99 – 2.80 (m, 2H), 2.08 - 1.99 (m, 3H), 1.77 - 1.67 (m, 4H), 1.09 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.9, 139.9, 139.8, 139.5, 138.9, 138.7, 138.6, 138.3, 137.1, 136.6, 136.2, 136.0, 134.3, 133.8, 133.6, 133.4, 133.2, 132.9, 131.2, 130.9, 130.5, 130.3, 129.7, 129.5, 129.3, 129.1, 128.9, 128.7(3), 128.7(0), 128.6, 128.3, 128.2, 128.1, 127.9, 127.1, 126.9, 126.8(3), 126.8(0), 126.7, 126.6(5), 126.6(0), 125.5, 124.6, 64.3, 64.3, 41.6, 41.2, 33.7, 33.2, 32.6, 31.9, 28.3, 28.2(5), 28.2(0), 28.1, 25.7, 25.6, 25.5, 25.4, 21.0, 20.5, 20.1, 19.2. HRMS-ESI (*m/z*): calcd for C₂₂H₂₉ClNO₂S [M + H]⁺: 406.1602, found 406.1596.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl dipropylcarbamate (19)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **19** (41.1 mg, 92% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 96:4. ¹H NMR (400 MHz, CDCl₃): δ 7.32 - 7.29 (m, 2H), 7.21 (dd, *J* = 7.6, 1.6 Hz, 2H), 7.15 - 7.05 (m, 2H), 4.08 (t, *J* = 6.0 Hz, 2H), 3.17 - 3.10 (m, 4H),

2.96 (t, J = 6.0 Hz, 2H), 2.40 (s, 3H), 2.37 (s, 3H), 1.80 – 1.76 (m, 4H), 1.57 – 1.47 (m, 4H), 0.90 – 0.82 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.4, 138.7, 137.5, 137.0, 136.3, 135.6, 132.0, 131.0, 130.4, 129.7, 128.3, 127.6, 126.4, 64.4, 49.1, 48.5, 32.4, 28.3, 25.6, 21.8, 21.3, 20.8, 20.0, 11.2. HRMS-ESI (*m/z*): calcd for C₂₅H₃₅CINO₂S [M + H]⁺: 448.2072, found 448.2066.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl dibenzylcarbamate (20)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **20** (46.1 mg, 85% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:*o* = 89:11. ¹H NMR (400 MHz, CDCl₃): δ 7.36 - 7.30 (m, 10H), 7.25 - 7.23 (m, 2H), 7.21 - 7.18 (m, 2H), 7.16 - 7.09 (m, 2H), 4.51 (s, 2H), 4.40 (s, 2H), 4.26 (t, *J*

= 6.4 Hz, 2H), 2.96 (t, J = 7.2 Hz, 2H), 2.44 (s, 3H), 2.40 (s, 3H), 1.90 - 1.73 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.7, 138.6, 137.4, 137.4, 137.0, 136.3, 135.5, 132.0, 130.9, 130.3, 129.7, 128.5, 128.3, 128.0, 127.6, 127.3, 126.4, 65.1, 49.5, 48.9, 32.3, 28.2, 25.3, 20.7, 20.0. HRMS-ESI (*m*/*z*): calcd for C₃₃H₃₅ClNO₂S [M + H]⁺: 544.2072, found 544.2069.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl diallylcarbamate (21)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **21** (41.2 mg, 93% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:*o* = 91:9. ¹H NMR (400 MHz, CDCl₃): δ 7.33 - 7.30 (m, 2H), 7.23 - 7.21 (m, 2H), 7.15 - 7.11 (m, 2H), 5.74 (s, 2H), 5.11 (t, *J* = 18.0 Hz, 4H), 4.12 (t, *J* = 6.0

Hz, 2H), 3.83 (d, J = 36.8 Hz, 4H), 2.95 (t, J = 7.2 Hz, 2H), 2.41 (s, 3H), 2.38 (s, 3H), 1.82 – 1.76 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.1, 138.7, 137.4, 137.0, 136.3, 135.5, 133.5,

132.0, 131.0, 130.3, 129.7, 128.3, 127.6, 126.4, 117.0, 116.4, 64.8, 49.0, 48.4, 32.4, 28.2, 25.5, 20.7, 20.0. HRMS-ESI (*m/z*): calcd for C₂₅H₃₁CINO₂S [M + H]⁺: 444.1759, found 444.1756.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl azepane-1-carboxylate (22)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **22** (42.3 mg, 95% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 96:4. ¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, *J* = 1.6 Hz, 1H), 7.29 (s, 1H), 7.21 (dd, *J* = 8.0, 2.4 Hz, 2H), 7.14 - 7.10 (m, 2H), 4.10 (t, *J* = 6.0 Hz, 2H), 3.41 (t,

 $J = 6.0 \text{ Hz}, 2\text{H}, 3.31 \text{ (t, } J = 6.0 \text{ Hz}, 2\text{H}), 2.96 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.40 \text{ (s, } 3\text{H}), 2.37 \text{ (s, } 3\text{H}), 1.82 - 1.76 \text{ (m, } 4\text{H}), 1.68 - 1.65 \text{ (m, } 2\text{H}), 1.62 - 1.59 \text{ (m, } 2\text{H}), 1.52 - 1.50 \text{ (m, } 4\text{H}). {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR} \text{ (100 MHz, CDCl}_{3}): \delta 156.2, 138.6, 137.4, 137.0, 136.3, 135.5, 132.0, 130.9, 130.3, 129.6, 128.2, 127.6, 126.3, 64.4, 46.8, 46.4, 32.4, 28.4, 28.3, 28.2, 27.3, 26.8, 25.6, 20.7, 20.0. HRMS-ESI ($ *m*/*z*): calcd for C₂₅H₃₃CINO₂S [M + H]⁺: 446.1915, found 446.1910.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl morpholine-4-carboxylate (2 3)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 10:1 as the eluent) to give **23** (39.0 mg, 90% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 90:10. ¹H NMR (400 MHz, CDCl₃): δ 7.32 - 7.29 (m, 2H), 7.21 (d, *J* = 7.6 Hz, 2H), 7.14 -7.11 (m, 2H), 4.12 (t, *J* = 5.6 Hz, 2H), 3.61 (s, 4H), 3.41 (s, 4H),

