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Experimental Section

Material synthesis. A powder sample of Na0.6MnO2 (NMO), Na0.6Li0.2Mn0.8O2 

(NLMO), Na0.6Mn0.8Ti0.2O2 (NMTO), and Na0.6Li0.2Mn0.6Ti0.2O2 (NLMTO) were 

synthesized using the solid-state reaction method. For each material, stoichiometric 

amounts of the respective raw materials, sourced from Aladdin Bio-Chem Co., Ltd. 

(Shanghai) with high purities (sodium carbonate ≥99.8%, lithium carbonate ≥99.8%, 

manganese trioxide ≥99.9%, titanium dioxide ≥99.5%), were ground for one hour. 

The resulting mixtures were then pressed into cylinders under a pressure of 10 MPa 

(with a diameter of 25 mm and thickness of 5 mm). All samples were calcined at 1000 

°C in air for 15 hours and subsequently cooled to room temperature in the furnace. To 

prevent moisture exposure, the final products were stored in an argon glove box 

where O₂ and H₂O levels were maintained below 0.1 ppm. The synthesis of the four 

materials, NLMTO, NLMO, NMTO, and NMO, differed only in the choice of 

chemicals and stoichiometry.

Material Characterizations. X-ray diffraction (XRD) patterns were obtained using a 

Panalytical X'pert Pro Diffractometer (Panalytical, Netherlands) equipped with a Cu 

Kα radiation source (λ1 = 1.54056 Å, λ2 = 1.54439 Å) over a 2θ range of 10-70°. In 

situ XRD analysis utilized a specialized Swagelok cell with an aluminum foil window. 

Scanning electron microscopy (SEM3100-CIQTEK) were used for morphological 

characterization. High angle annular dark field-scanning transmission electron 

microscopy (HAADF-STEM) were performed on a JEM-ARM300F2.

Electrochemical tests. For the half-cell assembly, the working electrode was prepared 

as follows: First, a blend consisting of 70% active material, 20% Super P carbon, and 

10% PVDF binder was mixed in N-Methyl-2-pyrrolidone (NMP). Then, this blend 

was coated onto aluminum foil. The coated aluminum foil was dried under vacuum at 

80°C overnight. Subsequently, it was cut into circular pieces with a diameter of 10 

mm, and the actual active material loading on these circular pieces was 2 - 3 mg cm⁻². 

CR2032 coin cells were assembled in an argon-filled glove box using a glass fiber 

separator. A sodium foil was used as the counter electrode, and the electrolyte was a 1 



M NaClO4 solution in propylene carbonate (PC) with an additional 5% fluoroethylene 

carbonate (FEC) as an additive. The battery was charged and discharged using a 

Neware testing system (CT-4008, Shenzhen, China), (1C=200mAh·g-1 in 1.5-4.5V). 

Cyclic voltammetry (CV) measurements were conducted using a Princeton 

Instruments testing system. Galvanostatic intermittent titration technique (GITT) was 

used to measure equilibrium potentials with a 10 mA g⁻¹ pulse for 30 minutes, 

followed by 2 hour rest periods between pulses.

Sodium ion diffusion coefficient calculation based on GITT test.

The diffusion coefficient of Na+ can be determined by applying the Fick's second law 

of diffusion, and the equation is:

Where MB, Vm, mB, A, ∆Es and ∆Eɩ are molecular weight, molar volume, mass, 

geometric area, the change of quasi-equilibrium potential and battery voltage, 

respectively.



Fig. S1 Powder XRD patterns of NMO and NLMTO.



Fig. S2 Rietveld-refined XRD pattern of NMO.



Fig. S3 SEM image of NMO.



Fig. S4 SEM image of NLMTO.



Fig. S5 Full XPS spectrum of NLMTO.



Fig. S6 (a) Mn 2p, (b) O 1s, (c) Ti 2p, and (d) Na 1s XPS spectrum of NLMTO.



Fig.S7 Electrochemical performances. GCD curves versus specific energy at 0.1C: (a) 

NMO and (b) NLMTO.



Fig. S8 The dQ/dV curves for the first three cycle at 0.1C: (a) NMO, and (b) NLMTO.



Fig.S9 Rate performance at different rates and cycle performance of NMO at 1C.



Fig. S10 Cyclic voltammetry curve of NLMTO at 0.1 mV s-1.



Fig. S11 (a) Cyclic voltammetry curves at different scan rates of NLMTO cathode, 

and (b) The b-values analysis based on the relationship between log i and log ν.



Fig.S12 The corresponding intensity contour maps of the characteristic diffraction 

peaks in the in-situ XRD within the voltage range of 1.5-4.5 V.



Fig. S13 The in-situ XRD patterns of NLMTO at different states, including the 

pristine state, charged to 4.5 V and discharged to 1.5 V, were selected from the in-situ 

data.



Fig.S14 Comparisons of phase transition ratio with reported literatures. S1-5



Table S1 Lattice parameters of NLMTO refined with XRD data.

Sample NLMTO

pace group P63/mmc

a (Å) 2.8935(9)

b (Å) 2.8935(9)

c (Å) 11.1347(3)

χ2 1.36

Rp (%) 5.66

Lattice parameters

Rwp (%) 7.64



Table S2 Lattice parameters of NMO refined with XRD data.

Sample NMO

pace group P63/mmc

a (Å) 2.8760(6)

b (Å) 2.8760(6)

c (Å) 11.1533(4)

χ2 1.35

Rp (%) 5.62

Lattice parameters

Rwp (%) 7.50
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