Supplementary Information for

Effects of Lewis Acidity and Size of Lanthanide Salts for Ring-Opening Copolymerization

Zachary A. Wood,^{a†} Mrityunjay Giri,^{a†} Harrison Min,^a Aren Ohanyan,^a Adrian Guerrero,^a Mikiyas K.

Assefa,^a Megan E. Fieser^a

^aDepartment of Chemistry, University of Southern California, Los Angeles, CA 90089

[†]Z. A. W and M. G. contributed equally

Table of contents

1. Proposed Mechanistic Insight

S4

Fig ear are lar	ig. S1 Proposed metal species for the ROCOP of epoxides and cyclic anhydrides with trichloride rates with metal (Ln) salts pre-catalysts and [PPN]Cl cocatalyst. [PPN] cocatalyst and protonated chain e omitted for clarity. Four chain ends per metal center is due to three chloride initiators on the nthanide salt and one chloride initiator associated with the PPN cation	ure nds S4
Fi cy	ig. S2 Proposed catalytic cycle for the ring-opening copolymerization (ROCOP) of epoxides and vclic anhydrides in the presence of multiple monomers	S4
Fig en sm	g. S3 Hypothesis of why steric repulsions causes monomer epoxide ring opening with a CPMA chand to favor larger metals (left) and why a less bulky pair of monomers (such as BO/GA) can favor naller metals (right)	ain S5
2. Ge	eneral Considerations	S 5
2.1. I	Methods	S 5
3. Ge	eneral Procedures for Polymerization	S6
3.1 G	General Procedure for Anhydride Reactivity Ratio Reactions	S6
4. Siı	ngle-Point Polymer Conversion Data	S 7
4.1. I	Polymerizations with CPMA for Single-Point Turnover Frequency (TOF)	S7
Ta sal	able S1 Tabulated polymerization data for ROCOP of BO/CPMA catalyzed by lanthanide hydrate lts	S 7
Ta sal	able S2 Tabulated polymerization data for ROCOP of CHO/CPMA catalyzed by lanthanide hydraults	te S7
4.2 P	Polymerizations with GA for Single-Point TOF	S8
Τa	able S3 Tabulated polymerization data for ROCOP of BO/GA catalyzed by lanthanide hydrate sale	ts 8
Ta	able S4 Tabulated polymerization data for ROCOP of CHO/GA catalyzed by lanthanide hydrate sa	alts S8
4.3 P	Polymerizations with PA for Single-Point TOF	S9
Ta	able S5 Tabulated polymerization data for ROCOP of BO/PA catalyzed by lanthanide hydrate salt	s S9
Tε	able S6 Tabulated polymerization data for ROCOP of CHO/PA catalyzed by lanthanide hydrate sa	ılts S9

