Electronic Supplementary Information

Photocatalytic and straightforward olefination of alkyl aldehydes with alkynylphosphonates enabled by Cu(I)-photosensitizers

Yan Zhou,^a Lang Chen,^a Ziwen Huang,^a Qinxu Sun,^a Xinyue Xu,^a Kun Zhang^a and Yunkui Liu^{*a}

^aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

E-mail: ykuiliu@zjut.edu.cn.

Table of Contents

1. General Information	S3
2. Preparation of Substrates and Catalyst	S3
2.1 General procedure for the preparation of alkynes 1	S3
2.2 General procedure for the preparation of aldehydes 2.	S6
2.3 Synthesis and characterization of <i>PS5</i>	S7
2.4 The photoelectric physical properties of <i>PS5</i>	S10
3. General Procedures for Synthesis of Vinylphosphonates 5	S11
3.1 Optimization of reaction conditions	S11
3.2 Experimental details and characterization of products	S16
3.3 1 mmol-scale synthesis of 5aa	S28
4. Mechanistic Studies	S29
4.1 Radical capture experiment	S29
4.2 Deuterium-labeling experiments	S29
4.3 Stern-Volmer experiments	S30
4.4 Light on/off interval experiment	S31
5. Practical application of the product 5aa and 5pa	S32
6. References	S34
7. ¹ H NOESY Spectra of (<i>E</i>)-5aa in CDCl ₃ at 298 K (400 MHz)	S36
8. Copies of ¹ H and ¹³ C NMR Spectra	S37

1. General Information

Unless otherwise noted, all reactions were carried out in flame-dried reaction vessels with Teflon screw caps under nitrogen. Solvents were purified and dried according to standard methods prior to use. Unless otherwise stated, all reagents were purchased from commercial suppliers and used as received. Flash column chromatography was performed on silica gel (100-200 mesh) with the indicated eluent solvents. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualize with UV light or phosphomolybdic acid indicator.

¹H NMR spectra were recorded on a spectrometer at 25 °C in CDCl₃ at 400 MHz, with TMS as internal standard. ¹³C NMR and ³¹P NMR spectra were recorded on a spectrometer at 25 °C in CDCl₃ at 101 MHz and 162 MHz, respectively. Chemical shifts (δ) are expressed in ppm and coupling constants J are given in Hz. The following abbreviations were used to identify the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, br = broad and all combinations thereof can be explained by their integral parts. High resolution mass spectra (HRMS) were obtained on a TOF-MS instrument with EI or ESI source.

UV-vis absorption spectra were recorded on a UV-1800 UV spectrophotometer (Shimadzu, Japan).

The emission spectra were investigated by a HORIBA fluorolog-3 luminescene spectrophotometer (the common intergration time were set to be 0.1 s in order to shorten the measurement time to be less than 40 s).

2. Preparation of Substrates and Catalyst

2.1 General procedure for the preparation of alkynes 1.

All alkynylphosphonates **1** are prepared according to the reported procedures.¹⁻⁶

General procedure for the synthesis of A3: To a solution of boronic acid A2 (10 mmol) in toluene/EtOH/H₂O (v/v/v = 18/14/6 mL) was added 1-bromo-4-iodobenzene A1 (12 mmol), Pd(PPh₃)₄ (0.3 mmol) and K₂CO₃ (30 mmol), the mixture was stirred at 110 °C in a sealed tube under N₂ for 18 h. The reaction mixture was cooled and poured into an ice-water mixture solution, filtering to get solid material. The residue was purified by column chromatography on silica gel (petroleum ether) to yield the product A3.

General procedure for the synthesis of A4: To a mixture of 4-bromobiphenyl A3 (10 mmol), Pd(PPh₃)₂Cl₂ (0.2 mmol) and CuI (0.4 mmol) in dry Et₃N (40 mL) was added trimethylsilylacetylene (12 mmol). The reaction mixture was stirred at 80 $^{\circ}$ C overnight under N₂ and monitored by TLC. After solvent removal, the residue was purified by column chromatography on silica gel (petroleum ether) to afford A4.

General procedure for the synthesis of A5: A4 (8 mmol) and K₂CO₃ (9.6 mmol) were suspended in methanol (20 mL) and stirred at r.t. for 3 h. After solvent removal, the reaction mixture was taken up in water and CH₂Cl₂, the phases separated, and the aqueous layer was extracted trice with CH₂Cl₂. Removal of the solvent yielded A5 as crude products.

General procedure for the synthesis of A6: To a mixture of 4-ethynyl-1,1' -biphenyl A5 (8 mmol) and Cu₂O (1.1 mmol) in MeCN (30 mL) was added diethyl phosphite (11.2 mmol). The reaction mixture was stirred at 70 $^{\circ}$ C for 24 h in the atmosphere of the air and monitored by TLC. After solvent removal, the residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate) to afford the product A6.

Procedure for the synthesis of A7: A mixture of diphenylphosphine oxide (1 mmol), AgBF₄ (2 mmol) and 4-ethynyl-1,1'-biphenyl A5 (1 mmol) in THF (3 mL) was stirred under N₂ at 60 °C for 3 h and monitored by TLC. After solvent removal, the residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate) to afford the product A7.

1a-1e, **1l**, **1m**, **1p** are prepared according to the above procedures. **1f-1k**, **1n** are prepared according to the procedure for the synthesis of **A6**. **1o**, **1q** are prepared according to the procedure for the synthesis of **A7**.

2.2 General procedure for the preparation of aldehydes 2.

Aldehydes **2a-2r** are commercial available and distilled prior to use.

2.3 Synthesis and characterization of PS5

2,9-diisopropyl-4,7-di(3,5-bis(trifluoromethyl-phenyl))-1,10-phenanthroline (*PS5*) was synthesized according to the reported procedure.⁷⁻⁹

Step 1: A mixture of 2,2-dimethyl-1,3-dioxane-4,6-dione (10.09 g, 70.00 mmol) and HC(OMe)₃ (124.73 mL, 0.98 mol) was refluxed in an oil bath for 1 h under nitrogen atmosphere. After cooling to 80 °C, *o*-phenylenediamine (3.24 g, 30.00 mmol) was added and the reaction mixture was refluxed in an oil bath for 4 h under nitrogen atmosphere. After stirring at room temperature for 24 h, the precipitate was filtered and washed with Et₂O (3 × 100 mL) to give pure product **A8** as a white solid in 82% yield (10.2 g).

Step 2: **A8** (8.2 g, 19.80 mmol) was added slowly to Ph₂O (250 mL) and then heated to 240 °C in a sand bath. The reaction mixture was stirred for 1 h under nitrogen atmosphere. After cooling to 70 °C, the precipitate was filtered and washed with acetone (3×30 mL), *n*-hexane (3×30 mL) and Et₂O (3×30 mL) to give **A9** as a brown solid in 80% yield (4.2 g).

Step 3: The product from the previous step (4 mmol) and tribromophosphate oxide (100 mmol) were added to the three-port flask, nitrogen was pumped three times, and 30 mL anhydrous chloroform was added. The reaction was heated to 90 $\,^{\circ}{
m C}$ and stirred for 4 hours until the reaction was completed. The reaction mixture was cooled to 60 °C. Slowly pour the reaction solution into 150 mL ice water and stir for another hour at room temperature, then add 50 mL chloroform and adjust pH to 13-14 with 50% sodium hydroxide solution, continue stirring for 1 hour, and finally extract with dichloromethane (3×50 mL), collect the organic phase, dry with anhydrous magnesium sulfate, filter, and remove the solvent under vacuum conditions. Crude product was separated by column chromatography ($CH_2Cl_2:CH_3OH = 50:1$) to obtain pure white solid in 40% yield. A mixture of A9 (0.85 g, 4 mmol) and POBr₃ (28.6 g, 0.125 mol) were heated to 90 °C in an oil bath and stirred for 4 h under nitrogen atmosphere. After cooling to room temperature, iced H₂O (150 mL) was added slowly and the resultant mixture was stirred at room temperature for 1 h. CHCl₃ (50 mL) was added and the pH of the resultant mixture was adjusted to 13-14 by adding 50% NaOH solution. The reaction mixture was extracted with CHCl₃ (3 \times 50 mL). The combined organic layer was washed with 50% NaOH solution and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure to give A10 as a white solid in 40% yield (0.54 g).

Step 4: **A10** (0.34 g, 1 mmol), Na₂CO₃ (2.12 g, 20 mmol), Pd(PPh₃)₄ (115 mg, 0.1 mmol) and (3,5-bis(trifluoromethyl)phenyl)boronic acid (1.0 g, 4 mmol) were added to 250 mL three-necked bottom in a mixture solvent of 50 mL 1,4-dioxane and

20 mL H₂O. Then the mixture was heated to 130 °C in an oil bath and stirred for 24 h under nitrogen atmosphere. The mixture was extracted with dichlormethane (3×30 mL), then dried over MgSO4. Filtration, concentration, and purification of the orange residue by flash column chromatography (1:100 MeOH/DCM) to give **A11** as a white solid in 50% yield (0.3 g).

Step 5: A11 (0.604 g, 1 mmol) and 20 mL of dry toluene was stirred in a sealed tube under an argon atmosphere, and isopropyl lithium (4 mL, 4 mmol) was added at 0 \degree . The resulting suspension was stirred at 0 \degree for 2 h, then stirred at room temperature for 16 h. The reaction was quenched with water (10 mL), and the mixture was extracted with dichloromethane (3 ×20 mL), then dried over MgSO₄. The organic solvent was removed under vacuum conditions. Then the active manganese dioxide (1.74 g, 20 mmol) and 20 mL dichloromethane were added and the reaction mixture was stirred at 30 \degree for another 2 hours until the reaction was completed (TLC detection). The reaction mixture was cooled to room temperature, filtered and washed with dichloromethane. The organic solvents were removed under vacuum and the crude product was purified by column chromatography (PE:EA = 20:1) to give pure product A12 in 59% yield (0.41 g).

Step 6: In an over-dried Schlenk tube, $[Cu(MeCN)_4]PF_6^-$ (373.0 mg, 1.0 mmol) and Xantphos (579.0 mg, 1.0 mmol) were dissolved in dry DCM (20 mL) at room temperature. The resulting solution was stirred at reflux in an oil bath overnight. The reaction mixture was then allowed to cool to room temperature and the 2,9-diisopropyl-4,7-di(3,5-bis(trifluoromethyl-phenyl))-1,10-phenanthroline **A** 12 (604 mg, 1.0 mmol) was added at room temperature dissolved in a minimal amount of DCM. The resulting mixture was then heated to reflux in an oil bath for 3 hours until no further color change was observed (at this point red to yellow solution was obtained). The reaction mixture was then allowed to cool to room temperature and n-hexane was added to precipitate the product. It was filtered and washed with n-hexane. The resulting solid was further purified by recrystallization in a DCM/n-hexane mixture at 4 $^{\circ}$ C to give pure *PS5*.