2.95 (t, J = 6.8 Hz, 2H), 2.40 (s, 3H), 2.37 (s, 3H), 1.83 – 1.75 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.3, 138.7, 137.4, 137.0, 136.3, 135.4, 132.0, 130.9, 130.4, 129.7, 128.3, 127.7, 126.4, 66.5, 65.0, 44.0, 43.8, 32.3, 28.1, 25.5, 20.7, 20.0. HRMS-ESI (*m/z*): calcd for C₂₃H₂₉ClNO₃S [M + H]⁺: 434.1551, found 434.1547.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl thiomorpholine-4-carboxylate (24)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 20:1 as the eluent) to give **24** (42.6 mg, 95% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 90:10. ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 10.0 Hz, 2H), 7.21 (d, *J* = 7.6 Hz, 2H), 7.14 – 7.11 (m, 2H), 4.11 (t, *J* = 5.6 Hz, 2H), 3.68 (s, 4H), 2.95 (t, *J* = 6.8 Hz, 2H), 2.56 – 2.53 (m, 4H), 2.40 (s, 3H), 2.37 (s, 3H), 1.82 – 1.75 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.0, 138.7, 137.4, 136.9, 136.3, 135.4, 132.0, 130.9, 130.3, 129.7, 128.3, 127.6, 126.4, 65.0, 46.2, 32.3, 28.1, 27.1, 25.5, 20.7, 20.0. HRMS-ESI (*m/z*): calcd for C₂₃H₂₉ClNO₂S₂ [M + H]⁺: 450.1323, found 450.1319.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl-4-isopropylpiperazine-1-carbo xylate (25)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 5:1 as the eluent) to give **25** (40.7 mg, 86% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:*o* = 89:11. ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, *J* = 13.2 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.12 (t, *J* = 7.2 Hz, 2H), 4.09 (t, *J* = 5.6 Hz,

2H), 3.44 (s, 4H), 2.95 (t, J = 6.8 Hz, 2H), 2.68 (q, J = 6.4 Hz, 1H), 2.43 (s, 4H), 2.40 (s, 3H), 2.37 (s, 3H), 1.80 – 1.77 (m, 4H), 1.03 (d, J = 6.4 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.3, 138.7, 137.5, 137.0, 136.4, 135.5, 132.0, 131.0, 130.4, 129.7, 128.4, 127.7, 126.4, 64.8, 54.5, 48.3, 43.9, 32.4, 28.2, 25.5, 20.8, 20.0, 18.3. HRMS-ESI (m/z): calcd for C₂₆H₃₆ClNO₂S [M + H]⁺: 475.2181, found 475.2177.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl methylcarbamate (26)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 10:1 as the eluent) to give **26** (15.1 mg, 40% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 94:6. ¹H NMR (400 MHz, CDCl₃): δ 7.31 (dd, J = 8.4, 2.0 Hz, 2H), 7.22 (dd, J = 8.0, 2.0 Hz, 2H), 7.14 – 7.11 (m, 2H), 4.52 (s, 1H), 4.07 (t, J = 5.2 Hz, 2H), 2.94 (t, J = 4.0

Hz, 2H), 2.76 (d, J = 4.4 Hz, 3H), 2.40 (s, 3H), 2.37 (s, 3H), 1.78 – 1.75 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.2, 138.7, 137.5, 137.0, 136.4, 135.5, 132.0, 131.0, 130.4, 129.7, 128.3, 127.7, 126.4, 64.2, 32.3, 28.2, 27.4, 25.4, 20.8, 20.0. HRMS-ESI (*m/z*): calcd for C₂₀H₂₅ClNO₂S [M + H]⁺: 378.1289, found 378.1288.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl butylcarbamate (27)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **27** (40.6 mg, 97% yield) as a white solid. Regioselective ratio determined by ¹H NMR *m*:*o* = 96:4. ¹H NMR (400 MHz, CDCl₃): δ 7.33 - 7.30 (m, 2H), 7.22 (dd, *J* = 7.6, 4.0 Hz, 2H), 7.15 - 7.11 (m, 2H), 4.64 (s, 1H), 4.07 (t, *J* =

5.6 Hz, 2H), 3.15 (q, J = 6.8 Hz, 2H), 2.95 (t, J = 6.4 Hz, 2H), 2.39 (d, J = 12.0 Hz, 6H), 1.79 – 1.75 (m, 4H), 1.49 – 1.30 (m, 4H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.5, 138.7, 137.4, 137.0, 136.3, 135.5, 132.0, 131.0, 130.3, 129.7, 128.3, 127.6, 126.4, 64.0, 40.6, 32.3, 32.0, 28.2, 25.4, 20.7, 20.0, 19.8, 13.7. HRMS-ESI (*m*/*z*): calcd for C₂₃H₃₁ClNO₂S [M + H]⁺: 420.1759, found 420.1758.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl pentan-3-ylcarbamate (28)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **28** (42.0 mg, 97% yield) as a white solid. Regioselective ratio determined by ¹H NMR *m:o* = 96:4. ¹H NMR (400 MHz, CDCl₃): δ 7.33 - 7.30 (m, 2H), 7.22 (dd, *J* = 8.0, 3.6 Hz, 2H), 7.15 - 7.11 (m, 2H), 4.39 (d, *J* = 8.4 Hz, 1H), 4.07 (t, *J* = 5.2 Hz,

