Supplementary Information

High-Entropy Strategies Afford Transition Metal Perovskite Oxides with Enhanced Low-Temperature NO_x Removal Efficiency

Xuan Zhang,^{*a,b*} Dequan Jiang,^{*a*} Shenghui Han,^{*a*} Wanli Yi, ^{*a*} Jianwen Su,^{*a*} Song Gao, ^{*a*,*} Yonggang Wang,^{*a*,*} Ruqiang Zou^{*a*}

^aState Key Laboratory of Advanced Waterproof Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China.

^bBeijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, PR China
*Corresponding author: gaosong198600@pku.edu.cn (S.G.); ygw@pku.edu.cn (Y.W.)

1 1. Sample preparation and characterizations.

Powder samples of LaBO₃ (B is the transition metal oxides, Co, Mn, Fe, Ni, Cr, Al, 2 Mo, W, the metal source was selected for the B site in ABO₃ because they have similar 3 six-coordination ionic radii) were synthesized using the citric acid sol-gel method. A 4 certain amount of metal nitrates (La(NO₃)₃·6H₂O, Mn(NO₃)₂, Co(NO₃)₂·6H₂O, 5 Ni(NO₃)₂·6H₂O, Cr(NO₃)₃·9H₂O, Al(NO₃)₃·9H₂O, Fe(NO₃)₂·9H₂O, Na₂WO₄·2H₂O, 6 C₄H₄NNbO₉.nH₂O) were dissolved in deionized water and citric acid and ethylene 7 glycol were then added into the above solution and stirred for 3 h at 150 °C. When the 8 above solution became viscous precursors, the stirring process was stopped. 9 Subsequently, the viscous precursors were dried overnight at 200°C and finally 10 calcinated at 700 °C in air atmosphere for 6 hours. The resulting samples were marked 11 in the following table. 12

	Sample		Со	Mn	Fe	Ni	Cr	Al	
1	$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Cr_{0.2})O_{3\cdot\delta}$	1.0	0.2	0.2	0.2	0.2	0.2	NO	HEP-no-Al
2	$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2})O_{3\cdot\delta}$	1.0	0.2	0.2	0.2	0.2	NO	0.2	HEP-no-Cr
3	$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$	1.0	0.2	0.2	0.2	NO	0.2	0.2	HEP-no-Ni
4	$La(Co_{0.2}Mn_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$	1.0	0.2	0.2	NO	0.2	0.2	0.2	HEP-no-Fe
5	$La(Co_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3\cdot\delta}$	1.0	0.2	NO	0.2	0.2	0.2	0.2	HEP-no-Mn
6	$La(Mn_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3\cdot\delta}$	1.0	NO	0.2	0.2	0.2	0.2	0.2	HEP-no-Co
	Sample		Со	Mn	Fe	Ni	Cr	Мо	W
7	$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Cr_{0.2})O_{3\cdot\delta}$	1.0	0.2	0.2	0.2	0.2	0.2	NO	NO HEP-Cr
8	$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Mo_{0.2})O_{3-\delta}$	1.0	0.2	0.2	0.2	0.2	NO	0.2	NO HEP-Mo
9	$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}W_{0.2})O_{3\cdot\delta}$	1.0	0.2	0.2	0.2	0.2	NO	NO	0.2 HEP-W

S	amp	les	svn	thes	sized	in	this	work.
			~,					

14 15

13

X-ray diffraction (XRD) patterns of as-prepared samples were collected by a powder 16 X-ray diffractometer (Rigaku Dmax-2400, RIGAKU, Japan) with Cu-Ka target. The 17 18 textural properties of as-prepared samples were investigated using a nitrogen adsorption apparatus (ASAP2020, Micromeritics, US) at 77K. Specific surface area, pore volume 19 and pore size distribution were obtained by Brunauer-Emmett-Teller (BET), single 20point and Barret-Joyner-Halenda (BJH) methods, respectively. Surface morphologies 21 of the as-prepared samples were analyzed using a field emission scanning electron 22 microscope (Merlin Compact, ZEISS, Germany) operating at 10 kV. Transmission 23 electron microscopy (TEM) images of as-prepared samples were screened on a 24 transmission electron microscope (JEM-2100F, JEOL, Japan) operating at 200 kV. The 25