Other Cu(I)-photosensitizers (*PS1-PS4*, *PS6*, *PS7*) were synthesized according to the previously reported literature.^{10,11}

2.4 The photoelectric physical properties of PS5

Analysis of UV-Vis absorption spectra of PS5

Figure *S1*: UV-visible absorption spectrum of [Cu(2,9-diisopropyl-4,7-di(3,5-bis(trifluoromethyl)-phenyl)-1,10-phenanthroline)(xan tphos)]PF⁶⁻ (*PS5* $) recorded at ambient temperature in MeCN (1×10⁻⁴ M). Note: the maximum absorption (<math>\lambda_{abs}$) was observed at 390.5 nm.

Emission spectra of PS5

FigureS2:Visibleemissionspectrumof[Cu(2,9-diisopropyl-4,7-di(3,5-bis(trifluoromethyl)-phenyl)-1,10-phenanthroline)(xantphos)]PF⁶⁻(**PS5**)obtainedbyexcitationat380nmandrecordedatambienttemperature in MeCN (1×10⁻⁴ M).

Note: the maximum emission was observed at 562 nm.

3. General Procedures for Synthesis of Vinylphosphonates 5

3.1 Optimization of reaction conditions

Table S1. Summary of screening of reaction parameters

	O OEt OEt + 1a	PS5 (7.5 mol % dipropylamine(3b, 3.0 Hantzsch ester(4, 1.2 1,4-dioxane, 25 15 W blue LED, N ₂ , 2a	6) 0 equiv) 2 equiv) °C , 12 h	oet H 5aa (E/Z)
$\begin{bmatrix} R^{1} & R^{2} \\ & R^{N} \\ & R^{1} \\ & R^{2} \end{bmatrix}$	Ph_2P PF_6 PF_6	$\begin{bmatrix} R^{1} & R^{2} \\ Ph_{2}P & Ph_{2}P \\ N_{M_{1}} & C^{1} \\ C^{1} & C^{1} \\ R^{1} & R^{2} \\ R^{1} & R^{2} \\ \end{bmatrix}$	$\left]^{+} PF_{6}^{-} \left[\begin{array}{c} F \\ F_{F} \\ F \\ F_{F} \\ F_{F} \\$	$ \begin{array}{c} $
PS1 : R ¹ = H, R ² PS2 : R ¹ = Ph, R PS3 : R ¹ = Ph, R PS4 : R ¹ = Ph, R PS5 : R ¹ = 3 5-bi	= ⁱ -Pr ² = ⁱ -Pr ² = Me ² = s-Bu s(trifluoromethyl)-phenyl	PS6 : $R^1 = Ph$, $R^2 = i-Pr$ PS7 : $R^1 = Ph$, $R^2 = Me$ $R_0 = {}^{i}-Pr$	CI	
733 . K = 3,3-01	s(unuoromeanyi)-phenyi, i	Cbz Cbz Cbz Cbz Cbz Cbz Cbz Cbz Cbz	CN CI	COONa O ONa Bengal S10
Entry	PS	Solvent	Amine	Yield(%) ^c
			b	$(E/Z)^d$
1	PS2	1,4-dioxane	3 b	55 (>99:1)
2	PS1	1,4-dioxane	3 b	trace
3	PS3	1,4-dioxane	3 b	53 (>99:1)
4	PS4	1,4-dioxane	3b	41 (>99:1)
5	PS5	1,4-dioxane	3b	66 (>99:1)
6	PS6	1,4-dioxane	3b	55 (>99:1)
7	PS7	1,4-dioxane	3b	56 (>99:1)
8	PS8	1,4-dioxane	3b	28 (>99:1)
9	PS9	1,4-dioxane	3b	45 (>99:1)
10	<i>PS10</i>	1,4-dioxane	3b	0
11	PS5	MeCN	3b	74 (>99:1)
12	PS5	THF	3b	45 (>99:1)
13	PS5	t-BuOH	3b	65 (>99:1)
14	PS5	MeCN	3 a	39 (>99:1)
15	PS5	MeCN	3 c	trace
16	PS5	MeCN	3d	47 (>99:1)
17 ^g	PS5	MeCN	3 b	74 (>99:1)
18	without PS	MeCN	3 b	0
19	in the dark	MeCN	3 b	0

^aStandard conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), **3** (0.6 mmol), *PS* (7.5 mol %), Hantzsch ester **4** (0.24 mmol), solvent (4 mL), irradiation with 15 W blue LED under nitrogen atmosphere

at 25 °C for 12 h. ^bAmines: diethylamine (**3a**), dipropylamine (**3b**), pirrolidine (**3c**), piperidine (**3d**). ^cIsolated yield. ^dE/Z ratios were determined by GC analysis.

O OEt +	O H PS (7.5 mol %) H dipropylamine(3b, 3.0 equiv) Hantzsch ester(4, 1.2 equiv) H 1,4-dioxane, 25 °C 15 W blue LED, N ₂ , 12 h 2a 2a 15 W blue LED, N ₂ , 12 h	• OEt OEt H 5aa (E/Z)
Entry	Photosensitizer	Yield of 5aa (%) ^b (E/Z) ^c
1	PS1	trace
2	PS2	55 (> 99/1)
3	PS3	53 (> 99/1)
4	PS4	41 (> 99/1)
5	PS5	66 (> 99/1)
6	PS6	55 (> 99/1)
7	PS7	56 (> 99/1)
8	PS8	28 (> 99/1)
9	PS9 (Rose Bengal)	0
10	<i>PS10</i> (4CzIPN)	45 (> 99/1)

Table S2. Screening of the different photosensitizers^a

^{*a*}Standard conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), dipropylamine **3b** (0.6 mmol), *PS* (7.5 mol %), Hantzsch ester **4** (0.24 mmol), 1,4-dioxane (4 mL), irradiation with 15 W blue LED under nitrogen atmosphere at 25 °C for 12 h. ^{*b*}Isolated yield. ^{*c*}E/Z ratios were determined by GC analysis.

Table S3. Screening of the solvents^a

O OEt OEt 1a	+ 0 H C 2 2a PS5 (7.5 mol %) dipropylamine(3b , 3.0 equiv) Hantzsch ester(4 , 1.2 equiv) Solvent, 25 °C 15 W blue LED, N ₂ , 12 h	• OEt OEt H 5aa (E/Z)
Entry	Solvent	Yield of 5aa (%) ^b (E/Z) ^c
1	1,4-dioxane	66 (> 99/1)
2	MeCN	74 (> 99/1)
3	1,4-dioxane/H ₂ O (4 mL/0.2 mL)	60 (> 99/1)
4	THF	45 (> 99/1)
5	tBuOH	65 (> 99/1)
6	CH ₃ OH	57 (> 99/1)
7	DMF	39 (> 99/1)

^aStandard conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), dipropylamine **3b** (0.6 mmol), *PS5* (7.5 mol %), Hantzsch ester **4** (0.24 mmol), solvent (4 mL), irradiation with 15 W blue LED under nitrogen atmosphere at 25 °C for 12 h. ^bIsolated yield. ^cE/Z ratios were determined by GC analysis.

Table S4. Screening of the amines^a

O OEt OEt 1a	+ H 2a PS5 (7.5 mol %) Amines (3, 3.0 equiv) Hantzsch ester(4, 1.2 equiv) MeCN, 25 °C 15 W blue LED, N ₂ , 12 h	• OEt OEt H 5aa (E/Z)
Entry	Amine(3)	Yield of 5aa (%) ^b (E/Z) ^c
1	Diethyl amine (3a)	39 (> 99/1)
2	Dipropylamine (3b)	74 (>99/1)
3	Pyrrolidine (3c)	trace
4	Piperidine (3d)	47 (>99/1)

^aStandard conditions: 1a (0.2 mmol), 2a (0.6 mmol), Amine 3 (0.6 mmol), PS5 (7.5 mol %),

Hantzsch ester 4 (0.24 mmol), MeCN (4 mL), irradiation with 15 W blue LED under nitrogen \$S14\$

atmosphere at 25 °C for 12 h. ^bIsolated yield. ^cE/Z ratios were determined by GC analysis.

Table S5. Screening of the light source^a

^{*a*}Standard conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), dipropylamine **3b** (0.6 mmol), *PS5* (7.5 mol %), Hantzsch ester **4** (0.24 mmol), MeCN (4 mL), irradiation with blue LED under nitrogen atmosphere at 25 °C for 12 h. ^{*b*}Isolated yield. ^{*c*}E/Z ratios were determined by GC analysis.

O OEt OEt 1a	+ 0 H C A 2a PS5 (7.5 mol %) dipropylamine(3b , 3.0 equiv Hantzsch ester(4 , 1.2 equiv MeCN, 25 °C 15 W blue LED, N ₂ , 12 h) OEt OEt H OEt H OEt H
Entry	1a/2a/3b (equiv./equiv.)	Yield of 5aa (%) ^b (E/Z) ^c
1	1/2/2	36 (> 99/1)
2	1/3/3	74 (> 99/1)
3	1/4/4	45 (> 99/1)

Table S6. Screening the amount of 1a, 2a and 3b^a

^{*a*}Standard conditions: **1a** (0.2 mmol), **2a** (x mmol), dipropylamine **3b** (y mmol), *PS5* (7.5 mol %), Hantzsch ester **4** (0.24 mmol), MeCN (4 mL), irradiation with 15 W blue LED under nitrogen atmosphere at 25 °C for 12 h. ^{*b*}Isolated yield. ^{*c*}E/Z ratios were determined by GC analysis.

 Table S7. Screening of reaction time^a

O OEt OEt 1a	О Н ^С 2а	PS5 (7.5 mol %) dipropylamine(3b , 3.0 equiv) Hantzsch ester(4 , 1.2 equiv) MeCN, 25 °C 15 W blue LED, N ₂ Reaction time	- OEt OEt OEt H 5aa (E/Z)
Entry		Time (h)	Yield of 5aa $(\%)^{b} (E/Z)^{c}$
1		6	51 (> 99/1)
2		12	74 (> 99/1)

^{*a*}Standard conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), dipropylamine **3b** (0.6 mmol), *PS5* (7.5 mol %), Hantzsch ester **4** (0.24 mmol), MeCN (4 mL), irradiation with 15 W blue LED under nitrogen atmosphere at 25 °C. ^{*b*}Isolated yield. ^{*c*}E/Z ratios were determined by GC analysis.