2H), 3.50 - 3.41 (m, 1H), 2.95 (t, J = 6.0 Hz, 2H), 2.39 (d, J = 12.8 Hz, 6H), 1.79 - 1.76 (m, 4H), 1.57 - 1.47 (m, 2H), 1.40 - 1.30 (m, 2H), 0.89 (t, J = 7.2 Hz, 6H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 156.4, 138.7, 137.4, 137.0, 136.3, 135.5, 132.0, 131.0, 130.3, 129.7, 128.3, 127.6, 126.4, 64.0, 53.8, 32.4, 28.3, 27.5, 25.5, 20.7, 20.0, 10.1. HRMS-ESI (*m*/*z*): calcd for C₂₄H₃₃ClNO₂S [M + H]⁺: 434.1915, found 434.1910.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl cyclohexylcarbamate (29)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **29** (40.5 mg, 91% yield) as a white solid. Regioselective ratio determined by ¹H NMR *m:o* = 96:4. ¹H NMR (400 MHz, CDCl₃): δ 7.33 - 7.30 (m, 2H), 7.22 (dd, *J* = 8.0, 3.2 Hz, 2H), 7.15 - 7.11 (m, 2H), 4.55 (d, *J* = 10.4 Hz, 1H), 4.06 (t, *J* = 5.6

Hz, 2H), 3.46 (d, J = 7.6 Hz, 1H), 2.95 (t, J = 5.8 Hz, 2H), 2.39 (d, J = 12.0 Hz, 6H), 1.91 (d, J =

10.0 Hz, 2H), 1.77 (s, 4H), 1.71 - 1.66 (m, 2H), 1.61 - 1.57 (m, 1H), 1.38 - 1.29 (m, 2H), 1.20 - 1.05 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.7, 138.7, 137.4, 137.0, 136.3, 135.5, 132.0, 131.0, 130.4, 129.7, 128.3, 127.7, 126.4, 63.9, 49.6, 33.3, 32.4, 28.2, 25.5, 25.4, 24.7, 20.7, 20.0. HRMS-ESI (*m*/*z*): calcd for C₂₅H₃₃ClNO₂S [M + H]⁺: 446.1915, found 446.1910.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl benzylcarbamate (30)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 20:1 as the eluent) to give **30** (39.4 mg, 87% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 96:4. ¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.19 (m, 9H), 7.10 (t, *J* = 8.4 Hz, 2H), 4.96 (s, 1H), 4.32 (d, *J* = 4.4 Hz, 2H), 4.10 (t, *J* =

5.6 Hz, 2H), 2.92 (t, J = 6.8 Hz, 2H), 2.37 (d, J = 16.8 Hz, 6H), 1.77 - 1.75 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.5, 138.7, 138.5, 137.4, 137.0, 136.4, 135.5, 132.0, 131.0, 130.4, 129.7, 128.6, 128.3, 127.7, 127.4, 126.4, 64.4, 45.0, 32.3, 28.2, 25.4, 20.8, 20.0. HRMS-ESI (*m/z*): calcd for C₂₆H₂₉ClNO₂S [M + H]⁺: 454.1602, found 454.1596.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl(thiophen-2-ylmethyl)carbama te (31)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 20:1 as the eluent) to give **31** (42.2 mg, 92% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 96:4. ¹H NMR (400 MHz, CDCl₃): δ 7.34 - 7.29 (m, 2H), 7.24 - 7.20 (m, 3H), 7.15 - 7.06 (m, 2H), 6.95 - 6.93 (m, 2H), 5.05 (s,

1H), 4.53 (d, J = 5.2 Hz, 2H), 4.12 (t, J = 5.2 Hz, 2H), 2.95 (t, J = 6.8 Hz, 2H), 2.42 (d, J = 14.8 Hz, 6H), 1.79 - 1.64 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.2, 141.3, 138.7, 137.4, 137.0, 136.4, 135.5, 132.0, 131.0, 130.4, 129.7, 128.4, 127.7, 126.8, 126.4, 125.6, 125.0, 64.5, 39.8, 32.3, 28.2, 25.4, 20.7, 20.0. HRMS-ESI (*m*/*z*): calcd for C₂₄H₂₇ClNO₂S₂ [M + H]⁺: 460.1166, found 460.1161.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl-(S)-(1-hydroxy-4-methylpenta n-2-yl)carbamate (32)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 5:1 as the eluent) to give **32** (40.7 mg, 88% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 90:10. ¹H NMR (400 MHz, CDCl₃): δ 7.35 - 7.29 (m, 2H), 7.23 - 7.19 (m, 2H), 7.14 - 7.11 (m, 2H), 4.78 (d, *J* = 6.8 Hz, 1H), 4.07 (d,

J = 5.6 Hz, 2H), 3.74 (s, 1H), 3.64 (d, J = 9.2 Hz, 1H), 3.50 (s, 1H), 2.94 (t, J = 6.8 Hz, 2H), 2.61 (s, 1H), 2.39 (d, J = 12.4 Hz, 6H), 1.77 (t, J = 3.6 Hz, 3H), 1.68 – 1.62 (m, 2H), 1.34 – 1.30 (m, 2H), 0.92 (d, J = 6.4 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.0, 138.7, 137.4, 137.0, 136.4, 135.5, 132.0, 131.0, 130.4, 129.7, 128.4, 127.7, 126.4, 66.0, 64.4, 51.2, 40.4, 32.3, 28.2, 25.4, 24.7, 23.0, 22.1, 20.7, 20.0. HRMS-ESI (*m*/*z*): calcd for C₂₅H₃₅CINO₃S [M + H]⁺: 464.2021, found 464.2019.

bis(4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl)butane-1,4-diyldicarbamat e (33)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 2:1 as the eluent) to give **33** (71.0 mg, 91% yield) as a white solid. Regioselective ratio determined by ¹H NMR m:o = 96:4. ¹H