5. Full Conversion Polymerization Data for ¹ H NMR and SEC Analysis	S10
Table S7 Tabulated polymerization data for ROCOP of different monomer pairs catalyzed lanthanide hydrate salts	l by S10
6. Alternative Representation of Polymerization TOF Comparisons	S11
Fig. S4 Differences in catalytic activity between LnCl3·XH2O ($X=6,7$) salts for chosen r pairs. All TOFs are in reference to the slowest catalyst. Error bars represent one standard calculated from duplicate measurements. * = smallest TOF	nonomer leviation, S11
7. Reactivity Ratio Data	S11
7.1 Calculation of reactivity ratios	S11
7.2 Reactivity Ratio Plots	S12
Fig. S5 Differences in reactivity ratios for the polymerization of CHO/DGA/PA with LaCl ₃ ·7H ₂ O/[PPN]Cl at 110 °C	S12
Fig. S6 Differences in reactivity ratios for the polymerization of CHO/PA/SA with $LaCl_3 \cdot 7H_2O/[PPN]Cl$ at 110 °C	S12
Fig. S7 Differences in reactivity ratios for the polymerization of CHO/SA/GA with $LaCl_3 \cdot 7H_2O/[PPN]Cl$ at 110 °C	S13
Fig. S8 Differences in reactivity ratios for the polymerization of CHO/GA/CPMA with $LaCl_3 \cdot 7H_2O/[PPN]Cl$ at 110 °C	S13
Fig. S9 Differences in reactivity ratios for the polymerization of CHO/DGA/CPMA with $LaCl_3 \cdot 7H_2O/[PPN]Cl$ at 110 °C	S14
Fig. S10 Differences in reactivity ratios for the polymerization of CHO/SA/CPMA with YCl ₃ ·6H ₂ O/[PPN]Cl (faded) and LaCl ₃ ·7H ₂ O/[PPN]Cl (dark) at 110 °C	S14
8. Representative ¹ H NMR Data for Conversion Measurements	S15
Fig. S11 ¹ H NMR (CDCl ₃ , 400 MHz) of aliquot of BO-alt-CPMA catalyzed with GdCl ₃ ·6	H ₂ O S15
Fig. S12 ¹ H NMR (CDCl ₃ , 400 MHz) of aliquot of CHO-alt-CPMA catalyzed with CeCl ₃ .	7H ₂ O S16
Fig. S13 ¹ H NMR (CDCl ₃ , 400 MHz) of aliquot of BO-alt-GA catalyzed with LaCl ₃ ·7H ₂ C	S17
Fig. S14 ¹ H NMR (CDCl ₃ , 400 MHz) of aliquot of CHO-alt-GA catalyzed with NdCl ₃ ·6H	₂ O S18
Fig. S15 ¹ H NMR (CDCl ₃ , 400 MHz) of aliquot of BO-alt-PA catalyzed with NdCl ₃ ·6H ₂ C	S19
Fig. S16 ¹ H NMR (CDCl ₃ , 400 MHz) of aliquot of CHO-alt-PA catalyzed with CeCl ₃ ·7H ₂	O S20
9. Representative ¹ H NMR Data of Purified Polymers	S21
Fig. S17 ¹ H NMR (CDCl ₃ , 600 MHz) of BO-alt-CPMA catalyzed with GdCl ₃ ·6H ₂ O. Resc assignable to PPN phenyl groups	nance a is S21
Fig. S18 ¹ H NMR (CDCl ₃ , 600 MHz) of CHO-alt-CPMA catalyzed with CeCl ₃ ·7H ₂ O. Resassignable to PPN phenyl groups	sonance a is S22
Fig. S19 ¹ H NMR (CDCl ₃ , 600 MHz) of BO-alt-GA catalyzed with LaCl ₃ ·7H ₂ O. Resonan assignable to PPN phenyl groups	ce a is S23
Fig. S20 ¹ H NMR (CDCl ₃ , 600 MHz) of CHO-alt-GA catalyzed with NdCl ₃ ·6H ₂ O. Reson assignable to PPN phenyl groups	ance a is S24