surface chemical species of the as-prepared samples were characterized by X-ray 26 photoelectron spectroscopy (AXIS Supra, Kratos Analytical Ltd, UK) with Al K α 27 radiation. H₂ temperature-programmed reduction (H₂-TPR) and NH3 temperature-28 programmed desorption (NH₃-TPD) experiments were carried out on a chemisorption 29 analyzer (Chem-BET Pulsar TPR/TPD, Quanta-chrome, US). The samples were firstly 30 pretreated under a high purified N2 stream at 400 °C for 1 h to remove physiosorbed 31 water and other impurities. Subsequently, a stream of NH₃/N₂ (1 vol% NH₃) was passed 32 over the samples at room temperature, followed by purging with N₂ for 30 minutes. The 33 desorption of NH₃ was studied by heating pre-adsorbed samples, and the spectra were 34 35 recorded at stepped target temperatures by eliminating the corresponding background 36 reference.

37 NH₃-SCR activity measurements. The catalytic performances were tested in a 38 fixed-bed NH₃-SCR quartz reactor (6 mm of internal diameter) in the temperature range 39 from 90 to 390 °C with a GHSV of 15000 h⁻¹. The reaction gas mixture consisted of 40 500 ppm NH₃, 3% O₂ and N₂ in balance. Firstly, 200 mg catalyst was pretreated with 41 N2 at 200 °C for 30 minutes to eliminate physiosorbed water. The concentrations of NO 42 and NO₂ were obtained through a flue gas analyzer (Testo 350 Pro, Testo, Germany) 43 when the catalytic reaction substantially reached a steady state at every target 44 temperature. NO_x conversion efficiency was calculated according to the following 45 formula:

46 NO_x conversion rate =
$$\left(1 - \frac{[NO_x]_{out}}{[NO_x]_{in}}\right) \times 100\%$$
, ([NO_x]=[NO]+[NO₂])
47

57 Fig. S1 Lattice parameter (a and c) of HEP catalysts.

- 58 Fig. S2 Lattice Volume of HEP catalysts.
- 59 Fig. S3 N_2 adsorption and desorption curve and pore size distribution curve of
- 60 La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Cr_{0.2})O_{3- δ}.
- 61 Fig. S4 N₂ adsorption and desorption curve and pore size distribution curve of
- 62 $La(Co_{0.2}Mn_{0.2}Fe_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$.
- 63 Fig. S5 N₂ adsorption and desorption curve and pore size distribution curve of
- 64 $La(Co_{0.2}Mn_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$.
- 65 Fig. S6 N_2 adsorption and desorption curve and pore size distribution curve of 66 La(Mn_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3- δ}.
- 67 Fig. S7 N₂ adsorption and desorption curve and pore size distribution curve of
- 68 La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2})O_{3- δ}.
- 69 Fig. S8 N₂ adsorption and desorption curve and pore size distribution curve of
- 70 $La(Co_{0.2}Mn_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$.
- 71 Fig. S9 TEM of $La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Cr_{0.2})O_{3-\delta}$.
- 72 Fig. S10 TEM of $La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Mo_{0.2})O_{3-\delta}$.
- 73 Fig. S11 The Surface valence states of the A and B-site elements.
- 74 Fig. S12 H_2 -TPR spectra of HEP-Cr\Mo\W catalysts.
- 75
- 76 **Table S1** BET surface area and pore size of HEP catalysts.
- 77 **Table S2** XPS data for all the samples.
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86

87 Fig. S1 Lattice parameter (a and c) of HEP catalysts.

88 Fig. S2 Lattice Volume of HEP catalysts.

89 Fig. S3 N_2 adsorption and desorption curve and pore size distribution curve of 90 $La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Cr_{0.2})O_{3-\delta}$. 91

92 Fig. S4 N_2 adsorption and desorption curve and pore size distribution curve of 93 La(Co_{0.2}Mn_{0.2}Fe_{0.2}Al_{0.2}Cr_{0.2})O_{3- δ}.