NMR (400 MHz, CDCl₃): δ 7.30 (d, J = 9.6 Hz, 4H), 7.21 (dd, J = 8.0, 2.4 Hz, 4H), 7.14 – 7.10 (m, 4H), 4.70 (s, 2H), 4.06 (t, J = 5.2 Hz, 4H), 3.14 (d, J = 6.0 Hz, 4H), 2.94 (t, J = 6.0 Hz, 4H), 2.38 (d, J = 10.8 Hz, 12H), 1.77 – 1.74 (m, 8H), 1.48 (s, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 156.6, 138.7, 137.4, 137.0, 136.4, 135.5, 132.0, 131.0, 130.4, 129.7, 128.3, 127.7, 126.4, 64.2, 40.5, 32.3, 28.2, 27.2, 25.4, 20.8, 20.0. HRMS-ESI (*m*/*z*): calcd for C₄₂H₅₁Cl₂N₂O₄S₂ [M + H]⁺: 781.2662, found 781.2661.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl phenylcarbamate (34)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **34** (17.5 mg, 40% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR m:o = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.38 - 7.28 (m, 6H), 7.24 (d, J = 7.6Hz, 2H), 7.16 - 7.05 (m, 3H), 6.66 (s, 1H), 4.20 (t, J = 5.2 Hz,

2H), 2.98 (t, J = 6.8 Hz, 2H), 2.43 (s, 3H), 2.37 (s, 3H), 1.87 – 1.80 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.5, 138.7, 137.8, 137.5, 137.0, 136.4, 135.4, 132.0, 131.0, 130.4, 129.8, 128.9, 128.4, 127.7, 126.5, 123.3, 118.6, 64.6, 32.3, 28.1, 25.4, 20.7, 20.0. HRMS-ESI (*m/z*): calcd for C₂₅H₂₇CINO₂S [M + H]⁺: 440.1446, found 440.1441.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl p-tolylcarbamate (35)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **35** (28.5 mg, 63% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.32 (s, 1H), 7.27 (s, 1H), 7.23 – 7.20 (m, 4H), 7.14 – 7.07 (m, 4H), 6.52 (s, 1H), 4.16 (t, *J*

= 5.2 Hz, 2H), 2.95 (t, J = 6.4 Hz, 2H), 2.40 (s, 3H), 2.35 (s, 3H), 2.29 (s, 3H), 1.82 - 1.79 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.6, 138.7, 137.5, 137.0, 136.5, 135.4, 135.2, 132.9, 132.0, 131.0, 130.4, 129.8, 129.5, 128.5, 127.7, 126.5, 118.8, 64.5, 32.4, 28.1, 25.5, 20.8, 20.7, 20.0. HRMS-ESI (*m/z*): calcd for C₂₆H₂₉ClNO₂S [M + H]⁺: 454.1602, found 454.1593.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl (4-methoxyphenyl)carbamate (36)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **36** (28.1 mg, 60% yield) as a white solid. Regioselective ratio determined by ¹H NMR *m*:*o* = 86:14. ¹H NMR (400 MHz, CDCl₃): δ 7.34 - 7.28 (m, 3H), 7.25 - 7.21 (m, 3H), 7.15 - 7.10 (m, 2H), 6.84 (d, *J* = 8.8

Hz, 2H), 6.47 (s, 1H), 4.17 (t, J = 5.6 Hz, 2H), 3.78 (s, 3H), 2.96 (t, J = 6.8 Hz, 2H), 2.41 (s, 3H), 2.36 (s, 3H), 1.84 - 1.81 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.9, 153.9, 138.7, 137.5,

137.0, 136.5, 135.4, 132.0, 131.0, 130.4, 129.8(1), 129.8(0), 128.4, 127.7, 126.5, 120.7, 114.2,
64.5, 55.5, 32.3, 28.1, 25.5, 20.8, 20.1. HRMS-ESI (*m/z*): calcd for C₂₆H₂₉ClNO₃S [M + H]⁺:
470.1551, found 470.1541.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl(4-(tert-butyl)phenyl)carbamat e (37)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **37** (32.2 mg, 65% yield) as a white solid. Regioselective ratio determined by ¹H NMR *m:o* = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.34 - 7.29 (m, 6H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.13 (dd, *J* = 13.2, 8.0 Hz, 2H), 6.51 (s, 1H), 4.18 (t, *J* = 5.2 Hz, 2H), 2.97 (t, *J* = 6.8 Hz, 2H), 2.41 (s,

3H), 2.36 (s, 3H), 1.86 - 1.80 (m, 6H), 1.31 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.6, 146.3, 138.8, 137.5, 137.0, 136.4, 135.5, 135.1, 132.0, 131.0, 130.4, 129.8, 128.4, 127.7, 126.5, 125.8, 118.5, 64.6, 34.2, 32.3, 31.3, 28.1, 25.5, 20.8, 20.1. HRMS-ESI (*m/z*): calcd for C₂₉H₃₅CINO₂S [M + H]⁺: 496.2072, found 496.2067.

Ethyl-4-(((4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butoxy)carbonyl)amino)b enzoate (38)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 20:1 as the eluent) to give **38** (19.4 mg, 38% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR m:o = 82:18. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 1.5 Hz,

1H), 7.28 (d, J = 4.0 Hz, 1H), 7.22 (d, J = 7.6 Hz, 2H), 7.14 – 7.09 (m, 2H), 6.84 (s, 1H), 4.36 (q, J = 7.2 Hz, 2H), 4.20 (t, J = 5.6 Hz, 2H), 2.96 (t, J = 6.8 Hz, 2H), 2.40 (s, 3H), 2.36 (s, 3H), 1.86 – 1.78 (m, 4H), 1.39 (t, J = 7.2 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 166.2, 153.0, 142.1, 138.8, 137.5, 137.0, 136.5, 135.3, 132.0, 131.0, 130.8, 130.4, 129.8, 128.4, 127.7, 126.5, 125.1, 117.5, 65.0, 60.8, 32.3, 28.0, 25.4, 20.8, 20.1, 14.3. HRMS-ESI (*m*/*z*): calcd for C₂₈H₃₁ClNO₄S [M + H]⁺: 512.1657, found 512.1648.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl (4-chlorophenyl)carbamate (39)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **39** (21.3 mg, 45% yield) as a white solid. Regioselective ratio determined by ¹H NMR *m*:*o* = 99: 1. ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, *J* = 7.6 Hz, 2H), 7.25 – 7.18 (m, 6H), 7.11 – 7.06 (m, 2H), 6.55 (s, 1H), 4.15 (t, *J* =

