Electronic Supplementary Information

New 8-Hydroxy Quinoline-Polycyclic Aromatic Hydrocarbon (PAH) Conjugates and Their Sulfonated Derivatives: Effects of Sulfonation and PAH Size on Their Structural, Supramolecular and Cytotoxic Properties

Suman Sehlangia, ${ }^{\text {a }}$ Surbhi Dogra, ${ }^{\text {b }}$ Prosenjit Mondal, ${ }^{\text {b }}$ Chullikkattil P. Pradeep*a

${ }^{a}$ School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India. Email: pradeep@iitmandi.ac.in; Fax: +911905 267 009; Tel: +91 1905267045.
${ }^{b}$ School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh-175005, India.

S. No.	Details	Caption	Page No.
1	Experimental Section	Scheme 1	S3-S6
2	${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of PH1	S1-S2	S7
3	HR-MS of PH1 and ${ }^{1} \mathrm{H}$ NMR of PH2	S3-S4	S8
4	${ }^{13} \mathrm{C}$ NMR spectrum and HR-MS of PH2	S5-S6	S9
5	${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of PH3	S7-S8	S10
6	HR-MS of PH3 and ${ }^{1} \mathrm{H}$ NMR spectrum of PD1	S9-S10	S11
7	${ }^{13} \mathrm{C}$ NMR spectrum and HR-MS of PD1	S11-S12	S12
8	${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of PD2	S13-S14	S13
9	HR-MS of PD2 and ${ }^{1} \mathrm{H}$ NMR spectrum of PD3	S15-S16	S14
10	${ }^{13} \mathrm{C}$ NMR spectrum and HR-MS of PD3	S17-S18	S15
11	Crystal and structure refinement data for PH1, PH2, and PD1PD3	Table S1	S16
12	Details of weak bonding interactions in PH1 and PH3	Table S2	S17
13	Unit cell of PH3	S19	S18

14	Analyses of possible C-H $\cdots \pi$ interactions in PH1 and PH3	Table S3	S19
15	Details of weak bonding interactions in PD1-PD3	Table S4	S20
16	The extension of 1D chains into 2D sheets through $\pi-\pi$ stacking and C-H \cdots O interactions in PD3.	S20	S21
17	Analyses of possible $\pi-\pi$ interactions in PD2 and PD3	Table S5	S22, S23
18	Analyses of possible C-H $\cdots \pi$ interactions in PD1-PD3	Table S6	S23
19	Growth inhibitory response of PD1-PD3	S21	S24
20	A comparison of cytotoxic properties of PH and PD series compounds with similar reported compounds in the literature	Table S7	S24,S25
21	References		S26

Experimental Section

Materials and Instrumentation: All the chemicals were purchased from Sigma Aldrich. Solvents used were of spectroscopic grade and were used without further treatment. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Jeol-JNM 500 MHz NMR spectrometer using DMSO- d_{6} and CDCl_{3} as solvents and TMS as internal standard. HR-MS data were recorded on Bruker HD compact instrument.

Single Crystal X-ray Diffraction Analysis: Single-crystal X-ray data were collected on an Agilent SuperNova diffractometer, equipped with a multilayer optics monochromated dual source $(\mathrm{Cu}$ and Mo$)$ and an Eos CCD detector, using $\mathrm{Cu}-\mathrm{Ka}$ radiation ($1.54184 \AA$) at room temperature. Data acquisition, reduction, and absorption correction were performed by using CrysAlisPRO. ${ }^{[1]}$ The structure was solved with ShelXS ${ }^{[2]}$ program using direct methods and refined on F^{2} by fullmatrix least-squares techniques with ShelXL ${ }^{[2]}$ through the Olex^{2} (v.1.2) program package. ${ }^{[3]}$ Anisotropic displacement parameters were applied for all the atoms except for hydrogen atoms. The hydrogen atoms were placed in calculated positions and refined as riding atoms using isotropic displacement parameters. CCDC Nos: 2325794-2325798 contain supplementary crystallographic data.

Cell Viability Assay: The viability of HepG2 cells under drug treatment was determined using MTT assay. Briefly, HepG2 cells were seeded at a density of 9×10^{3} cells per well of a 96 well plate. The following day, cells were treated with samples, concentrations ranging from 0.5-100 $\mu \mathrm{g} / \mathrm{ml}$ of different compounds for 24 hours. After the treatment, cells were incubated with $0.5 \mathrm{mg} / \mathrm{ml} 3$-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide (MTT) at $37^{\circ} \mathrm{C}$ for 4 hours. The media was removed, and the formazan crystals formed were dissolved in DMSO. Absorbance was measured at 570 nm using iTecan microplate reader. The IC_{50} values were calculated using GraphPad Prism 8 software.

Synthesis of PH and PD Series Compounds: The target PH and PD series compounds were synthesized starting from 4-substituted phenol via a reported procedure, as shown in Scheme S1.

Scheme S1. Overall synthetic scheme of compounds PH1-PH3 and PD1-PD3.

General Procedure for the Synthesis of PH1-PH3: A mixture of corresponding aldehyde (1 mmol), 2-methyl-8-hydroxyquinoline (1 mmol), and acetic anhydride was heated at 130° C under a nitrogen atmosphere for 24 h (TLC monitoring). After that, the reaction was quenched by pouring into an ice-water mixture with stirring. Thus, the separated crude compound was filtered, dried, and purified by recrystallization from ethyl acetate following a reported procedure. ${ }^{[4]}$ To the product was added methanol and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{mmol})$, and the reaction mixture was stirred at room temperature for 120 min . After completing the reaction, as monitored by TLC, the reaction mixture was poured into water and neutralized with HCl solution, and the precipitate was filtered and dried. The crude product thus obtained was purified by recrystallization from ethanol.