Fig. S21 ¹ H NMR (CDCl ₃ , 600 MHz) of BO-alt-PA catalyzed with NdCl ₃ ·6H ₂ O	S25
Fig. S22 ¹ H NMR (CDCl ₃ , 600 MHz) of CHO-alt-PA catalyzed with CeCl ₃ ·7H ₂ O. Resonance a is assignable to PPN phenyl groups	s S26
10. Representative ¹³ C NMR Data of Purified Polymers	S27
Fig. S23 ¹³ C NMR (CDCl ₃ , 600 MHz) of BO-alt-CPMA catalyzed with GdCl ₃ ·6H ₂ O	S27
Fig. S24 ¹³ C NMR (CDCl ₃ , 600 MHz) of CHO-alt-CPMA catalyzed with CeCl ₃ ·7H ₂ O.	S27
Fig. S25 ¹³ C NMR (CDCl ₃ , 600 MHz) of BO-alt-GA catalyzed with LaCl ₃ ·7H ₂ O.	S28
Fig. S26 ¹³ C NMR (CDCl ₃ , 600 MHz) of CHO-alt-GA catalyzed with NdCl ₃ ·6H ₂ O	S28
Fig. S27 ¹ H NMR (CDCl ₃ , 600 MHz) of BO-alt-PA catalyzed with NdCl ₃ ·6H ₂ O	S29
Fig. S28 ¹ H NMR (CDCl ₃ , 600 MHz) of CHO-alt-PA catalyzed with CeCl ₃ ·7H ₂ O	S29
11. Representative ¹ H NMR Data for Reactivity Ratios	S30
Fig. S29 ¹ H NMR (CDCl ₃ , 400 MHz) of CHO-alt-DGA-b-CHO-alt-PA monitored by aliquots	S30
Fig. S30 ¹ H NMR (CDCl ₃ , 400 MHz) of CHO-alt-PA-b-CHO-alt-SA monitored by aliquots	S31
Fig. S31 ¹ H NMR (CDCl ₃ , 400 MHz) selected region of CHO-alt-SA-b-CHO-alt-GA monitored b aliquots	y S32
Fig. S32 ¹ H NMR (CDCl ₃ , 400 MHz) of CHO-alt-GA-b-CHO-alt-CPMA monitored by aliquots	S33
Fig. S33 ¹ H NMR (CDCl ₃ , 400 MHz) selected region of CHO-alt-DGA-b-CHO-alt-CPMA monitory aliquots	ored S34
Fig. S34 ¹ H NMR (CDCl ₃ , 400 MHz) selected region of CHO-alt-SA-b-CHO-alt-CPMA monitore aliquots	ed by S35
12. Representative SEC Data	S36
Fig. S35 GPC traces (MALS detector left, RI detector right) of BO-alt-CPMA catalyzed with $GdCl_3 \cdot 6H_2O$	S36
Fig. S36 GPC traces (MALS detector left, RI detector right) of CHO-alt-CPMA catalyzed with $CeCl_3 \cdot 7H_2O$	S36
Fig. S37 GPC traces (MALS detector left, RI detector right) of BO-alt-GA catalyzed with LaCl ₃ .	7H ₂ O S37
Fig. S38 GPC traces (MALS detector left, RI detector right) of CHO-alt-GA catalyzed with $NdCl_3 \cdot 6H_2O$	S37
Fig. S39 GPC traces (MALS detector left, RI detector right) of BO-alt-PA catalyzed with NdCl ₃ .	5H ₂ O S38
Fig. S40 GPC traces (MALS detector left, RI detector right) of CHO-alt-PA catalyzed with CeCl ₃ ·7H ₂ O	S38

1. Proposed Mechanistic Insight

Fig. S1 Proposed metal species for the ROCOP of epoxides and cyclic anhydrides with trichloride rare earth metal (Ln) salts pre-catalysts and [PPN]Cl cocatalyst. [PPN] cocatalyst and protonated chain ends are omitted for clarity. Four chain ends per metal center is due to three chloride initiators on the lanthanide salt and one chloride initiator associated with the PPN cation.

Fig. S2 Proposed catalytic cycle for the ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides in the presence of multiple monomers.

Fig. S3 Hypothesis of why steric repulsions causes monomer epoxide ring opening with a CPMA chain end to favor larger metals (left) and why a less bulky pair of monomers (such as BO/GA) can favor smaller metals (right).

2. General Considerations

All polymerization reactions were set up on a benchtop under atmospheric conditions. Protio and deuterated chloroform were purchased from commercial suppliers and used as received. 1-Butene oxide (BO) and cyclohexene oxide (CHO) were dried over CaH₂ for at least 24 hours, then filtered and stored under atmospheric conditions. Carbic anhydride (CPMA) was recrystallized from hot 30:70 ethyl acetate/hexanes and dried under reduced pressure for 24 h prior to use. Phthalic anhydride (PA), and succinic anhydride (SA) were sublimed prior to use. Glutaric anhydride (GA), and diglycolic anhydride (DGA) were purchased from commercial suppliers and used as received. Bis(triphenylphosphine)iminium chloride ([PPN]Cl) was recrystallized from CH₂Cl₂/diethyl ether and dried under reduced pressure for 24 h prior to use. All rare earth hydrate salts were purchased from commercial suppliers and stored in a desiccator prior to use.