	8. Controlled experiments ³	Table S8.
--	--	-----------

Entry	Varied from the standard condition	Yield of 5aa (%) ^b (E/Z) ^c
1	Without photosensitizer	0
2	In the dark condition	0
3	Without light and photosensitizer	0

^{*a*}Standard conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), dipropylamine **3b** (0.6 mmol), *PS5* (7.5 mol %), Hantzsch ester **4** (0.24 mmol), MeCN (4 mL), irradiation with 15 W blue LED under nitrogen atmosphere at 25 °C for 12 h. ^{*b*}Isolated yield. ^cE/Z ratios were determined by GC analysis.

3.2 Experimental details and characterization of products

General procedure for the synthesis of vinylphosphonates 5.

To a 25 mL flame-dried Schlenk tube was added *PS5* (20 mg, 0.015 mmol) and Hantzsch ester 4 (61 mg, 0.24 mmol). The tube was evacuated and refilled with N_2 for

three times. A solution of **1** (0.2 mmol), aldehyde **2** (0.6 mmol), dipropylamine **3b** (0.6 mmol) and MeCN (4 mL) was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from blue LED and stirred at 25 °C for 12 h. Upon completion, the reaction mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel (100-200 mesh), eluting with the indicated mixture of ethyl acetate (EA)/petroleum ether (PE) to give pure alkene **5**.

diethyl (1-([1,1'-biphenyl]-4-yl)pent-2-en-2-yl)phosphonate (5aa)

Yellow liquid. Yield: 74%, E/Z > 99/1. ¹**H** NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 7.1 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.27 (d, J = 7.1 Hz, 2H), 6.78 (dt, J = 23.2, 7.2 Hz, 1H).,

0.5H), 3.99 (m, 2H), 3.85 (m, 2H), 3.65 (d, J = 18.3 Hz, 2H), 2.36–2.25 (m, 2H), 1.16 (t, J = 7.1 Hz, 6H), 1.08 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.6 (d, J = 10.0 Hz), 141.0, 139.1, 138.1 (d, J = 2.2 Hz), 128.9, 128.8, 127.2 (d, J = 180.0 Hz), 127.1, 127.0, 61.5 (d, J = 5.6 Hz), 32.5 (d, J = 11.0 Hz), 22.6 (d, J = 19.3 Hz), 16.2 (d, J = 6.8 Hz), 13.1 (d, J = 1.9 Hz). **HR-MS** (ESI) for C₂₁H₂₇O₃NaP ([M+Na])⁺: calcd. 381.1596, found. 381.1598.

diethyl (1-(2'-chloro-[1,1'-biphenyl]-4-yl)pent-2-en-2-yl)phosphonate (5ba)

Yellow liquid. Yield: 52%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 6.9 Hz, 1H), 7.28 (d, J = 8.2 Hz, 2H), 7.24–7.17 (m, 5H), 6.72 (dt, J = 23.2, 7.2 Hz, 1H), 4.01–3.85 (m, 2H), 3.81–3.69 (m, 2H), 3.59 (d, J =

18.5 Hz, 2H), 2.32–2.20 (m, 2H), 1.09 (t, J = 7.1 Hz, 6H), 1.02 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.5 (d, J = 10.1 Hz), 140.3, 138.4 (d, J = 2.0 Hz), 137.3, 132.5, 131.3, 129.9, 129.3, 128.4, 128.2, 127.2 (d, J = 179.8 Hz), 126.8, 61.5 (d, J = 5.5 Hz), 32.6 (d, J = 11.0 Hz), 22.6 (d, J = 19.2 Hz), 16.2 (d, J = 6.7 Hz), 13.1 (d, J = 1.9 Hz). **HR-MS** (ESI) for C₂₁H₂₆O₃NaPCl ([M+Na])⁺: calcd. 415.1206, found. 415.1212.

diethyl (1-(4'-chloro-[1,1'-biphenyl]-4-yl)pent-2-en-2-yl)phosphonate (5ca)

Yellow liquid. Yield: 53%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.50–7.45 (m, 3H), 7.39 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 7.12 (m, 1H), 6.78 (dt, J = 23.2, 7.1 Hz, 1H), 4.05–3.93 (m, 2H),

3.93–3.80 (m, 2H), 3.65 (d, J = 18.4 Hz, 2H), 2.32–2.27 (m, 2H), 1.18 (t, J = 8.0 Hz, 6H), 1.08 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ 150.6 (d, J = 9.9 Hz), 139.4, 138.5 (d, J = 2.1 Hz), 137.8, 133.2, 132.0, 131.3, 130.2, 129.0, 128.9, 128.4, 128.2, 127.1 (d, J = 179.8 Hz), 126.8, 61.6 (d, J = 5.6 Hz), 32.5 (d, J = 11.2 Hz), 22.6 (d, J = 19.3 Hz), 16.2 (d, J = 6.7 Hz), 13.1 (d, J = 1.6 Hz). **HR-MS** (ESI+) for C₂₁H₂₆O₃NaPCl ([M+Na])⁺: calcd. 415.1206, found. 415.1210.

diethyl (1-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)pent-2-en-2-yl)phosphonate (5da)

Yellow liquid. Yield: 34%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.67 (s, 4H), 7.51 (d, J = 8.1Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 6.78 (dt, J = 23.2, 7.2 Hz, 1H), 4.01–3.97 (m, 2H), 3.89–3.86 (m, 2H), 3.67 (d, J = 18.3 Hz, 2H), 2.31–2.28 (m, 2H), 1.18 (t,

J = 7.1 Hz, 6H), 1.08 (t, J = 7.5 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃): δ 150.7 (d, J = 10.0 Hz), 144.4, 139.2 (d, J = 2.1 Hz), 137.6, 129.2 (q, J = 32.3 Hz), 129.1, 127.2, 127.1, 127.0 (d, J = 179.8 Hz), 125.7 (q, J = 3.0 Hz), 124.3 (q, J = 272.7 Hz), 61.6 (d, J = 5.4 Hz), 32.5 (d, J = 11.1 Hz), 22.6 (d, J = 19.0 Hz), 16.2 (d, J = 6.6 Hz), 13.1 (d, J = 1.9 Hz). **HR-MS** (ESI+) for C₂₂H₂₆O₃F₃NaP ([M+Na])⁺: calcd. 449.1469, found. 449.1463.

diethyl (1-(4'-methoxy-[1,1'-biphenyl]-4-yl)pent-2-en-2-yl)phosphonate (5ea)

Yellow liquid. Yield: 50%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.8 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 7.18 (m, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.70 (dt, J = 23.2, 7.2 Hz, 1H), 3.92–3.90 (m,

2H), 3.83–3.71 (m, 5H), 3.56 (d, J = 18.4 Hz, 2H), 2.25–2.21 (m, 2H), 1.09 (t, J = 7.1

Hz, 6H), 1.00 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 159.0, 150.6 (d, J = 10.0 Hz), 138.7, 137.4, 133.5, 128.8, 128.0, 127.2 (d, J = 178.8 Hz), 126.5, 114.2, 61.5 (d, J = 5.5 Hz), 55.4, 32.4 (d, J = 11.0 Hz), 22.6 (d, J = 19.2 Hz), 16.2 (d, J = 6.7 Hz), 13.1 (d, J = 1.5 Hz). **HR-MS** (ESI+) for C₂₂H₂₉O₄NaP ([M+Na])⁺: calcd. 411.1701, found. 411.1705.

diethyl (1-(4-chlorophenyl)pent-2-en-2-yl)phosphonate (5fa)

Yellow liquid. Yield: 68%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.23 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.75 (dt, J = 23.1, 7.2 Hz, 1H), 4.00–3.97 (m, 2H), 3.87–3.85 (m, 2H), 3.57 (d, J = 18.2 Hz, 2H), 2.26–2.23 (m, 2H), 1.18

(t, J = 7.1 Hz, 6H), 1.05 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.6 (d, J = 10.0 Hz), 137 (d, J = 2.1 Hz), 131.8, 129.8, 128.3, 126.9 (d, J = 179.9 Hz), 61.5 (d, J = 5.6 Hz), 32.1 (d, J = 11.2 Hz), 22.5 (d, J = 19.2 Hz), 16.1 (d, J = 6.6 Hz), 13.0 (d, J = 1.6 Hz). **HR-MS** (ESI+) for C₁₅H₂₂O₃NaPCl ([M+Na])⁺: calcd. 339.0892, found. 339.0893.

diethyl (1-(4-bromophenyl)pent-2-en-2-yl)phosphonate (5ga)

Yellow liquid. Yield: 53%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.38 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 6.74 (dt, J = 23.1, 7.2 Hz, 1H), 4.00–3.97 (m, 2H), 3.95–3.86 (m, 2H), 3.55 (d, J = 18.2 Hz, 2H), 2.26–2.22 (m, 2H),

1.18 (t, J = 7.1 Hz, 6H), 1.05 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.6 (d, J = 9.9 Hz), 138.0 (d, J = 2.2 Hz), 131.3, 130.2, 126.9 (d, J = 180.0 Hz), 119.9, 61.6 (d, J = 5.6 Hz), 32.2 (d, J = 11.0 Hz), 22.5 (d, J = 19.0 Hz), 16.2 (d, J = 6.5 Hz), 13.0 (d, J = 1.6 Hz). **HR-MS** (ESI+) for C₁₅H₂₂O₃NaPBr ([M+Na])⁺: calcd. 383.0388, found. 383.0388.

diethyl (1-(4-fluorophenyl)pent-2-en-2-yl)phosphonate (5ha)

Yellow liquid. Yield: 45%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.16 (m, 2H), 6.95 (m, 2H), 6.74 (dt, *J* = 23.2, 7.2 Hz, 1H), 4.01–3.95 (m, 2H), 3.88–3.81 (m, 2H), 3.57 (d, *J* =

18.4 Hz, 2H), 2.28–2.23 (m, 2H), 1.17 (t, J = 7.1 Hz, 6H), 1.05 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 161.4 (d, J = 241.4 Hz), 150.4 (d, J = 10.0 Hz), 134.6, 129.8 (d, J = 7.7 Hz), 127.3 (d, J = 179.3 Hz), 115.0 (d, J = 21.2 Hz), 61.5 (d, J = 5.5 Hz), 32.0 (d, J = 11.1 Hz), 22.5 (d, J = 19.2 Hz), 16.2 (d, J = 6.6 Hz), 13.0 (d, J = 1.0 Hz). **HR-MS** (ESI+) for C₁₅ H₂₂O₃NaPF ([M+Na])⁺: calcd. 383.0388, found. 383.0388.