5.6 Hz, 2H), 2.93 (t, J = 6.8 Hz, 2H), 2.37 (s, 3H), 2.33 (s, 3H), 1.84 – 1.76 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.3, 138.8, 137.5, 137.0, 136.6, 136.5, 135.4, 132.0, 131.0, 130.4, 129.8, 129.0, 128.6, 128.4, 127.7, 126.6, 119.9, 64.9, 32.4, 28.1, 25.5, 20.8, 20.1. HRMS-ESI (*m/z*): calcd for C₂₅H₂₆Cl₂NO₂S [M + H]⁺: 474.1056, found 474.1052.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl (4-bromophenyl)carbamate

(40)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **40** (20.7 mg, 40% yield) as a white solid. Regioselective ratio determined by ¹H NMR *m:o* = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, *J* = 8.4 Hz, 2H), 7.33 (s, 1H), 7.27 - 7.20 (m, 5H), 7.14 - 7.09 (m, 2H), 6.57 (s, 1H),

4.17 (t, J = 5.2 Hz, 2H), 2.95 (t, J = 6.8 Hz, 2H), 2.38 (d, J = 17.6 Hz, 6H), 1.83 – 1.79 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 153.3, 138.8, 137.5, 137.0(2), 137.0(0), 136.6, 135.4, 132.0, 131.9, 131.0, 130.4, 129.8, 128.6, 127.7, 126.6, 120.2, 115.9, 64.9, 32.4, 28.1, 25.5, 20.8, 20.1. HRMS-ESI (*m*/*z*): calcd for C₂₅H₂₆BrClNO₂S [M + H]⁺: 518.0551, found 518.0546.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl o-tolylcarbamate (41)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **41** (22.6 mg, 50% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR m:o = 85:15. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (s, 1H), 7.36 (d, J = 1.6 Hz, 1H), 7.29 (d, J = 1.6 Hz, 1H), 7.24 – 7.19 (m, 3H), 7.17 – 7.13

(m, 3H), 7.04 (t, J = 6.8 Hz, 1H), 6.37 (s, 1H), 4.20 (t, J = 5.6 Hz, 2H), 2.98 (t, J = 6.8 Hz, 2H),

2.43 (s, 3H), 2.37 (s, 3H), 2.24 (s, 3H), 1.88 - 1.82 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.8, 138.7, 137.5, 137.0, 136.4, 135.8, 135.4, 132.0, 131.0, 130.4, 130.3, 129.8, 128.4, 127.7, 126.8, 126.5, 124.0, 64.7, 32.3, 28.1, 25.5, 20.8, 20.0, 17.6. HRMS-ESI (*m/z*): calcd for C₂₆H₂₉CINO₂S [M + H]⁺: 454.1602, found 454.1597.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl m-tolylcarbamate (42)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **42** (27.2 mg, 60% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 99:1. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (s, 1H), 7.30 (s, 1H), 7.23 (t, *J* = 8.0 Hz, 3H), 7.19 – 7.11 (m, 4H), 6.89 (d, *J* = 6.8 Hz,

1H), 6.59 (s, 1H), 4.19 (t, J = 5.6 Hz, 2H), 2.98 (t, J = 6.8 Hz, 2H), 2.43 (s, 3H), 2.37 (s, 3H), 2.34 (s, 3H), 1.87 - 1.81 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.5, 138.9, 138.7, 137.7, 137.5, 137.0, 136.5, 135.4, 132.0, 131.0, 130.4, 129.8, 128.8, 128.6, 127.7, 126.5, 124.2, 119.3, 115.8, 64.6, 32.4, 28.1, 25.5, 21.4, 20.7, 20.0. HRMS-ESI (*m*/*z*): calcd for C₂₆H₂₉ClNO₂S [M + H]⁺: 454.1602, found 454.1595.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl(2-(phenylamino)ethyl)carbam ate (43)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 10:1 as the eluent) to give **43** (20.2 mg, 42% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 86:14. ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 14.0 Hz, 2H), 7.23 – 7.11 (m, 6H), 6.72 (t, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 7. 6 Hz, 2H), 4.90 (s, 1H), 4.09 (t, *J* = 5.2 Hz, 2H), 3.39 (t, *J* = 6.0 Hz,

2H), 3.26 (d, J = 6.0 Hz, 2H), 2.94 (t, J = 6.8 Hz, 2H), 2.39 (d, J = 14.0 Hz, 6H), 1.77 (d, J = 5.2 Hz, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.0, 147.6, 138.8, 137.5, 137.0, 136.4, 135.5, 132.0, 131.0, 130.4, 129.8, 129.3, 128.4(0), 128.3(7), 127.7, 126.5, 117.8, 112.9, 64.5, 44.2, 40.3, 32.3, 28.2, 25.4, 20.8, 20.1. HRMS-ESI (*m/z*): calcd for C₂₇H₃₂ClN₂O₂S [M + H]⁺: 483.1868, found 483.1865.

tert-butyl((4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butoxy)carbonyl)glycinat e (44)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **44** (45.3 mg, 95% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 84:16. ¹H NMR (400 MHz, CDCl₃): δ 7.32 – 7.29 (m, 2H), 7.21 (dd, *J* = 7.6, 3.2 Hz, 2H), 7.14 – 7.10 (m, 2H), 5.13 (s, 1H),