2.1. Methods

¹H NMR spectra were recorded on a Varian 400-MR 2-Channel, Varian Mercury 400 2-Channel, and Varian VNMRS-600 3-Channel spectrometers referenced against residual protio solvent resonances. ¹³C NMR spectra were recorded on a Varian VNMRS-600 3-Channel spectrometer referenced against residual protio solvent resonances. Polymer molar masses and dispersities were determined using a SEC-MALS instrument equipped with an Agilent 1260 Infinity II HPLC System and autosampler, 2 Agilent PolyPore

columns (both 5 micron, 4.6 mm ID) in sequence, a Wyatt DAWN HELEOS-II light scattering detector, and a Wyatt Optilab T- rEX refractive index detector. The columns were eluted with HPLC grade THF at 30 °C at a flow rate of 0.3 mL/min, and polymer samples were dissolved in this solvent and filtered through a 0.2 micron PTFE membrane before dRI analyses. dn/dc values were calculated from the RI signal by using the 100% mass recovery method in the Astra software and a known sample concentration.

3. General Procedures for Polymerization

On the benchtop, $LnCl_3 \cdot xH_2O$ (x = 6 or 7) (1 equiv), [PPN]Cl (1 equiv), anhydride, epoxide and a stir bar were charged into a 2 dram vial equipped with a Teflon-lined cap. Example reaction for **Fig. 3**: YCl₃·6H₂O (1 equiv, 2.98 mg, 0.010 mmol), [PPN]Cl (1 equiv, 5.64 mg, 0.010 mmol), CPMA (400 equiv, 644.5 mg, 3.9 mmol), and CHO (2000 equiv, 2 mL, 19.6 mmol). The vial was closed and then taped with electrical tape and placed inside a Chemglass high throughput tray that was preheated to 110 °C for at least 1 h. After the desired time, the vial was cooled to room temperature and the resulting mixture was dissolved in 1 mL of chloroform. Hexanes was added in excess until the polymer started to precipitate out. The precipitate was allowed to settle, and the supernatant was pipette away. The isolated polymer was then dried under reduced pressure at 80 °C overnight. Conversions were calculated via analysis of crude ¹H NMR spectra in CDCl₃.

3.1 General Procedure for Anhydride Reactivity Ratio Reactions

On the benchtop, $LnCl_3 \cdot xH_2O$ (x = 6 or 7) (1 equiv), [PPN]Cl (1 equiv), 2 anhydrides of choice (each 50 equiv, 0.49 mmol), epoxide (500 equiv.) and a stir bar were charged into a 2 dram vial equipped with a Teflon-lined cap. Example reaction for **Fig. 4**, $LaCl_3 \cdot 6H_2O$ (1 equiv, 3.6 mg, 0.010 mmol), [PPN]Cl (1 equiv, 5.6 mg, 0.010 mmol), DGA (50 equiv, 57.0 mg, 0.49 mmol), PA (50 equiv, 72.7 mg, 0.49 mmol), CHO (500 equiv, 0.50 mL, 4.91 mmol) and a stir bar were charged into a vial equipped with a Teflon-lined cap. The Vial is placed inside a Chemglass high throughput tray that was preheated to 110 °C for at least 1 h. Aliquots, which were then dissolved in CDCl₃, were then taken at selected times for each reaction to monitor monomer conversion by ¹H NMR (**Fig. S29-S34**).

4. Single-Point Polymer Conversion Data

4.1. Polymerizations with CPMA for Single-Point Turnover Frequency (TOF)

 Table S1 Tabulated polymerization data for ROCOP of BO/CPMA catalyzed by lanthanide hydrate salts.^a

Catalyst	Run 1 %	Run 2 % conversion ^b	Stdv.
	conversion ^b		
LaCl ₃ ·7H ₂ O	84	78	4
CeCl ₃ ·6H ₂ O	82	79	2
NdCl ₃ ·6H ₂ O	78	72	4
SmCl ₃ ·6H ₂ O	67	64	2
GdCl ₃ ·6H ₂ O	57	61	3
YCl ₃ ·6H ₂ O	63	66	2
HoCl ₃ ·6H ₂ O	62	62	0
TmCl ₃ ·6H ₂ O	61	63	1

^{*a*}[BO]:[CPMA]:[rare earth chloride hydrate]:[[PPN]Cl] was 2000:400:1:1 at 110 °C for 3 hrs. ^{*b*}Determined using ¹H NMR spectra of crude reaction mixtures, comparing conversion of anhydride to polymer.