diethyl (1-(4-methoxyphenyl)pent-2-en-2-yl)phosphonate (5ia)

Yellow liquid. Yield: 50%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.11 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.7 Hz, 2H), 6.73 (dt, J = 23.3, 7.2 Hz, 1H), 3.98–3.96 (m, 2H), 3.87–3.81 (m, 2H), 3.78 (s, 3H), 3.54 (d, J = 18.5 Hz, 2H),

2.29–2.26 (m, 2H), 1.17 (t, J = 7.1 Hz, 6H), 1.05 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 158.0, 150.2 (d, J = 10.1 Hz), 131.0 (d, J = 2.2 Hz), 129.4, 127.6 (d, J = 178.1 Hz), 113.6, 61.4 (d, J = 5.4 Hz), 55.3, 31.9 (d, J = 11.0 Hz), 22.5 (d, J = 19.3 Hz), 16.2 (d, J = 6.6 Hz), 13.1 (d, J = 1.8 Hz). HR-MS (ESI+) for C₁₆H₂₅O₄NaP ([M+Na])⁺: calcd. 335.1388, found. 335.1388.

diethyl (1-(3,5-di-tert-butylphenyl)pent-2-en-2-yl)phosphonate (5ja)

Yellow liquid. Yield: 46%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.16 (s, 1H), 6.95 (s, 2H), 6.71 (dt, J = 23.4, 7.3 Hz, 1H), 3.89–3.83 (m, 2H), 3.72–3.66 (m, 2H), 3.52 (d, J = 18.7 Hz, 2H), 2.26–2.22 (m, 2H), 1.22 (s, 18H), 1.01 (m,

9H). ¹³**C NMR** (101 MHz, CDCl₃): δ 150.6 (d, J = 9.1 Hz), 150.5, 137.6 (d, J = 2.0 Hz), 127.4 (d, J = 177.0 Hz), 122.6, 120.0, 61.4 (d, J = 5.3 Hz), 34.8, 33.2 (d, J = 10.9 Hz), 31.5, 22.6 (d, J = 19.2 Hz), 16.0 (d, J = 6.9 Hz), 13.1 (d, J = 1.9 Hz). **HR-MS** (ESI+) for C₂₃H₃₉O₃NaP ([M+Na])⁺: calcd. 417.2535, found. 417.2534.

diethyl (1-(naphthalen-1-yl)pent-2-en-2-yl)phosphonate (5ka)

Yellow liquid. Yield: 55%, E/Z > 99/1. ¹**H NMR** (500 MHz, CDCl₃): δ 8.08 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 7.7 Hz, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.56–7.49 (m, 2H), 7.44–7.35 (m, 1H), 7.31 (d, J = 6.8 Hz, 1H), 6.93 (dt, J = 23.3, 7.2 Hz, 1H),

4.07 (d, J = 17.4 Hz, 2H), 3.99–3.96 (m, 2H), 3.91–3.87 (m, 2H), 2.21–2.18 (m, 2H), 1.12 (t, J = 7.1 Hz, 6H), 1.06 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ 151.5 (d, J = 9.8 Hz), 133.9 (d, J = 2.7 Hz), 133.7, 132.1, 128.8, 126.9, 126.4 (d, J =183.8 Hz), 125.9, 125.5, 125.4, 125.0, 123.3, 61.61 (d, J = 5.8 Hz), 29.6 (d, J = 11.0 Hz), 22.6 (d, J = 19.6 Hz), 16.1 (d, J = 6.6 Hz), 13.0 (d, J = 1.9 Hz). **HR-MS** (ESI+) for C₁₉H₂₅O₃NaP ([M+Na])⁺: calcd. 355.1439, found. 355.1441.

diethyl (1-(4-(furan-3-yl)phenyl)pent-2-en-2-yl)phosphonate (5la)

Yellow liquid. Yield: 52%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 1.2 Hz, 1H), 7.14 (d, J = 8.3 Hz, 2H), 6.70 (dt, J = 23.2, 7.2 Hz, 1H), 6.53 (d, J = 3.3 Hz, 1H), 6.39 (m, 1H),

3.94–3.88 (m, 2H), 3.81–3.76 (m, 2H), 3.54 (d, J = 18.3 Hz, 2H), 2.23–2.18 (m, 2H), 1.10 (t, J = 7.1 Hz, 6H), 0.99 (t, J = 7.5 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃): δ 154.0, 150.7 (d, J = 10.1 Hz), 141.8, 138.1 (d, J = 2.1 Hz), 128.9, 128.8, 127.0 (d, J =179.2 Hz), 123.7, 111.6, 104.5, 61.6 (d, J = 5.4 Hz), 32.6 (d, J = 11.0 Hz), 22.6 (d, J =19.2 Hz), 16.2 (d, J = 6.6 Hz), 13.1 (d, J = 1.5 Hz). **HR-MS** (ESI+) for C₁₉H₂₅O₄PNa ([M+Na])⁺: calcd. 371.1388, found. 371.1393.

diethyl (1-(4-(thiophen-3-yl)phenyl)pent-2-en-2-yl)phosphonate (5ma)

Yellow liquid. Yield: 63%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.43 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 4.2 Hz, 1H), 7.16 (d, J = 5.1 Hz, 1H), 7.12 (d, J = 8.1 Hz, 2H), 6.99–6.97 (m, 1H), 6.69 (dt, J = 23.2, 7.2 Hz, 1H),

3.92–3.88 (m, 2H), 3.81–3.76 (m, 2H), 3.53 (d, J = 18.3 Hz, 2H), 2.22–2.17 (m, 2H), 1.09 (t, J = 7.1 Hz, 6H), 0.98 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃): $\delta 150.6$ (d, J = 10.1 Hz), 144.3, 138.3 (d, J = 2.1 Hz), 132.4, 129.0, 128.0, 125.8, 125.3 (d, J = 173.7 Hz), 124.5, 122.7, 61.5 (d, J = 5.5 Hz), 32.5 (d, J = 11.0 Hz), 22.6 (d, J = 19.1 Hz), 16.2 (d, J = 6.6 Hz), 13.1 (d, J = 1.8 Hz). **HR-MS** (ESI+) for C₁₉H₂₅O₃PNaS ([M+Na])⁺: calcd. 387.1160, found. 387.1160.

dimethyl (1-([1,1'-biphenyl]-4-yl)pent-2-en-2-yl)phosphonate (5na)

Yellow liquid. Yield: 77%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.50 (d, J = 7.2 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 7.35 (m, 2H), 7.25 (m, 1H), 7.19 (d, J = 8.2 Hz, 2H), 6.72 (dt, J = 23.3, 7.2 Hz, 1H), 3.56 (d, J =

18.5 Hz, 2H), 3.48 (d, J = 10.9 Hz, 6H), 2.26–2.22 (m, 2H), 1.01 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 151.5 (d, J = 10.0 Hz), 140.8, 139.1, 137.8 (d, J = 2.1 Hz), 128.82, 128.77, 127.2, 127.0, 126.9, 126.2 (d, J = 179.8 Hz), 52.2 (d, J = 5.7 Hz), 32.4 (d, J = 11.0 Hz), 22.7 (d, J = 19.2 Hz), 13.1 (d, J = 1.9 Hz). **HR-MS** (ESI+) for C₁₉H₂₃O₃NaP ([M]+Na)⁺: calcd. 353.1283, found. 353.1279.

dibutyl (1-([1,1'-biphenyl]-4-yl)pent-2-en-2-yl)phosphonate (50a)

Yellow liquid. Yield: 64%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.58 (d, J = 7.2 Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.28 (d, J = 8.2 Hz, 2H), 6.80 (dt, J = 23.2,

7.2 Hz, 1H), 3.94 (dq, J = 9.9, 6.6 Hz, 2H), 3.81 (dq, J = 9.9, 6.7 Hz, 2H), 3.66 (d, J = 18.4 Hz, 2H), 2.32 (dq, J = 7.5, 3.5 Hz, 2H), 1.57–1.45 (m, 4H), 1.32–1.26 (m, 4H), 1.10 (t, J = 7.5 Hz, 3H), 0.86 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 150.5 (d, J = 10.0 Hz), 141.0, 139.1, 138.0 (d, J = 2.1 Hz), 128.8, 128.7, 128.1, 127.1, 127.0, 126.3, 65.2 (d, J = 5.8 Hz), 32.5 (d, J = 10.9 Hz), 32.4 (d, J = 6.6 Hz), 22.6 (d, J = 19.3 Hz), 18.7, 13.1 (d, J = 1.5 Hz). **HR-MS** (ESI+) for C₂₅H₃₅O₃NaP ([M+Na])⁺: calcd. 437.2222, found. 437.2220.

(1-([1,1'-biphenyl]-4-yl)pent-2-en-2-yl)diphenylphosphine oxide (5pa)

Yellow solid. Yield: 45%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.67–7.62 (m, 4H), 7.51–7.46 (m, 4H), 7.44 (d, J = 8.0 Hz), 7.41–7.36 (m, 6H), 7.32–7.30 (m, 3H), 7.08 (d, J = 8.1 Hz, 2H), 6.40 (dt, J = 20.8, 7.1 Hz, 1H), 3.74 (d, J

= 15.7 Hz, 2H), 2.32–2.28 (m, 2H), 1.00 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.4 (d, J = 9.4 Hz), 141.0, 138.7, 137.7 (d, J = 1.6 Hz), 132.1 (d, J = 9.5 Hz), 131.8 (d, J = 102.0 Hz), 131.61, 131.59, 130.2 (d, J = 164.6 Hz), 128.8 (d, J = 18.4 Hz), 128.3 (d, J = 11.8 Hz), 127.0, 126.9, 126.8, 32.9 (d, J = 11.7 Hz), 23.1 (d, J = 15.3 Hz), 13.1 (d, J = 1.3 Hz). **HR-MS** (ESI+) for C₂₉H₂₇ONaP([M+Na])⁺: calcd. 445.1697, found. 445.1691.

ethyl (1-([1,1'-biphenyl]-4-yl)pent-2-en-2-yl)(phenyl)phosphinate (5qa)

Yellow liquid. Yield: 58%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.77–7.66 (m, 2H), 7.56 (dd, J = 8.1, 1.0 Hz, 2H), 7.47–7.34 (m, 8H), 7.14 (d, J = 8.3 Hz, 2H), 6.81 (dt, J = 21.1, 7.2 Hz, 1H), 4.04–3.85 (m, 2H), 3.64

