Supporting information

P-doped in situ induced Se vacancy enhances the supercapacitor performance of NiCo₂Se₄

Miaomiao Wang^{†a}, Weizhe Liu^{†a}, Li Zhang^{†a *}, Huanli Liu^a and Xiao Yang^a ^aSchool of Science, Lanzhou University of Technology, Lanzhou 730050, PR China [†]These authors contributed equally to this work.

*Corresponding author:

Dr. Li Zhang Department of Physics, School of Science, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China. E-mail: zhangli@lut.edu.cn

Fig. S1 (a) SEM images of NiCo₂Se_x-P_{0.5}, (b) SEM images of NiCo₂Se_x-P₂, (c-d) TEM images of NiCo₂Se_x-P_{0.5}, (e-f) TEM images of NiCo₂Se_x-P₂.

SEM images of NiCo₂Se_x-P_{0.5} and NiCo₂Se_x-P₂ are shown in Fig. S1(a-b). After the phosphating treatment, both NiCo₂Se_x-P_{0.5} and NiCo₂Se_x-P₂ showed a microsphere morphology with an average size of 5 μ m, and the spherical surface was covered with a large number of nanoparticles. The low-magnification TEM images of NiCo₂Se_x-P_{0.5} and NiCo₂Se_x-P₂ are shown in Fig. S1(c-f), and their size is about 5 μ m, which is in agreement with the SEM results. Compared with NiCo₂Se_x-P₁ material, they are all microspheres, but further observation can be found that the surface of NiCo₂Se_x-P₁ material is needle-like, which may be that the amount of phosphorus doping will have some effect on its morphology, resulting in differences in the surface structure of the material. As for NiCo₂Se_x-P₁, the mesh structure formed by interconnecting neighboring nano-needles on its surface has abundant pores, and this multi-channel structure can accelerate the rapid penetration of electrolyte ions in the active material. Therefore, the electrochemical performance of NiCo₂Se_x-P₁ as a typical sample for research.

Fig. S2 (a) N₂ adsorption/desorption isotherm, (b) Pore size distribution.

Fig. S3 XRD pattern of NiCo precursor.

Fig. S4 XRD comparison of (210) and (211) crystal planes of Pure-NiCo₂Se₄ and NiCo₂Se_x-P₁.

Fig. S5 DOS diagrams of Pure-NiCo₂Se₄, NiCo₂Se₄-P, NiCo₂Se_x and NiCo₂Se_x-P.

Fig. S6 (a)Comparison of CV curves of AC electrode and $NiCo_2Se_x-P_1$ electrode at 50 mV s⁻¹ scan rate, (b) CV curves of different voltage windows at $NiCo_2Se_x-P_1//AC$ scan rate of 50 mV s⁻¹.

Table. S1 Performance comparison of $NiCo_2Se_x-P_1//AC$ devices with recently reported hybrid supercapacitors

Supercapacitor device	energy density (Wh kg^{-1})	power density (W kg ⁻¹)	Reference
CoNi ₂ S ₄ //Bi ₂ O ₃	86.6	1600	1
Ni ₂ Co ₄ Se ₄ //HPC	34.8	399.9	2
NiCo ₂ Se ₄ /rGO//TRGO	37.83	1433.55	3
(Ni _{0.33} Co _{0.67})Se ₂ CHSs//AC	29.1	800	4
NiCo ₂ Se ₄ //AC	25	490	5
Ni _{0.67} Co _{0.33} Se//RGO	36.7	750	6
(Ni _{0.5} Co _{0.5}) _{0.85} Se//carbon	70.58	320.02	7
NiCo ₂ Se _x -P ₁ //AC	94.61	799.92	This work

References

- I. J. Zhao, Z. Li, T. Shen, X. Yuan, G. Qiu, Q. Jiang, Y. Lin, G. Song, A. Meng and Q. Li, *J. Mater. Chem. A*, 2019, 7, 7918-7931.
- 2 Z. Xie, D. Qiu, J. Xia, J. Wei, M. Li, F. Wang and R. Yang, ACS Appl. Mater. Interfaces, 2021, 13, 12006-12015.
- 3 S. Ghosh, P. Samanta, P. Samanta, N. C. Murmu and T. Kuila, *Energy Fuels*, 2020, 34, 13056-13066.
- 4 L. Quan, T. Liu, M. Yi, Q. Chen, D. Cai and H. Zhan, *Electrochim. Acta*, 2018, 281, 109-116.
- 5 S. Li, Y. Ruan and Q. Xie, *Electrochim. Acta*, 2020, 356, 136837.
- H. Chen, S. Chen, M. Fan, C. Li, D. Chen, G. Tian and K. Shu, J. Mater. Chem.
 A, 2015, 3, 23653-23659.
- 7 L. Du, W. Du, Y. Zhao, N. Wang, Z. Yao, S. Wei, Y. Shi and B. Zhang, J. Alloys Compd., 2019, 778, 848-857.