Table S2 Tabulated polymerization data for ROCOP of CHO/CPMA catalyzed by lanthanide hydrate salts.^{*a*}

Catalyst	Run 1 % conversion ^b Run 2 % conversion		Stdv. ^c
LaCl ₃ ·7H ₂ O	65	69	3
CeCl ₃ ·6H ₂ O	73	70	2
NdCl ₃ ·6H ₂ O	64	71	5
SmCl ₃ ·6H ₂ O	64	73	6
GdCl ₃ ·6H ₂ O	60	66	4
YCl ₃ ·6H ₂ O	64	71	5
HoCl ₃ ·6H ₂ O	66	61	4
TmCl ₃ ·6H ₂ O	53	64	8

^{*a*}[CHO]:[CPMA]:[rare earth chloride hydrate]:[[PPN]Cl] was 2000:400:1:1 at 110 °C for 2 hrs. ^{*b*}Determined using ¹H NMR spectra of crude reaction mixtures, comparing conversion of anhydride to polymer. ^{*c*}Standard deviation based on conversion of duplicate runs.

4.2 Polymerizations with GA for Single-Point TOF

Catalyst	Run 1 % conversionRun 2 % conversion		Stdv.
LaCl ₃ ·7H ₂ O	53	53	0
CeCl ₃ ·6H ₂ O	65	66	1
NdCl ₃ ·6H ₂ O	69	69	0
SmCl ₃ ·6H ₂ O	83	73	7
GdCl ₃ ·6H ₂ O	78	73	4
YCl ₃ ·6H ₂ O	86	81	4
HoCl ₃ ·6H ₂ O	86	76	7
TmCl ₃ ·6H ₂ O	75	75	0

Table S3 Tabulated polymerization data for ROCOP of BO/GA catalyzed by lanthanide hydrate salts.^a

^{*a*}[BO]:[GA]:[rare earth chloride hydrate]:[[PPN]Cl] was 2000:400:1:1 at 110 °C for 3 hrs. ^{*b*}Determined using ¹H NMR spectra of crude reaction mixtures, comparing conversion of anhydride to polymer.

-	Catalyst	Run 1 % conversion ^b	Run 2 % conversion ^b	Stdv.
-	LaCl ₃ ·7H ₂ O	52	50	1
	CeCl ₃ ·6H ₂ O	68	60	6
	NdCl ₃ ·6H ₂ O	79	78	1
	SmCl ₃ ·6H ₂ O	89	84	3
	GdCl ₃ ·6H ₂ O	88	66	15
	YCl ₃ ·6H ₂ O	93	93	1
	HoCl ₃ ·6H ₂ O	90	90	0
	TmCl ₃ ·6H ₂ O	82	88	4

Table S4 Tabulated polymerization data for ROCOP of CHO/GA catalyzed by lanthanide hydrate salts.^a

^{*a*}[CHO]:[GA]:[rare earth chloride hydrate]:[[PPN]Cl] was 2000:400:1:1 at 110 °C for 2 hrs. ^{*b*}Determined using ¹H NMR sepctra of crude reaction mixtures, comparing conversion of anhydride to polymer.

4.3 Polymerizations with PA for Single-Point TOF

-	Catalyst	Catalyst Run 1 % conversion ^b Run 2 %		Stdv.
-	LaCl ₃ ·7H ₂ O	52	55	2
	CeCl ₃ ·6H ₂ O	58	53	4
	NdCl ₃ ·6H ₂ O	51	70	14
	SmCl ₃ ·6H ₂ O	48	48	0
	GdCl ₃ ·6H ₂ O	42	40	1
	YCl ₃ ·6H ₂ O	43	51	5
	HoCl ₃ ·6H ₂ O	57	52	3
	TmCl ₃ ·6H ₂ O	56	38	13

Table S5 Tabulated polymerization data for ROCOP of BO/PA catalyzed by lanthanide hydrate salts.^a

^{*a*}[BO]:[PA]:[rare earth chloride hydrate]:[[PPN]Cl] was 2000:400:1:1 at 110 °C for 100 minutes. ^{*b*}Determined using ¹H NMR spectra of crude reaction mixtures, comparing conversion of anhydride to polymer.