94 Fig. S5 N_2 adsorption and desorption curve and pore size distribution curve of 95 $La(Co_{0.2}Mn_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$.

96 Fig. S6 N_2 adsorption and desorption curve and pore size distribution curve of 97 $La(Mn_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$

98 Fig. S7 N_2 adsorption and desorption curve and pore size distribution curve of 99 $La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2})O_{3-\delta}$.

100 Fig. S8 N_2 adsorption and desorption curve and pore size distribution curve of 101 $La(Co_{0.2}Mn_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$. 102

104 Fig. S9 TEM of $La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Cr_{0.2})O_{3-\delta}$.

- 107 Fig. S10 TEM of $La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Mo_{0.2})O_{3-\delta}$.

109 Fig. S11 The Surface valence states of the A and B-site elements.

114 Fig. S12 H_2 -TPR spectra of HEP-Cr\Mo\W catalysts.

116	Table S1 BET	surface area a	nd pore size o	f HEP catalysts.	
					-

	BET	surface	Total	pore	Average	pore	
Catalysts	area		volume		diameter		
	(m^{2}/g)		$(cm^{3/g})$		(nm)		
No-Al	19.3728		0 1125		18 4441		
$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Cr_{0.2})O_{3\text{-}\delta}$			0.1125		10.7771		
No-Ni	116519		0 1004		19 7265		
$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Al_{0.2}Cr_{0.2})O_{3\text{-}\delta}$	14.0348		0.1004		18.7505		
No-Fe	12.3265		0.0860		10 0404		
$La(Co_{0.2}Mn_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3\text{-}\delta}$			0.0809		19.9404		
No-Co	8 0300		0.0505		22 7561		
$La(Mn_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3\text{-}\delta}$	8.0309		0.0303		22.7501		
No-Cr	9 1617		0.0465		24 4194		
$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2})O_{3-\delta}$	8.1017		0.0463		24.4184		
No-Mn	6 2020		0.0559		21 2227		
$La(Co_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3\text{-}\delta}$	0.2920		0.0338		21.3337		

118 Table S2 XPS data for all the samples.

Catalysts	La ³⁺	Cr^{6+}/Cr^{3+}	Mn^{4+}/Mn^{3+}	Fe^{3+}/Fe^{2+}	Co ³⁺ /Co ²⁺	Ni ³⁺ /Ni ²⁺	Al ³⁺	O _α	O_v	O_{β}	
No-Al	100%	0.56	0.51	0.95	1.44	0.68		36.88	58.20	4.93	
$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Cr_{0.2})O_{3-\delta}$	i										
No-Ni	100%	0.54	0.37	0.83	1.37		1.0	36.14	56.30	7.55	
$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$											
No-Fe	100%	0.51	0.35		1.14	0.65	1.0	39.58	53.00	7.41	
$La(Co_{0.2}Mn_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$	$La(Co_{0.2}Mn_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$										
No-Co	100%	0.46	0.34	0.75		0.57	1.0	45.65	50.64	3.72	
$La(Mn_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3-\delta}$											
No-Cr	100%		0.28	0.73	1.14	0.57	1.0	44.84	47.83	7.33	
$La(Co_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2})O_{3-\delta}$											
No-Mn	100%	0.37		0.49	0.92	0.50	1.0	49.86	45.56	4.57	
$La(Co_{0.2}Fe_{0.2}Ni_{0.2}Al_{0.2}Cr_{0.2})O_{3\text{-}\delta}$											