(m, 2H), 2.29 (dq, J = 7.5, 2.8 Hz, 2H), 1.23 (t, J = 7.0 Hz, 3H), 1.07 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ 149.9 (d, J = 9.3 Hz), 141.0, 138.9, 137.8 (d, J

= 2.1 Hz), 131.8, 131.7 (d, J = 10.1 Hz), 131.2 (d, J = 133.3 Hz), 130.5 (d, J = 131.3 Hz), 128.8, 128.7, 128.30 (d, J = 12.7 Hz), 127.1, 126.94, 126.87, 60.6 (d, J = 5.9 Hz), 32.3 (d, J = 12.4 Hz), 22.8 (d, J = 16.4 Hz), 16.3 (d, J = 6.7 Hz), 13.1 (d, J = 1.3 Hz). **HR-MS** (ESI+) for C₂₅H₂₇O₂PNa ([M+Na])⁺: calcd. 413.1641, found. 413.1647.

diethyl (1-([1,1'-biphenyl]-4-yl)hex-2-en-2-yl)phosphonate (5ab)

Yellow liquid. Yield: 54%, E/Z > 99/1. ¹**H** NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 7.2 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.3 Hz, 1H), 7.27 (d, J = 8.4 Hz, 2H), 6.80 (dt, J = 23.3, 7.2 Hz, 1H),

4.01–3.95 (m, 2H), 3.86–3.82 (m, 2H), 3.65 (d, J = 18.4 Hz, 2H), 2.31–2.24 (m, 2H), 1.51 (m, 2H), 1.16 (t, J = 7.1 Hz, 6H), 0.94 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ 149.1 (d, J = 10.2 Hz), 141.0, 139.1 138.1 (d, J = 2.1 Hz), 128.91, 128.89, 128.8, 127.9 (d, J = 178.8 Hz), 127.1, 127.0, 61.5 (d, J = 5.6 Hz), 32.6 (d, J = 11.2Hz), 31.2 (d, J = 18.6 Hz), 21.9 (d, J = 1.4 Hz), 16.2 (d, J = 6.8 Hz), 14.0. **HR-MS** (ESI+) for C₂₂H₂₉O₃NaP ([M+Na])⁺: calcd. 395.1752, found. 395.1756.

diethyl (1-([1,1'-biphenyl]-4-yl)dec-2-en-2-yl)phosphonate (5ac)

Yellow liquid. Yield: 64%, E/Z > 99/1. ¹**H** NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 7.2 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 7.3 Hz, 1H), 7.21 (m, 2H), 6.72 (dt, J = 23.3, 7.2 Hz, 1H), 3.94–3.88 (m, 2H), 3.81–3.75 (m, 2H), 3.58 (d, J = 18.3 Hz, 2H),

2.23–2.20 (m, 2H), 1.21–1.08 (m, 10H), 1.09 (t, J = 7.1 Hz, 6H), 0.80 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): 149.4 (d, J = 10.2 Hz), 141.0, 139.1, 138.1 (d, J = 2.1 Hz), 128.9, 128.8, 127.6 (d, J = 178.8 Hz), 127.1, 127.0, 61.5 (d, J = 5.6 Hz), 32.6 (d, J = 11.1 Hz), 31.8, 29.4, 29.2, 29.1, 28.6 (d, J = 1.2 Hz), 22.6, 16.2 (d, J = 6.7 Hz), 14.1. HR-MS (ESI+) for C₂₆H₃₇O₃NaP ([M+Na])⁺: calcd. 451.2378, found. 451.2383. diethyl (1-([1,1'-biphenyl]-4-yl)-5-phenylpent-2-en-2-yl)phosphonate (5ad)

Yellow liquid. Yield: 52%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.58–7.54 (m, 2H), 7.48–7.39 (m, 4H), 7.34 (m, 1H), 7.27–7.25 (m, 2H), 7.20–7.14 (m, 5H), 6.82 (dt, J = 23.2, 7.3 Hz, 1H), 3.98–3.92 (m, 2H), 3.83–3.76 (m, 2H), 3.56 (d, J = 18.2 Hz, 2H), 2.77 (t, J = 7.6 Hz,

2H), 2.62–2.59 (m, 2H), 1.14 (t, J = 8.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ

147.8 (d, J = 10.4 Hz), 141.0, 140.9, 139.1, 137.9 (d, J = 2.2 Hz), 128.9, 128.8, 128.6 (d, J = 177.8 Hz), 128.50, 128.48, 127.2, 126.99, 126.97, 126.2, 61.6 (d, J = 5.5 Hz), 34.7, 32.5 (d, J = 11.0 Hz), 31.2 (d, J = 19.0 Hz), 16.1 (d, J = 6.7 Hz). **HR-MS** (ESI+) for C₂₇H₃₁O₃NaP ([M+Na])⁺: calcd. 457.1909, found. 457.1902.

diethyl (1-([1,1'-biphenyl]-4-yl)-7-chlorohept-2-en-2-yl)phosphonate (5ae)

Yellow liquid. Yield: 66%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 7.1 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.27 (d, J = 6.6 Hz, 2H), (dt, J = 23.2, 7.2 Hz, 1H), 4.01–3.97 (m, 2H), 3.90–3.86 (m, 2H), 3.65 (d, J = 18.2

Hz, 2H), 3.50 (t, J = 6.5 Hz, 2H), 2.33–2.30 (m, 2H), 1.80–1.77 (m, 2H), 1.66–1.62 (m, 2H), 1.18 (t, J = 7.1 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃): δ 148.1 (d, J = 10.4 Hz), 140.9, 139.2 (d, J = 2.3 Hz), 137.9, 128.9, 128.8, 128.6 (d, J = 178.8 Hz), 127.2, 127.02, 126.97, 61.6 (d, J = 5.6 Hz), 44.6, 32.6 (d, J = 10.8 Hz), 32.1, 28.4 (d, J = 19.1 Hz), 25.8, 16.2 (d, J = 6.6 Hz). **HR-MS** (ESI+) for C₂₃H₃₀O₃PNaCl ([M+Na])⁺: calcd. 443.1519, found. 443.1520.

diethyl (1-([1,1'-biphenyl]-4-yl)-5,5-dimethylhex-2-en-2-yl)phosphonate (5af)

Yellow liquid. Yield: 64%, E/Z > 99/1. ¹**H** NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.42 (t, J = 7.6 Hz, 3H), 7.32 (t, J = 7.3 Hz, 1H), 7.27 (d, J = 8.1 Hz, 2H), 6.89 (dt, J = 23.8, 7.5 Hz, 1H), 4.00–3.95 (m, 2H), 3.88–3.83 (m, 2H), 3.66 (d, J = 18.5

Hz, 2H), 2.22 (dd, J = 7.5, 3.5 Hz, 2H), 1.16 (t, J = 7.1 Hz, 6H), 0.97 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃): δ 146.3 (d, J = 10.6 Hz), 141.0, 139.1, 138.0 (d, J = 2.0 Hz), 129.0 (d, J = 178.8 Hz), 128.9, 128.8, 127.1, 127.0, 126.9, 61.5 (d, J = 5.3 Hz), 42.9 (d, J = 18.1 Hz), 32.5 (d, J = 11.4 Hz), 31.4, 29.5, 16.2 (d, J = 6.6 Hz). **HR-MS** (ESI+) for C₂₄H₃₃O₃NaP ([M+Na])⁺: calcd. 423.2065, found. 423.2060.

diethyl (1-([1,1'-biphenyl]-4-yl)-4-methylpent-2-en-2-yl)phosphonate (5ag)

Yellow liquid. Yield: 62%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 7.2 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 7.4 Hz, 1H), 7.28 (d, J = 8.3 Hz, 2H), 6.59 (dd, J = 23.4, 10.1

Hz, 1H), 4.00–3.95 (m, 2H), 3.88–3.84 (m, 2H), 3.65 (d, J = 18.5 Hz, 2H), 2.85–2.78

(m, 1H), 1.16 (t, J = 7.1 Hz, 6H), 1.04 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 155.3 (d, J = 8.9 Hz), 141.0, 139.1, 138.2, 128.9, 128.8, 127.1, 127.0, 126.9, 125.1 (d, J = 178.0 Hz), 61.5 (d, J = 5.5 Hz), 32.5 (d, J = 10.9 Hz), 28.4 (d, J = 18.4 Hz), 22.0, 16.1 (d, J = 6.6 Hz). **HR-MS** (ESI+) for C₂₂H₂₉O₃NaP ([M+Na])⁺: calcd. 395.1752, found. 395.1754.

diethyl (1-([1,1'-biphenyl]-4-yl)-4-methylhex-2-en-2-yl)phosphonate (5ah)

Yellow liquid. Yield: 54%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.58 (d, J = 7.1 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 7.3 Hz, 1H), 7.29 (d, J = 8.2 Hz, 2H), 6.56 (dd, J = 23.5, 10.3 Hz, 1H), 4.01–3.98 (m, 2H), 3.97–3.84 (m, 2H),

3.69–3.61 (m, 2H), 2.57–2.55 (m, 1H), 1.41–1.38 (m, 2H), 1.17 (dt, J = 20.6, 7.0 Hz, 1H), 1.02 (d, J = 6.6 Hz, 3H), 0.87 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ 154.6 (d, J = 9.3 Hz), 141.0, 139.1, 138.3, 129.0, 128.8, 127.1, 127.0, 126.9, 126.3 (d, J = 176.8 Hz), 61.5 (d, J = 5.1 Hz), 35.3 (d, J = 18.0 Hz), 32.7 (d, J = 11.1 Hz), 29.5, 19.7, 16.2 (d, J = 7.9 Hz), 12.0. **HR-MS** (ESI+) for C₂₃H₃₁O₃NaP ([M+Na])⁺: calcd. 409.1909, found. 409.1908.

diethyl (1-([1,1'-biphenyl]-4-yl)-4-ethylhex-2-en-2-yl)phosphonate (5ai)

Yellow liquid. Yield: 46%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 7.1 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 4.2 Hz, 1H), 7.27 (d, J = 7.8 Hz, 2H), 6.78 (dt, J = 23.2, 7.2 Hz, 1H), 4.02–3.96 (m, 2H), 3.88–3.82 (m, 2H), 3.65 (d, J = 18.4