Table S6 Tabulated polymerization data for ROCOP of CHO/PA catalyzed by lanthanide hydrate salts.^a

Catalyst	Run 1 % conversionRun 2 % conversion		Stdv.
LaCl ₃ ·7H ₂ O	51	48	2
CeCl ₃ ·6H ₂ O	61	52	6
NdCl ₃ ·6H ₂ O	60	51	6
SmCl ₃ ·6H ₂ O	49	51	1
$GdCl_3 \cdot 6H_2O$	49	54	4
YCl ₃ ·6H ₂ O	69	61	6
HoCl ₃ ·6H ₂ O	48	49	1
TmCl ₃ ·6H ₂ O	52	60	6

^{*a*}[CHO]:[PA]:[rare earth chloride hydrate]:[[PPN]Cl] was 2000:400:1:1 at 110 °C for 30 minutes. ^{*b*}Determined using ¹H NMR spectra of crude reaction mixtures, comparing conversion of anhydride to polymer.

5. Full Conversion Polymerization Data for ¹H NMR and SEC Analysis

Table S7 Tabulated polymerization data for ROCOP of different monomer pairs catalyzed by lanthanide hydrate salts.^{*a*}

Monomer	Metal	%	% ester ^c	%	$M_{\rm n}({\rm exp.})^d$	D^d
Pair	Catalyst	Conversion ^b		epim ^e		
	LaCl ₃ ·7H ₂ O	>99	94	52	-	-
BO/CPMA	NdCl ₃ ·6H ₂ O	98	96	7	-	-
	GdCl ₃ ·6H ₂ O	88	96	9	10.3	1.2
	CeCl ₃ ·6H ₂ O	>99	75	11	6.8	1.5
CHO/CPMA	GdCl ₃ ·6H ₂ O	>99	72	13	4.6	1.3
	TmCl ₃ ·6H ₂ O	>99	70	16	5.6	1.3
	LaCl ₃ ·7H ₂ O	70	>99	-	3	1.0
BO/GA	GdCl ₃ ·6H ₂ O	98	>99	-	5.8	1.1
	YCl ₃ ·6H ₂ O	98	>99	-	5.0	1.2
	LaCl ₃ ·7H ₂ O	98	>99	-	3.6	1.2
CHO/GA	NdCl ₃ ·6H ₂ O	98	>99	-	3.9	1.1
	YCl ₃ ·6H ₂ O	98	>99	-	3.1	1.2
	NdCl ₃ ·6H ₂ O	95	>99	-	5.9	1.1
BO/PA	SmCl ₃ ·6H ₂ O	92	>99	-	4.5	1.1
	GdCl ₃ ·6H ₂ O	83	>99	-	5.5	1.1
	CeCl ₃ ·6H ₂ O	90	>99	-	2.9	1.1
CHO/PA	YCl ₃ ·6H ₂ O	97	>99	-	3.5	1.1
	HoCl ₃ ·6H ₂ O	85	>99	-	3.2	1.1

^{*a*}[epoxide]:[cyclic anhydride]:[rare earth chloride hydrate]:[[PPN]Cl] was 2000:400:1:1 at 110 °C. ^{*b*}Determined using ¹H NMR spectra of crude reaction mixtures, comparing conversion of anhydride to polymer. ^{*c*}Determined using ¹H NMR of purified polymers, comparing the polyether signal to a polyester signal. ^{*d*}Identified by gel permeating chromatography (GPC), using a Wyatt MALS detector. ^{*e*}Determined using ¹H NMR spectra of purified polymers: % Epim. = $\{2 \ge A_{2.7 \text{ ppm}}/(A_{6.0-6.5 \text{ ppm}})\} \ge 100$.

6. Alternative Representation of Polymerization TOF Comparisons

Fig. S4 Differences in catalytic activity between $LnCl_3 \cdot XH_2O$ (X= 6, 7) salts for chosen monomer pairs. All TOFs are in reference to the slowest catalyst. Error bars represent one standard deviation, calculated from duplicate measurements, * = smallest TOF.