4.09 (t, J = 5.6 Hz, 2H), 3.82 (d, J = 5.2 Hz, 2H), 2.94 (t, J = 6.8 Hz, 2H), 2.40 (s, 3H), 2.37 (s, 3H), 1.78 – 1.75 (m, 2H), 1.47 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.1, 156.4, 138.7, 137.5, 137.0, 136.4, 135.5, 132.0, 131.0, 130.3, 129.7, 128.5, 127.6, 126.4, 82.0, 64.6, 43.3, 32.4, 28.1, 28.0, 25.4, 20.7, 20.0. HRMS-ESI (*m/z*): calcd for C₂₅H₃₃ClNO₄S [M + H]⁺: 478.1813, found 478.1809.

tert-butyl((4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butoxy)carbonyl)-D-alan inate (45)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **45** (48.1 mg, 98% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 83:17. ¹H NMR (400 MHz, CDCl₃): δ 7.33 - 7.29 (m, 2H), 7.21 (dd, *J* = 7.6, 2.8 Hz, 2H), 7.14 - 7.10 (m, 2H), 5.22 (s, 1H),

4.23 - 4.19 (m, 1H), 4.08 (t, J = 5.6 Hz, 2H), 2.94 (t, J = 6.8 Hz, 2H), 2.40 (s, 3H), 2.37 (s, 3H), 1.79 - 1.76 (m, 4H), 1.46 (s, 9H), 1.36 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.2, 155.7, 138.6, 137.5, 137.0, 136.4, 135.5, 132.0, 131.0, 130.3, 129.7, 128.5, 127.6, 126.4, 81.8, 64.4, 50.0, 32.4, 28.2, 27.9, 25.4, 20.7, 20.0, 18.8. HRMS-ESI (*m/z*): calcd for C₂₆H₃₅CINO₄S [M + H]⁺: 492.1970, found 492.1966.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl(2-(5-methoxy-1H-indol-3-yl)et hyl)carbamate (46)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 5:1 as the eluent) to give **46** (42.9 mg, 80% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 91:9. ¹H NMR (400 MHz, CDCl₃): δ 7.97 (s, 1H), 7.32 – 7.28 (m, 2H), 7.25 – 7.20 (m, 2H), 7.14 – 7.10 (m, 2H), 7.00 (d, J = 19.5 Hz, 2H), 6.87 (dd, J = 9.6, 2.4 Hz, 1H), 4.73 (s, 1H), 4.08 (t, J = 5.6 Hz, 2H), 3.86 (s, 3H), 3.51 – 3.46 (m, 2H), 2.95 – 2.90 (m, 4H), 2.40 (s, 3H), 2.37 (s, 3H), 1.77 – 1.73 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.6, 154.0, 138.7, 137.5, 137.0, 136.3, 135.5, 132.0, 131.5, 131.0, 130.4, 129.7, 128.3, 127.7, 127.6, 126.4, 122.8, 112.3, 111.9, 100.5, 64.2, 55.9, 41.0, 32.3, 28.2, 25.7, 25.4, 20.8, 20.0. HRMS-ESI (*m*/*z*): calcd for C₃₀H₃₄ClN₂O₃S [M + H]⁺: 537.1973, found 537.1964.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl-(1R,3S,5S)-3-hydroxy-6-azabi cyclo[3.2.1]octane-6-carboxylate (47)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 3:1 as the eluent) to give **47** (31.2 mg, 66% yield) as a pale yellow oil. Regioselective ratio determined by ¹H NMR *m*:o = 85:15. ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, *J* = 10.0 Hz, 2H), 7.24 (d, *J* = 7.6 Hz, 2H), 7.15 (t, *J* = 6.8 Hz, 2H), 4.27 (s, 1H),

4.16 (s, 1H), 4.11 (t, J = 6.0 Hz, 3H), 2.98 (t, J = 6.4 Hz, 2H), 2.41 (d, J = 11.6 Hz, 6H), 2.19 – 2.11 (m, 3H), 1.99 – 1.91 (m, 4H), 1.82 – 1.80 (m, 4H), 1.73 – 1.68 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.6, 138.7, 137.4, 137.0, 136.3, 135.5, 132.0, 131.0, 130.4, 129.7, 128.3, 127.7, 126.4, 65.0, 64.3, 52.6, 38.7, 38.1, 32.4, 28.4, 28.3, 27.7, 25.6, 20.7, 20.0. HRMS-ESI (*m/z*): calcd for C₂₆H₃₃ClNO₃S [M + H]⁺: 474.1864, found 474.1865.

3-ethyl-5-methyl-2-((2-(((4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butoxy)car bonyl)amino)ethoxy)methyl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicar boxylate (48)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 5:1 as the eluent) to give **48** (40.7 mg, 54% yield) as a yellow oil. Regioselective ratio determined by ¹H NMR m:o = 85:15. ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 14.8 Hz,

2H), 7.22 (d, J = 7.6 Hz, 3H), 7.14 - 7.01 (m, 5H), 5.41 (s, 1H), 4.91 (t, J = 6.0 Hz, 1H), 4.77 -

4.64 (m, 2H), 4.10 – 4.01 (m, 4H), 3.62 – 3.60 (m, 5H), 3.46 – 3.42 (m, 2H), 2.94 (t, J = 6.8 Hz, 2H), 2.40 (s, 3H), 2.36 (d, J = 6.8 Hz, 6H), 1.80 – 1.75 (m, 4H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 168.0, 167.1, 156.9, 145.8, 145.1, 144.2, 138.8, 137.5, 137.0, 136.5, 135.4, 132.3, 132.0, 131.4, 131.0, 130.4, 129.8, 129.2, 128.4, 127.7, 127.3, 126.8, 126.5, 103.8, 101.4, 70.8, 68.0, 64.6, 59.7, 50.7, 40.7, 37.1, 32.4, 28.2, 25.5, 20.8, 20.0, 19.3, 14.2. HRMS-ESI (*m/z*): calcd for C₃₉H₄₅Cl₂N₂O₇S [M + H]⁺: 755.2319, found 755.2314.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)thio)butyl-4-benzhydrylpiperazine-1-car boxylate (49)