Hz, 2H), 2.33–2.29 (m, 2H), 1.97 (m, 1H), 1.34–1.26 (m, 5H), 1.16 (t, J = 7.1 Hz, 6H), 1.08 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.5 (d, J = 10.1 Hz), 141.0, 139.1, 138.1 (d, J = 2.1 Hz), 128.9, 128.8, 127.3 (d, J = 179.8 Hz), 127.1, 127.0, 61.5 (d, J = 5.5 Hz), 32.5 (d, J = 11.1 Hz), 29.7, 22.6 (d, J = 19.3 Hz), 16.2 (d, J = 6.6 Hz), 13.1 (d, J = 1.9 Hz). **HR-MS** (ESI+) for C₂₄H₃₃O₃NaP ([M+Na])⁺: calcd. 423.2065, found. 423.2055.

diethyl (3-([1,1'-biphenyl]-4-yl)-1-cyclopentylprop-1-en-2-yl)phosphonate (5aj)

Yellow liquid. Yield: 59%, E/Z > 99/1. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 7.1 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), S25

7.27 (d, J = 8.3 Hz, 2H), 6.71 (dd, J = 23.1, 10.1 Hz, 1H), 4.00–3.95 (m, 2H), 3.86–3.81 (m, 2H), 3.66 (d, J = 18.5 Hz, 2H), 2.90–2.85 (m, 1H), 1.83–1.80 (m, 2H), 1.73–1.71 (m, 2H), 1.60–1.58 (m, 2H), 1.44–1.37 (m, 3H), 1.15 (t, J = 7.1 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃): δ 154.1 (d, J = 9.7 Hz), 141.0, 139.0, 138.3 (d, J = 2.1Hz), 128.9, 128.8, 127.1, 127.0, 126.9, 125.5 (d, J = 178.2 Hz), 61.5 (d, J = 5.4 Hz), 39.6 (d, J = 18.5 Hz), 33.1, 32.6 (d, J = 11.0 Hz), 25.7, 16.1 (d, J = 6.8 Hz). **HR-MS** (ESI+) for C₂₄H₃₁O₃NaP ([M+Na])⁺: calcd. 421.1909, found. 421.1907.

diethyl (3-([1,1'-biphenyl]-4-yl)-1-cyclohexylprop-1-en-2-yl)phosphonate (5ak)

Yellow liquid. Yield: 61%, E/Z > 99/1. ¹**H** NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.1, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.7 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 6.60 (dd, J = 23.5, 10.0 Hz, 1H), 3.98–3.95 (m, 2H), 3.86–3.83 (m, 2H), 3.65 (d, J = 18.5

Hz, 2H), 2.48 (m, 1H), 1.73 (m, 2H), 1.67–1.62 (m, 2H), 1.25–1.23 (m, 6H), 1.15 (t, J = 7.1 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃): δ 154.0 (d, J = 9.3 Hz), 141.0, 139.1, 138.2 (d, J = 2.0 Hz), 128.9, 128.8, 127.1, 127.0, 126.9, 125.4 (d, J = 177.8 Hz), 61.6 (d, J = 5.5 Hz), 38.3 (d, J = 18.1 Hz), 32.6 (d, J = 11.1 Hz), 32.0 (d, J = 1.8 Hz), 25.8, 25.5, 16.1 (d, J = 6.6 Hz). **HR-MS** (ESI+) for C₂₅H₃₃O₃NaP ([M+Na])⁺: calcd. 435.2065, found. 435.2068.

tert-butyl 4-(3-([1,1'-biphenyl]-4-yl)-2-(diethoxyphosphoryl)prop-1-en-1-yl) piperidine-1-carboxylate (5al)

Yellow liquid. Yield: 51%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.7 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.28 (d, J = 8.2 Hz, 2H), 6.56 (dd, J = 23.3, 9.9 Hz, 1H), 4.10–4.05 (m, 2H), 4.03–3.97 (m, 2H), 3.91–3.87(m, 2H),

3.68 (d, J = 18.2 Hz, 2H), 2.68–2.65 (m, 2H), 2.61 (m, 1H), 1.52 (m, 2H), 1.45 (s, 9H), 1.41–1.33 (m, 2H), 1.18 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 154.8, 151.3 (d, J = 9.6 Hz), 140.8, 139.2, 138.0 (d, J = 2.2 Hz), 128.9, 128.8, 127.4 (d, J = 178.8 Hz), 127.2, 127.0, 126.9, 79.6, 61.7 (d, J = 5.6 Hz), 36.4 (d, J = 18.8 Hz), 32.7 (d, J = 10.8 Hz), 30.8, 28.4, 16.2 (d, J = 6.6 Hz). HR-MS (ESI+) for C₂₉H₄₀NO₅NaP ([M+Na])⁺: calcd. 536.2542, found. 536.2548.

diethyl (3-([1,1'-biphenyl]-4-yl)-1-(cyclohex-3-en-1-yl)prop-1-en-2-yl) phosphonate (5am)

Yellow liquid. Yield: 45%, E/Z > 99/1. ¹**H** NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 7.2 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.28 (d, J = 8.2 Hz, 2H), 6.67 (dd, J = 23.4, 10.1 Hz, 1H), 5.68 (m, 2H), 4.02–3.96 (m, 2H), 3.89–3.65 (m, 2H),

3.68 (d, J = 18.1 Hz, 2H), 2.77 (m, 1H), 2.07–2.04 (m, 2H), 1.99–1.96 (m, 1H), 1.89–1.85 (m, 1H), 1.70–1.66 (m, 1H), 1.53–1.50 (m, 1H), 1.16 (td, J = 7.1, 3.3 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃): δ 153.0 (d, J = 9.4 Hz), 140.9, 139.1, 138.2 (d, J = 2.0 Hz), 128.9, 128.8, 127.1, 127.0, 126.4 (d, J = 178.8 Hz), 125.3, 61.6 (d, J = 5.5 Hz), 34.1 (d, J = 18.6 Hz), 32.6 (d, J = 10.9 Hz), 30.4, 27.9 (d, J = 1.6 Hz), 24.2, 16.2 (d, J = 6.5 Hz). **HR-MS** (ESI+) for C₂₅H₃₁O₃NaP ([M+Na])⁺: calcd. 433.1909, found. 433.1911.

diethyl (1-([1,1'-biphenyl]-4-yl)-5,9-dimethyldeca-2,8-dien-2-yl)phosphonate (5an)

Yellow liquid. Yield: 68%, E/Z > 99/1. ¹**H NMR** (400 MHz, CDCl₃): δ 7.58 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.3 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 8.4 Hz, 2H), 6.82 (dt, J = 23.5, 7.2 Hz, 1H), 5.09–5.05 (m, 1H), 4.02–3.97 (m, 2H),

3.95–3.81 (m, 2H), 3.65 (d, J = 18.4 Hz, 2H), 2.29 (m, 1H), 2.17–2.12 (m, 1H), 2.02–1.93 (m, 3H), 1.67 (d, J = 0.8 Hz, 4H), 1.59 (s, 3H), 1.41–1.34 (m, 1H), 1.16 (td, J = 7.0, 4.0 Hz, 6H), 0.93 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 148.2 (d, J = 10.4 Hz), 141.0, 139.1, 138.1 (d, J = 2.0 Hz), 131.5, 128.9, 128.8, 128.4 (d, J = 178.8 Hz), 127.1, 127.0, 126.9, 124.4, 61.5 (d, J = 5.4 Hz), 36.9, 36.4 (d, J = 18.3 Hz), 32.7 (d, J = 11.2 Hz), 32.5, 25.7 (d, J = 18.6 Hz), 19.7, 17.7, 16.2 (d, J = 7.5 Hz). HR-MS (ESI+) for C₂₈H₃₉O₃NaP ([M+Na])⁺: calcd. 477.2535, found. 477.2541. diethyl (3-([1,1'-biphenyl]-4-yl)-1-(bicyclo[2.2.1]hept-5-en-2-yl)prop-1-en-2-yl) phosphonate (5ao)

Yellow liquid. Yield: 53%, E/Z = 1:1. ¹**H** NMR (400 MHz, CDCl₃): δ 7.58 (m, 2H), 7.53–7.50 (m, 2H), 7.45–7.41 (m, 2H), 7.35–7.28 (m, 3H), 6.75 (dd, J = S27

23.1, 10.5 Hz, 0.5H), 6.33 (dd, J = 23.3, 10.4 Hz, 1H), 6.24 (m, 0.5H), 6.08 (m, 0.5H), 6.08 (m, 1H), 3.97 (m, 2H), 3.85 (m, 2H), 3.74–3.67 (m, 2H), 3.09 (m, 0.5H), 2.91 (m, 1H), 2.84 (m, 0.5H), 2.61 (m, 0.5H), 2.43 (m, 0.5H), 1.97 (m, 0.5H), 1.44–1.37 (m, 2H), 1.27 (m, 1H), 1.17 (m, 6H), 0.90–0.86 (m, 0.5H). ¹³**C NMR** (101 MHz, CDCl₃): δ 154.1 (d, J = 10.5 Hz), 154.0 (d, J = 9.9 Hz), 141.0, 139.1, 138.31, 138.29, 138.27, 138.2, 137.5, 136.0,132.6, 129.0, 128.9, 128.8, 127.1, 127.0, 126.9, 126.3 (d, J =177.8 Hz), 61.5 (d, J = 5.5 Hz), 49.7, 48.0, 47.6, 45.7, 42.9, 42.3, 38.5 (d, J = 19.1Hz), 38.1 (d, J = 18.5 Hz), 33.4 (d, J = 13.2 Hz), 32.8 (d, J = 12.6 Hz), 16.2 (d, J = 6.7 Hz). **HR-MS** (ESI+) for C₂₆H₃₁O₃NaP ([M+Na])⁺: calcd. 445.1909, found. 445.1908. **tert-butyl 2-(3-([1,1'-biphenyl]-4-yl)-2-(diethoxyphosphoryl)prop-1-en-1-yl) pyrrolidine-1-carboxylate (5ap)**

Yellow liquid. Yield: 48%, E/Z > 99/1. ¹**H** NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.32 (m, 3H), 6.59 (dd, J = 23.1, 9.3 Hz, 1H), 4.63–4.56 (m, 1H), 4.00–3.82

(m, 5H), 3.66–3.62 (m, 1H), 3.49–3.40 (m, 2H), 1.95–1.65 (m, 6H), 1.46 (s, 9H), 1.26 (t, J = 6.8 Hz, 3H), 1.13 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 154.3, 148.8 (d, J = 10.9 Hz), 140.9, 139.4, 138.2, 129.0, 128.8, 127.9 (d, J = 122.2 Hz), 127.2, 127.0, 126.9, 79.9, 61.6 (d, J = 6.5 Hz), 46.6, 32.6, 28.5, 28.3 (d, J = 16.8 Hz), 26.9, 23.7, 16.5 (d, J = 6.1 Hz). **HR-MS** (ESI+) for C₂₈H₃₈NO₅NaP ([M+Na])⁺: calcd. 522.2385, found. 522.2390.