7. Reactivity Ratio Data

7.1 Calculation of reactivity ratios

Due to the rate-determining step of the ROCOP of epoxides and cyclic anhydrides involving only epoxide ring opening, turn-over frequency data from individual ROCOP reactions does not allow accurate predictions of polymer sequence in the presence of multiple anhydrides. Therefore, a non-terminal compositional drift copolymerization kinetics model was employed to determine the reactivity ratios of multiple anhydride pairs.¹⁻³ Following the experimental procedure described in section 2.1, Equations 1 and 2 were used to calculate the reactivity ratios of a mixture of two anhydrides. For these equations, p_A and p_B are the respective conversions of A and B monomers with $p_A = 1$ - (A(t)/A₀). The calculated reactivity ratios are then fit to the experimental data as shown in **Fig. S5-S10**.

$$p_{AB}(p_A) = 1 - n_A(1 - p_A) - (1 - n_A)(1 - p_A)^{r_B}$$
(1)

$$p_{AB}(p_B) = 1 - (1 - n_A)(1 - p_B) - n_A(1 - p_B)^{r_A}$$
⁽²⁾

7.2 Reactivity Ratio Plots

Fig. S5 Differences in reactivity ratios for the polymerization of CHO/DGA/PA with LaCl₃·7H₂O/[PPN]Cl at 110 °C.

Fig. S6 Differences in reactivity ratios for the polymerization of CHO/PA/SA with LaCl₃·7H₂O/[PPN]Cl at 110 °C.

Fig. S7 Differences in reactivity ratios for the polymerization of CHO/SA/GA with LaCl₃·7H₂O/[PPN]Cl at 110 °C.

Fig. S8 Differences in reactivity ratios for the polymerization of CHO/GA/CPMA with $LaCl_3 \cdot 7H_2O/[PPN]Cl at 110 \ ^{\circ}C.$

Fig. S9 Differences in reactivity ratios for the polymerization of CHO/DGA/CPMA with $LaCl_3 \cdot 7H_2O/[PPN]Cl at 110 \ ^{\circ}C.$

Fig. S10 Differences in reactivity ratios for the polymerization of CHO/SA/CPMA with $YCl_3 \cdot 6H_2O/[PPN]Cl$ (faded) and $LaCl_3 \cdot 7H_2O/[PPN]Cl$ (dark) at 110 °C.

Fig. S11 ¹H NMR (CDCl₃, 400 MHz) of aliquot of BO-alt-CPMA catalyzed with GdCl₃·6H₂O.

Fig. S12 ¹H NMR (CDCl₃, 400 MHz) of aliquot of CHO-alt-CPMA catalyzed with CeCl₃·7H₂O.

Fig. S13 ¹H NMR (CDCl₃, 400 MHz) of aliquot of BO-alt-GA catalyzed with LaCl₃·7H₂O.

Fig. S15 ¹H NMR (CDCl₃, 400 MHz) of aliquot of BO-alt-PA catalyzed with NdCl₃·6H₂O.

Fig. S16 ¹H NMR (CDCl₃, 400 MHz) of aliquot of CHO-alt-PA catalyzed with CeCl₃·7H₂O.

9. Representative ¹H NMR Data of Purified Polymers

Fig. S17 ¹H NMR (CDCl₃, 600 MHz) of BO-alt-CPMA catalyzed with GdCl₃·6H₂O. Resonance a is assignable to PPN phenyl groups.

Fig. S18 ¹H NMR (CDCl₃, 600 MHz) of CHO-alt-CPMA catalyzed with $CeCl_3 \cdot 7H_2O$. Resonance a is assignable to PPN phenyl groups.

Fig. S19 ¹H NMR (CDCl₃, 600 MHz) of BO-alt-GA catalyzed with LaCl₃·7H₂O. Resonance a is assignable to PPN phenyl groups.

Fig. S20 ¹H NMR (CDCl₃, 600 MHz) of CHO-alt-GA catalyzed with NdCl₃·6H₂O. Resonance a is assignable to PPN phenyl groups.