Following the general procedure, the crude product was purified by silica gel chromatography (PE: EA = 30:1 as the eluent) to give **49** (53.8 mg, 90% yield) as a yellow oil. Regioselective ratio determined by ¹H NMR *m:o* = 90:10. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 7.6 Hz, 4H), 7.33 - 7.27 (m, 6H), 7.23 - 7.19 (m, 4H), 7.12 (d, *J*

= 8.0 Hz, 2H), 4.23 (s, 1H), 4.10 (t, J = 5.8 Hz, 2H), 4.42 (s, 4H), 2.95 (t, J = 5.8 Hz, 2H), 2.41 (s, 3H), 2.37 (d, J = 19.2 Hz, 7H), 1.80 - 1.75 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.3, 142.3, 138.7, 137.4, 137.0, 136.3, 135.4, 132.0, 131.0, 130.4, 129.7, 128.5, 127.8, 127.6, 127.0, 126.4, 64.7, 51.5, 43.8, 32.3, 28.1, 25.5, 20.8, 20.0. HRMS-ESI (*m*/*z*): calcd for C₃₆H₄₀ClN₂O₂S [M + H]⁺: 599.2494, found 599.2490.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)sulfinyl)butyl diethylcarbamate (50)

¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 2.0 Hz, 1H), 7.48 (dd, J = 7.6, 2.0 Hz, 1H), 7.29 – 7.23 (m, 3H), 7.12 (d, J = 6.0 Hz, 1H), 4.09 (t, J = 6.0 Hz, 2H), 3.23 (d, J = 16.8 Hz, 4H), 2.93 – 2.76 (m, 2H), 2.42 (s, 3H), 2.37 (s, 3H), 1.95 – 1.76 (m, 4H), 1.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.8, 141.7, 139.2, 138.5, 136.1, 133.4, 132.0, 131.8, 131.0, 130.4, 130.3, 127.7, 124.9,

64.0, 54.6, 41.7, 41.1, 28.2, 20.8, 19.0, 17.9, 14.0, 13.5. HRMS-ESI (m/z): calcd for $C_{23}H_{31}CINO_3S \ [M + H]^+$: 436.1708, found 436.1702.

4-((2'-chloro-4,4'-dimethyl-[1,1'-biphenyl]-3-yl)sulfonyl)butyl diethylcarbamate (51)

¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 1.6 Hz, 1H), 7.60 (dd, J = 7.6, 1.6 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.29 (s, 1H), 7.21 (d, J = 7.6 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 4.05 (t, J = 6.0 Hz, 2H), 3.22 - 3.18 (m, 6H), 2.73 (s, 3H), 2.37 (s, 3H), 1.88 - 1.81 (m, 2H), 1.78 - 1.73 (m, 2H), 1.06 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.7, 139.6, 137.9, 136.9, 136.8, 135.3, 134.5,

132.5, 132.0, 131.1, 130.9, 130.5, 127.9, 63.7, 54.9, 41.7, 41.2, 27.8, 20.8, 20.1, 19.4, 14.0, 13.4. HRMS-ESI (m/z): calcd for $C_{23}H_{31}CINO_4S$ [M + H]⁺: 452.1657, found 452.1651.

4-((4,4'-dimethyl-2'-(p-tolylamino)-[1,1'-biphenyl]-3-yl)thio)butyl diethylcarbamate (52)

¹H NMR (400 MHz, CDCl₃): δ 7.25 (s, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.14 - 7.10 (m, 3H), 7.06 (t, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 7.6 Hz, 1H), 4.03 (t, *J* = 5.2 Hz, 2H), 3.23 (s, 5H), 2.83 (t, *J* = 6.4 Hz, 2H), 2.37 (s, 3H), 2.30 (d, *J* = 8.4 Hz, 6H), 1.71 - 1.69 (m, 4H), 1.08 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.9, 140.7, 140.5, 138.2, 137.1, 136.8, 135.7, 130.9,

130.5, 130.4, 129.8, 128.0, 127.2, 125.9, 121.6, 119.0, 117.6, 64.3, 41.6, 41.2, 32.0, 28.3, 25.4, 21.4, 20.6, 19.9, 13.9, 13.6. HRMS-ESI (m/z): calcd for $C_{30}H_{39}N_2O_2S$ [M + H]⁺: 491.2727, found 491.2721.

4-((4,4',4''-trimethyl-[1,1':2',1''-terphenyl]-3-yl)thio)butyl diethylcarbamate (53)

¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 6.8 Hz, 1H), 6.97 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.92 (d, *J* = 1.6 Hz, 1H), 4.07 (t, *J* = 6.4 Hz, 2H), 3.26 (d, *J* = 24.4 Hz, 4H), 2.55 (t, *J* = 7.2 Hz, 2H), 2.43 (s, 3H), 2.31 (s, 6H), 1.74 - 1.67 (m, 2H), 1.54 (p, *J* = 7.2 Hz, 2H), 1.11 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.9, 140.2, 139.5, 138.8,

137.1, 137.0, 135.9, 135.3, 134.9, 131.4, 130.4, 129.7, 129.2, 128.7, 128.0, 126.5, 64.4, 41.7, 41.1, 32.4, 28.3, 25.4, 21.0, 19.9, 14.0, 13.5. HRMS-ESI (m/z): calcd for $C_{30}H_{38}NO_2S$ [M + H]⁺: 476.2618, found 476.2610.