3.3 1 mmol-scale synthesis of 5aa

To a 50 mL flame-dried Schlenk tube was added *PS5* (100 mg, 0.075 mmol) and Hantzsch ester **4** (304 mg, 1.2 mmol). The tube was evacuated and refilled with N₂ for three times. A solution of **1a** (1.0 mmol), aldehyde **2a** (3.0 mmol), dipropylamine **3b** (3.0 mmol) and MeCN (20 mL) was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from blue LED and stirred at 25 °C for 12 h. Upon completion, the reaction mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel (100-200 mesh), eluting with the indicated mixture of ethyl acetate (EA)/petroleum ether (PE) to give pure product **5aa** (229 mg, yield: 64%).

4. Mechanistic Studies

4.1 Radical capture experiment.

To a 25 ml flame-dried Schlenk tube was added **1a** (62.9 mg, 0.2 mmol), **2a** (34.8 mg, 0.6 mmol), **3b** (60.7 mg, 0.6 mmol), **4** (60.8 mg, 0.24 mmol), *PS5* (20.1 mg, 0.015 mmol), TEMPO (0.4 mmol/1 mmol) and mixture solvent of MeCN (4 mL) under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from 15 W blue light and stirred at 25 °C for 12 h. Upon completion, the reaction mixture was analyzed by TLC and **5aa** was not detected when TEMPO was added to 5 equivalents.

4.2 Deuterium-labeling experiments

The procedure is identical as the standard reaction conditions except using D₂O (10 equiv, D-enrichment of D₂O> 99.8%) medium. A **5aa-d3** was obtained in 40% yield. The ¹H NMR spectra of **5aa-d3** and the calculated D-incorporated rates are listed as below:

1 2

4.3 Stern-Volmer experiments

Stern-Volmer quenching experiment were carried out with freshly prepared solution of 1×10^{-4} M *PS5* and different concentrations quenchers in MeCN at room temperature under Ar atmosphere. Although the maximum UV absorption of *PS5* was observed at 385 nm, the solutions should be irradiated at 450 nm to avoid direct excitation of Hantzsch ester when the quencher was Hantzsch ester.

Figure *S3.* Stern Volmer quenching experiments with varying concentration of Hantzsch ester.

Studies have shown that dipropylamine can also quench copper-based photosensitizers so it is an effective quencher, as evidenced by its Stern-Vormer experiments.¹²

4.4 Light on/off interval experiment

To a 25 mL flame-dried Schlenk tube was added *PS5* (20 mg, 0.015 mmol) and Hantzsch ester **4** (60.7 mg, 0.24 mmol). The tube was evacuated and refilled with N₂ for three times. A solution of **1a** (0.2 mmol), aldehyde **2a** (0.6 mmol), amine **3b** (0.6 mmol) and MeCN (4 mL) was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from 30 W blue LED and stirred at 25 $^{\circ}$ C for 6 h. The light was turned on or off every 1 h, and the yield was determined by LC analysis.

Figure S4. Yields of 5aa during on/off experiments.

5. Practical application of the product 5aa and 5pa

To a solution of vinyl phosphate **5aa** (0.2 mmol) was added dry THF (2 mL), anhydrous Na₂CO₃ (0.6 mmol) and Palladium on carbon (Pd/C, 50 mg, 10% Pd). The reaction was placed under H₂ (at 1 atmosphere) and was stirred for 24 hours at room temperature. The mixture was filtered over a celite pad and the pad was washed with portions of CH₂Cl₂. The filtrate was evaporated under reduced pressure and the yellow oil was purified by column chromatography using a mixture of acetate (EA)/petroleum ether (PE) to give the product **6aa** in 82% yield.

To a 25 mL flame-dried Schlenk tube was added **5pa** (0.4 mmol). The tube was evacuated and refilled with Ar for three times. A solution of trichlorosilane (1.2 mmol) and toluene (1 mL) was added under argon atmosphere. The mixture was stirred at 120 °C overnight. After cooling to room temperature, a saturated NaHCO₃ aqueous solution (1 mL) was added, and further stirred for 5 min. The aqueous phase was extracted with CH₂Cl₂, the organic phase was combined, dried with anhydrous sodium sulfate, filtered, and distilled under reduced pressure. The yellow oil was purified by column chromatography using a mixture of acetate (EA)/petroleum ether (PE) to give the product **6pa** in 60% yield.

diethyl (1-([1,1'-biphenyl]-4-yl)pentan-2-yl)phosphonate (6aa)

Yellow liquid. Yield: 82%. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 7.3 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 4.18–4.05 (m, 4H), 4.04–3.80 (m, 1H), 3.65 (d, J= 18.4 Hz, 1H), 2.97 (td, J = 9.8, 5.3 Hz, 2H), 2.19–2.02

(m, 2H), 1.33 (t, J = 7.1 Hz, 6H), 1.16 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 140.9, 140.2, 140.0, 139.4, 128.8, 128.5, 127.3, 127.0, 61.7 (d, J = 6.5 Hz), 29.7, 28.29, 28.28, 27.6 (d, J = 136.7 Hz), 22.7, 16.5 (d, J = 6.0 Hz). HR-MS (ESI+) for C₂₁H₂₉O₃NaP ([M+Na])⁺: calcd. 383.1747, found. 383.1750.

(1-([1,1'-biphenyl]-4-yl)pent-2-en-2-yl)diphenylphosphane (6pa)

8H), 7.42–7.35 (m, 7H), 7.21 (d, J = 8.2 Hz, 2H), 5.79 (dt, J = 11.5, 7.2 Hz, 1H), 3.68 (d, J = 12.7 Hz, 2H), 2.32 (m, 2H), 1.05 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 144.3 (d, J = 16.1 Hz), 141.3, 138.9, 138.7, 136.2 (d, J = 11.5 Hz), 134.9 (d, J = 13.8 Hz), 134.1, 134.0, 129.1 (d, J = 148.5 Hz), 128.9, 128.7 (d, J = 4.8 Hz), 128.4 (d, J = 6.9 Hz), 127.9 (d, J = 183.0 Hz), 127.1. ³¹P NMR (162 MHz, CDCl₃): δ 0.87. **HR-MS** (ESI+) for C₂₉H₂₇NaP ([M+Na])⁺: calcd. 429.1743, found. 429.1741.

6. References

 S. Zhao, X. Wang, P. Wang, G. Wang, W. Zhao, X. Tang and M. Guo, *Org. Lett.*, 2019, **21**, 3990–3993.

 Y. Moglie, E. Mascaró, V. Gutierrez, F. Alonso and G. Radivoy, J. Org. Chem., 2016, 81, 1813-1818.

3. X. Li, S. Sun, F. Yang, J. Kang and Y. Wu, Org. Biomol. Chem., 2015, 13, 2432-2436.

4. S. A. Aristov, A. V. Vasil'ev and A. P. Rudenko, *Russ J Org Chem*, 2006, **42**, 770-771.

Y. Ding, L. Mao, D. Xu, H. Xie, L. Yang, H. Xu, W. Geng, Y. Gao, C. Xia and X. Zhang, *Bioorg. Med. Chem. Lett.*, 2015, 25, 2744-2748.

6. K. Jia, J. Li and Y. Chen, Chem. Eur. J., 2018, 24, 3174.

Y. Peng, H. Bao, L. Zheng, Y. Zhou, Q. Ni, X. Chen, Y. Li, P. Yan, Y.-F. Yang and
 Y. Liu, *Org. Lett.*, 2024, 26, 3218-3223.

B. Wang, D. P. Shelar, X.-Z. Han, T.-T. Li, X. Guan, W. Lu, K. Liu, Y. Chen, W.-F.
 Fu, C.-M. Che, *Chem. Eur. J.*, 2015, **21**, 1184-1190.

N.-Y. Chen, L.-M. Xia, A. J. J. Lennox, Y.-Y. Sun, H. Chen, H.-M. Jin, H. Junge,
 Q.-A. Wu, J.-H. Jia, M. Beller and S.-P. Luo, *Chem. Eur. J.*, 2017, 23, 3631.

10. Y. Zhao, M. G. Schwab, A. Kiersnowski, W. Pisula, M. Baumgarten, L. Chen, K. Müllen and C. J. Li, *Mater. Chem. C*, 2016, **4**, 4640-4646.

11. L. Zheng, Q. Jiang, H. Bao, B. Zhou, S.-P. Luo, H. Jin, H. Wu and Y. Liu, *Org. Lett.*, 2020, **22**, 8888-8893.

12. H. Bao, B. Zhou, S.-P. Luo, Z. Xu, H. Jin and Y. Liu, ACS Catal., 2020, 10, 7563-7572.

8. Copies of ¹H and ¹³C NMR Spectra ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5aa

8976567656676896768	N068N989994NNMMN7066	000208
00044440000000000000000000000000000000	\circ	00
	オオ ガガガガガガガガガガガオ	
LEELELEVIL CITE	LELLING Jadded LLI	

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5aa

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ba

6NN6N94MNNF06899MF6N	N100181904011681954	-0N4N0
MMMNNNNNNNNNTTTTTT	555588NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	-00000
66.66.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7		
	LELLING LENT	LU

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ba

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ca

082508892562206956	L00830892VV	NF068N	6 ~ 5 6 8 9
04444000FF00880000	0000000000000	mmmnnn	000
NNNNNNNNNN000000	++ + m m m m m m m m m	addada	
	Libble / Judded		
			10 01

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ca

(150.5) (130.5) (131.8) (131.8) (133.1) (132.6) (133.1	22.51 22.51 22.51 (16.19 (13.10
---	---

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5da

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ea

TNON0800808-0N0	NNOODNIOOT	N T C N T	- ONNOO
4 4 M M H H H M M M M M M M M M M M M M	OOONNNNN	NNNNN	-00000
		~	

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ea

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5fa

AL AL AL AL	
	N 0 0 0
adia	
SU	511-
	2224

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5fa

22	5000004				
22	4400N00	400	50	~ ~	0-10-0
· · ·	NN- OMNIA	4 - 00	5 4	10	9406
20	0000000	NN 10		NN	NNGGON
			00	3	NNFFFF
$\langle \rangle$		512			555112
Y	Y)) (r		Y	Y	YYF