Fig. S21 ¹H NMR (CDCl₃, 600 MHz) of BO-alt-PA catalyzed with NdCl₃·6H₂O.

Fig. S22 ¹H NMR (CDCl₃, 600 MHz) of CHO-alt-PA catalyzed with CeCl₃·7H₂O. Resonance a is assignable to PPN phenyl groups.

10. Representative ¹³C NMR Data of Purified Polymers

Fig. S23 ¹³C NMR (CDCl₃, 600 MHz) of BO-alt-CPMA catalyzed with GdCl₃·6H₂O.

Fig. S24 ¹³C NMR (CDCl₃, 600 MHz) of CHO-alt-CPMA catalyzed with CeCl₃·7H₂O.

Fig. S25 ¹³C NMR (CDCl₃, 600 MHz) of BO-alt-GA catalyzed with LaCl₃·7H₂O.

Fig. S26¹³C NMR (CDCl₃, 600 MHz) of CHO-alt-GA catalyzed with NdCl₃·6H₂O.

Fig. S27 ¹H NMR (CDCl₃, 600 MHz) of BO-alt-PA catalyzed with NdCl₃·6H₂O.

Fig. S28 ¹H NMR (CDCl₃, 600 MHz) of CHO-alt-PA catalyzed with CeCl₃·7H₂O.

11. Representative ¹H NMR Data for Reactivity Ratios

Fig. S29 ¹H NMR (CDCl₃, 400 MHz) of CHO-alt-DGA-b-CHO-alt-PA monitored by aliquots. Right side up triangles label monomer decaying, while upside down triangles label polymer growing.

Fig. S30 ¹H NMR (CDCl₃, 400 MHz) of CHO-alt-PA-b-CHO-alt-SA monitored by aliquots. Right side up triangles label monomer decaying, while upside down triangles label polymer growing.

Fig. S31 ¹H NMR (CDCl₃, 400 MHz) selected region of CHO-alt-SA-b-CHO-alt-GA monitored by aliquots. Right side up triangles label monomer decaying, while upside down triangles label polymer growing.

Fig. S32 ¹H NMR (CDCl₃, 400 MHz) of CHO-alt-GA-b-CHO-alt-CPMA monitored by aliquots. Right side up triangles label monomer decaying, while upside down triangles label polymer growing.

Fig. S33 ¹H NMR (CDCl₃, 400 MHz) selected region of CHO-alt-DGA-b-CHO-alt-CPMA monitored by aliquots. Right side up triangles label monomer decaying, while upside down triangles label polymer growing.

Fig. S34 ¹H NMR (CDCl₃, 400 MHz) selected region of CHO-alt-SA-b-CHO-alt-CPMA monitored by aliquots. Right side up triangles label monomer decaying, while upside down triangles label polymer growing.

12. Representative SEC Data

Fig. S35 GPC traces (MALS detector left, RI detector right) of BO-alt-CPMA catalyzed with GdCl₃·6H₂O.

Fig. S36 GPC traces (MALS detector left, RI detector right) of CHO-alt-CPMA catalyzed with $CeCl_3$ ·7H₂O.

Fig. S37 GPC traces (MALS detector left, RI detector right) of BO-alt-GA catalyzed with LaCl₃·7H₂O.

Fig. S38 GPC traces (MALS detector left, RI detector right) of CHO-alt-GA catalyzed with NdCl₃·6H₂O.

Fig. S39 GPC traces (MALS detector left, RI detector right) of BO-alt-PA catalyzed with NdCl₃·6H₂O.

Fig. S40 GPC traces (MALS detector left, RI detector right) of CHO-alt-PA catalyzed with CeCl₃·7H₂O.

References

- ¹ B. S. Beckingham, G. E. Sanoja and N. A. Lynd, *Macromolecules*, 2015, 48, 6922–6930.
- ² M. Chwatko and N. A. Lynd, *Macromolecules*, 2017, **50**, 2714–2723.
- ³ X. Xia, R. Suzuki, T. Gao, T. Isono and T. Satoh, Nat. Comm., 2022, 13, 163.