H. Crystal data and structure refinement

X-ray structure of 27

 Table S2. Crystal data and structure refinements for 27

Compound	27	
Empirical formula	C ₂₃ H ₃₀ ClNO ₂ S	
Formula weight	419.99	
Temperature/K	100	
Crystal system	triclinic	
Space group	P-1	
a/Å	14.5277(6)	
b/Å	14.8392(6)	
c/Å	32.2982(14)	
α/°	98.541(2)	
$\beta/^{\circ}$	98.294(2)	
$\gamma/^{\circ}$	90.455(2)	
Volume/Å ³	6810.5(5)	
Ζ	12	
Density (calculated)/g•cm ⁻³	1.229	
μ/mm^{-1}	2.481	
F(000)	2688.0	
Crystal size/mm ³	$0.16 \times 0.04 \times 0.02$	
Radiation	Radiation $CuK\alpha (\lambda = 1.54178)$	
2Θ range for data collection/°	5.594 to 127.966	
Index ranges	$-16 \le h \le 16, -17 \le k \le 17, 0 \le l \le 37$	
Reflections collected	21724	
Independent reflections	21724 [Rint = ?, Rsigma = 0.1196]	
Data/restraints/parameters	21724/0/1532	
Goodness-of-fit on F ²	1.023	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1021, wR_2 = 0.2603$	
Final R indexes [all data]	$R_1=0.1397,wR_2=0.2948$	
Largest diff. peak/hole/e Å ⁻³	0.76/-0.56	

References

- (1) Lanzi, M.; Rogge, T.; Truong, T. S.; K. N. Houk and Wencel-Delord, J. J. Am. Chem. Soc. 2023, 145, 345-358.
- (2) Youcan Zhang, Zhi-Peng Bao, Chang-Sheng Kuai, Xiao-Feng Wu. J. Catal. 2023, 426, 1-5.
- (3) Yi Dong, Xiaoyong Guo, Yuan Yuan Yu, Gang Liu. Mol Divers, 2013, 17, 1-7.
- (4) Yu Zhang, Xinye Yang, Qizheng Yao, and Dawei Ma. Org. Lett. 2012, 14, 3056-3059.
- (5) (a) M. Lanzi, Q. Dherbassy and J. Wencel-Delord, *Angew. Chem. Int. Ed.*, 2021, **60**, 14852-14857; (b)
 M. Lanzi, T. Rogge, T. S. Truong, K. N. Houk and J. Wencel-Delord, *J. Am. Chem. Soc.*, 2022, **145**, 345-358; (c) H.-D. Xu, M.-Q. Cai, W.-J. He, W.-H. Hua and M.-H. Shen, *RSC Adv.* 2014, **4**, 7623-7626; (d) J. Chen, V. Palani and T. R. Hoye, *J. Am. Chem. Soc.* 2016, **138**, 4318-4321; (e) X.-B. Xu, Z.-H. Lin, Y. Liu, J. Guo and Y. He, *Org. Biomol. Chem.* 2017, **15**, 2716-2720; (f) D. Kaiser, I. Klose, R. Oost, J. Neuhaus and N. Maulide, *Chem. Rev.* 2019, **119**, 8701-8780.
I. Copies of NMR Spectroscopies

¹³C NMR Spectrum of **4a**

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹³C NMR Spectrum of **4**c

¹³C NMR Spectrum of **4d**

7,464 7,445 7,445 7,447 7,447 7,405 7,339 7,339 7,339 7,331 7,331 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,325 7,325 7,232 7,222 7,22

¹³C NMR Spectrum of **5a** and **5a**'

¹³C NMR Spectrum of **5b** and **5b**'

¹H NMR Spectrum of 7 and 7'

 $^{13}\mathrm{C}$ NMR Spectrum of 7 and 7'

¹³C NMR Spectrum of **8** and **8**'

¹³C NMR Spectrum of **9** and **9**'

¹³C NMR Spectrum of **10** and **10**'

$\begin{array}{c} & 7.253 \\ & 7.253 \\ & 7.234 \\ & 7.234 \\ & 7.197 \\ & 7.197 \\ & 7.197 \\ & 7.197 \\ & 7.197 \\ & 7.197 \\ & 7.197 \\ & 7.197 \\ & 7.097 \\ & 7.097 \\ & 7.094 \\ & 7.097 \\ & 7.092 \\ & 7.092 \\ & 7.097 \\$

¹H NMR Spectrum of **13**

¹³C NMR Spectrum of **13**

¹³C NMR Spectrum of **14**

¹³C NMR Spectrum of **15**

-1.076

¹³C NMR Spectrum of **15**'

¹³C NMR Spectrum of **16**'

¹³C NMR Spectrum of 17 and 17'

¹³C NMR Spectrum of **18 and 18**'

¹³C NMR Spectrum of **19**

¹³C NMR Spectrum of **20**

¹³C NMR Spectrum of **22**

¹³C NMR Spectrum of **23**

¹³C NMR Spectrum of **24**

7.2316 7.220 7.220 7.138 7.120 7.101

 $\begin{array}{c} -4,107\\ -4,079\\ -4,079\\ -4,079\\ -2,967\\ -2,950\\ -2,934\\ -2,934\\ -2,934\\ -2,934\\ -2,934\\ -2,934\\ -2,934\\ -2,934\\ -2,933\\ -2,934\\$

¹³C NMR Spectrum of **27**

¹³C NMR Spectrum of **28**

$\begin{array}{c} 7,325\\ 7,325\\ 7,233\\ 7,213\\ 7,2213\\ 7,2213\\ 7,122\\ 7,122\\ 7,130\\ 7,110\\ 7,122\\$

S70

¹³C NMR Spectrum of **32**

CI

CI

¹³C NMR Spectrum of **33**

¹³C NMR Spectrum of **34**

¹³C NMR Spectrum of **35**

¹³C NMR Spectrum of **36**

¹³C NMR Spectrum of **38**

¹³C NMR Spectrum of **39**

¹³C NMR Spectrum of **40**

¹³C NMR Spectrum of **42**

¹³C NMR Spectrum of **43**

¹³C NMR Spectrum of 44

¹³C NMR Spectrum of **45**

¹³C NMR Spectrum of **46**

¹H NMR Spectrum of **47**

140 130 ¹³C NMR Spectrum of **47**

¹H NMR Spectrum of **48**

¹³C NMR Spectrum of **48**

¹³C NMR Spectrum of **50**

¹³C NMR Spectrum of **51**

¹³C NMR Spectrum of **52**

¹H NMR Spectrum of **53**

¹³C NMR Spectrum of **53**

¹³C NMR Spectrum of **57**