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ga

OGNGBUNG	6 5 7 m N	089250
00000000	NNNN	NFF000
+	adada	
	Sid	511
	4.00 3.99 3.57 3.58 3.58 3.55	400 357 357 357 357 357 357 357 357 357 357

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ga

69	900 987 87 87	0 x y y y y y y y y y y y y y y y y y y	N9 450400
50.	331. 331. 19.	7.3	2.2 2.4 6 2.1 2 33.0 5 2.4 5
		NNN 99	MM NNEFFE
Y	Y SUZ 1	V V	Y YYY

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ha

0-9-0-4-5-50-50-50	16879789748167879748 679794
	066666888888655888886558888888888888888
6.6.6.6.6.6.7.7.7	
Less () / ded	

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ha

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ia

NONONUTNO®	00700NN	6 8 M M 9	6 N G N G M
FF8877779	5500 r r 55	NNNNN	000
00000000		NNNN	
	SUL	- SIL	

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ia

00	99	N 5 8 9 5	3					
5	CV T	00040	6	0,0,0	NO	-	0 0	FF07F0
			1.1.1	MON	44	~	6 8	07770
10	10 10		m	N N 10		10		
	E- E-		-		99	5	3 3	NN
1	6.2	~ 1 1 1 1			5 3			616111
	Y	100			Y		Y	YYF

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ja

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ja

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ka

0 - 8 - 4 - 9 9 9 9 9 9 9 7 8 - 9 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	840080-080	FF0688	MNON94
008877555555555555555555555555555555555	00000000000	NNNFFF	000
88	****	addad	
			D II

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ka

151.50	133.91 133.82 133.70 133.70 133.85 133.70 123.30 125.89 125.03 125.03 125.03 123.30	77.37 77.05 76.74	61.63 61.58	29.63 29.52 22.69 22.50 16.11 16.11 12.95 12.95
Y			Y	YYYY

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5la

889934578787878888	441008168789166788	NOBFON
24000000000000000000000000000000000000	00000000000000000000000000000000000000	0066
6.66.66.67.7.7.7.	~~~~~~~~~~~~~~~~	00
		SIL
	THE SEC. 17 19	10 11

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5la

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ma

400000000000000000	N-08-0N-99-	NF068N	-01089
444444666666666999	00000NNN9	NNNFFF	-00066
NNNNNNN	nnnnnnnnn	NNNNN	00
LILLIN VILLE	hand hard and a	- Star	
			10 10

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ma

<150.62	-144.28	128.32 138.30 128.95 12	77.47 77.16 76.84	61.56 61.51	32.54 32.43	C22.69 22.50 C16.21 C16.15 C13.09 C13.09
Y			W	Ť	Ŷ	Y Y P

¹H NMR (400 MHz, CDCl₃) spectrum of compound 5na

101000000000000000000000000000000000000	0000	NNAPRO	N = 6
00077777777777777777777777777777777777	5044	NNNNN	006
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m m m m	addada	0
			517
and the state of t	2016		di la





# ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5na

NN 084NNNN06MN			
04 80888×FF6668 400 04	40	N 00	0 80
	40	2 5	-0
	NN	NN	nn
	3	NN	
	52	61	51
Y DIF IF	Y	Y	Y



## ¹H NMR (400 MHz, CDCl₃) spectrum of compound 50a

000000000000000000000000000000000000000	89944MN04MNF066N64	54mN+0	-008-080N0880-
0000044444mmmnn0000000	555555555688888 <u>~</u> ~ <u></u>	~~~~~~	004400000000a
	,	adadad	
		LLIJJJ	
B THE BLA			





## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 50a



¹H NMR (400 MHz, CDCl₃) spectrum of compound 5pa

^{1.02}
 ^{1.02}
 ^{0.08}





¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5pa



¹H NMR (400 MHz, CDCl₃) spectrum of compound 5qa







## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5qa



# ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ab

070707070708940F070	-008748954m288	-008000000004040
200004444000000000000000	0000000000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	4400000000000000000	NNNNNFFFFFFF000
		Sharly 1222





# ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ab

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO8 78	
	456 64	9566 88666
	111111111111111111111111111111111111111	24477 33333
Y SIP Y	$\checkmark$ $\checkmark$	42 Y Y/




#### ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ac

	010818879203 mm	-08-68N08
00444000000000000000000000000000000000	6666688NNNN95 NNNN	NNFFOOREN
1222222222222277777777777		





## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ac

149.44 149.34 139.05 138.11 138.11 128.52 128.52 128.52 126.95 126.95	77.40 77.08 76.77	61.24 61.48	32.61 332.50 31.76 29.17 29.09 28.57 28.56 22.63	16.19 16.12 14.10
V WP WIT		Ŷ	manadad .	$\nabla \Sigma$



## ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ad

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00777000000000000000000000000000000000	5 5 C C
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, , , , , , , , , , , , , , , , , , ,	
00000000000000000000000000000000000000	, , , , , , , , , , , , , , , , , , ,	





## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ad

38 06 75	27	14 233	11
17.	10.10	****	16.
	Ý	SAL	Ý





#### ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ae



S77

#### ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ae





#### ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5af

## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5af

N2N202N712/007					
4860006621166	N06	20	98	2901	5 6
	イーマ	5 4	6 1	5444	
*********	NN 19		NN	NNEG	10 10
		99	4 4	nnnn	
	512		6.7	5122	5.1
		Y	Y	Arr	Y





## ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ag

8 N N O S M T S M O N O N T N O S M O S M O S M O S M O S M O S M O S M O S M O S M O S M O S M O S M O S M O S	00200442000	89404
0000444000000000	0 6 6 6 8 8 8 9 9 9 8 8 8 8 7 1	00
NNNNNNNNNNN9999	ട്ന്ന്ന്ന്ന്ന്ന്ന്രിരിരിരിരി	
		Se





#### ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ag



## ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ah

24700800N71N70K0K	100008000000000000000000000000000000000	-00-0104NM-N
0000044400000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44MN008
NNNNNNNNNN 0000	++++++++++++++++++++++++++++++++++++++	
		LELLIJJJJ
THE REAL PROPERTY AND A DECIMAL PROPERTY AND		



## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ah

<154.65	140.96 133.05 138.28 128.77 128.77 128.71 125.38	777.38 777.06 76.74	61.54 61.45	∠ ^{35.36} 35.18 32.12 732.61 29.49	~19.73 ~16.23 ~16.08
Y			Ŷ	A F F	1 1



#### ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ai



## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ai

NN 50055059059		
54 60008NFF66	0 2 2 0	THE OFONNO
	40 A0M	540 000000
	NN9 FF	NNO NNOOMM
<u> </u>	NNN 00	MMN NNEFEE
		YCYYF



## ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5aj

68220440144018294062	5 2 4 3 3 3 4 5 2 4 4 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22222888888888888888888888888888888888
	4	
LILLILLILL VILL		





## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5aj

0 -	5 m 9 7 6 m 6 m 6 0 6 6				
-0	50NN8NF55599	0,0,0	NE	FOFON N	NO
		MON	5	N0-000	
E F.					
42 42				01 01 11 14 14 41	00
dam dam			99	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
					51
Y			Y	YN	Y



## ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ak

887790448744879879767	00×000000	5 00	NN 4 N N M O M M
00000044440000000000000000000000000000	<b>೧</b> ೧ ೧ ೧ ೧ <b>೧ ೧ ೧ ೧ ೧</b> 0 0 0 0 0 0	44	-999NN
	nnnnnnnnnnn	NN	
	LLL ( ) / d d d	0	
		Y	





## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ak

<154.00	140.96 138.26 138.28 138.28 138.28 128.37 128.37 128.36 128.59 128.50 128.50 128.50 128.50	717.39 71.07 76.75	<61.59 61.54	38.35 38.17 32.67 32.56 32.56 32.56 25.50 25.50	$<^{16.15}_{16.08}$
78	1 H 1 H F	10	25		<b>T</b>





# ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5al 1.52 1.45 1.45 1.19 1.18 1.16 O ∠P_OEt OEt Boc 5al 2.08 2.30 ¥ 9.48 ¥ 2.45 Å F66.0 2.35 2.43 2.16 2.16 2.02 4 2.43 5.0 fl (ppm) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 .5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.5 4.0 3.5

#### S91

## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5al

~154.78 ~151.35 ~151.25	140.19 137.96 137.96 137.96 137.96 137.96 137.97 127.22 127.22 126.46	79.58 77.43 77.11 76.79	<pre>61.71 &lt;61.66</pre>	28.53 36.53 32.73 32.73 2.73 2.62 28.44	$<^{16.19}_{16.12}$
	CONTRACTOR CONTRACTOR	12 - 20 S	15		- N



¹H NMR (400 MHz, CDCl₃) spectrum of compound 5am



## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5am

99	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
06	DOFFONNEOUM	0 0 <del>4</del>	20	0 N N 0 N 0 N 4 0 N
mini	O O O O O O O O O O	MON	20	-000400N
10 10	4 mmmananana	1 1 9		TONNONN TOO
			99	MMMMMNNN
		~ / /		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Y			Ŷ	AVIET Y



¹H NMR (400 MHz, CDCl₃) spectrum of compound 5an







## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5an

148.2 148.1 148.1 148.2 138.9 138.9 138.9 126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 1126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 1	17.70 16.20 16.12
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------





¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ao



¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ao



## ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5ap

00NN0507070785	00000400000	~~~~~~~~~~~~
00000444000000	0400888866644	OF GANNN-
	++++	
	V	~~~~~



## ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5ap

800	00000000000000000000000000000000000000				
NFO	00000000000			3	ON NNOMO
		840N	N 9	9	504082 54
4 0, 0,			and the second sec	10	
4144				-	
			44	-	
			$\sim$		
		1 16			



#### ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6aa





#### ¹³C NMR (101 MHz, CDCl₃) spectrum of compound 6aa



## ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6pa

 $\underbrace{+1.05}{1.05}$ 

0440-0800004000880000-0080	ON	54000
00000000000000000000000000000000000000	29	m m m m
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e e e	adada
	$\langle \rangle$	512
	30	nin

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 6pa

44 44 44 44 33 35 26 33 45 34 94 33 45 34 94 35 35 44 35 35 35 35 35 44 35 35 35 35 35 44 35 35 35 35 35 35 35 35 35 35 35 35 35	7.46 7.14 6.82	6.16	3.24	3.90	
		3 3	3	T	

³¹P NMR (162 MHz, CDCl₃) spectrum of compound 6pa

-0.87