PH1 was obtained as dark brown solid. Yield: $0.89 \mathrm{mmol}(89 \%)$. Melting point: $134{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 8.46(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 1 \mathrm{H})$, 8.08 (d, $J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 1 \mathrm{H})$, 7.45-7.48 (m, 2H), 7.32-7.36 (m, 2H), 7.24-7.26 (m, 1H), $7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) δ ppm: 153.6, 152.0, 138.0, 136.5, 133.9, 133.7, 131.4, 131.3, 130.8, 129.1, 128.7, 127.5, 127.4, 126.4, 126.0, 125.6, 124.2, 123.6, 120.6, 117.7, 110.2. HRMS: m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}=298.1154$; found $=298.1203$.

PH2 was obtained as a yellow solid. Yield: 0.86 mmol (86%). Melting point: $202{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta \mathrm{ppm}: 9.07$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.62(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 2 \mathrm{H})$, $8.37(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-60(\mathrm{~m}, 4 \mathrm{H}), 7.40-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}:$ $153.4,153.0,138.3,136.8,136.7,132.0,131.1,130.7,129.1,128.8,128.0,127.4,126.9,126.1$, $125.8,125.5,121.2,117.5,111.4$. $\mathrm{HRMS}: \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}=348.1310$; found $=348.1065$.

PH3 was obtained as a yellow solid. Yield: $0.82 \mathrm{mmol}(82 \%)$. Melting point: $169{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}: 9.28(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=$ $8.25 \mathrm{~Hz}, 1 \mathrm{H}), 8.32-8.37(\mathrm{~m}, 5 \mathrm{H}), 8.22(\mathrm{~s}, 2 \mathrm{H}), 8.09(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}: 153.6$, $153.4,138.5,136.6,131.0,130.9,130.5,130.3,128.6,127.9,127.8,127.7,127.4,127.3,126.5$, 125.6, 125.4, 125.4, 124.3, 124.0, 123.7, 121.8, 117.2, 111.4. HRMS: m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{ON}$ $[\mathrm{M}+\mathrm{H}]^{+}=372.1310$; found $=372.1750$.

General Procedure for the Synthesis of PD1-PD3: Compound PH1/PH2/PH3 (1 eq.; 2 mmol) was dissolved in acetonitrile (ACN) with continuous stirring followed by the addition of the base triethylamine (NEt_{3}) (1.2 eq .). The reaction mixture was stirred for 20 minutes. Dansyl chloride (1.5 eq., 3 mmol) was added under N_{2} atmosphere with vigorous stirring to the reaction mixture and kept at room temperature for 96 hours. A yellow precipitate was formed, which was filtered and extracted with chloroform. The organic layer was collected and evaporated. The crude product thus obtained was purified by recrystallization from ethanol. ${ }^{[5]}$

PD1 was obtained as light yellow solid. Yield: 1.76 mmol (88%). Melting point: $178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta \mathrm{ppm}: 8.58(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 1 \mathrm{H}), 8.32-8.38(\mathrm{~m}$, $3 \mathrm{H}), 8.08(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-8.02(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.76(\mathrm{~m}, 3 \mathrm{H})$, 7.56-7.62 (m, 4H), 7.45-7.48 (m, 1H), 7.13 (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}: 156.6,151.7,145.4,141.0,136.8,134.0,133.5,132.5,132.1$, $131.9,131.5,131.4,130.8,130.6,129.7,129.4,129.1,128.8,127.8,127.1,126.7,126.4,126.4$, $124.6,124.2,124.0,123.8,120.6,120.0,115.8,45.2$. HRMS: m / z calculated for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}=531.1664$; found 531.2079.

PD2 was obtained as yellow solid. Yield: $1.66 \mathrm{mmol}(83 \%)$. Melting point: $160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}: 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ $(\mathrm{d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.18(\mathrm{~m}, 6 \mathrm{H}), 8.00(\mathrm{~d}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ $(\mathrm{d}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.63(\mathrm{~m}, 5 \mathrm{H}), 7.46(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (d, $J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}: 155.6$, $150.9,145.0,140.4,136.8,136.5,132.1,131.4,131.3,131.2,131.1,129.8,128.9,128.7,128.6$, $128.5,127.3,127.1,126.1,125.6,125.5,123.8,123.1,120.2,119.3,114.7,44.1$. HRMS: m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}=581.1821$; found 581.1706.

PD3 was obtained as yellow solid. Yield: $1.62 \mathrm{mmol}(81 \%)$. Melting point: $204{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta \mathrm{ppm}$: 8.68-8.74 (m, 2H), $8.62(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 1 \mathrm{H}), 8.44-8.48(\mathrm{~m}, 2 \mathrm{H}), 8.34-$ $8.38(\mathrm{~m}, 4 \mathrm{H}), 8.25-8.32(\mathrm{~m}, 3 \mathrm{H}), 8.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.55 \mathrm{~Hz}$, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=9.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}: 156.2,151.2$, $144.8,140.6,136.3,131.8,131.6,131.2,131.0,130.4,130.3,130.1,128.6,128.5,128.3,128.0$, $127.9,127.5,127.2,126.6,125.9,125.8,125.5,125.4,124.2,124.0,124.0,123.4,123.3,123.1$, 120.3, 119.5, 115.4, 44.6. HRMS: m / z calculated for $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}=605.1821$; found 605.1729 .

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of PH1.

Fig. S2 ${ }^{13} \mathrm{C}$ NMR spectrum of PH1.

Fig. S3 HR-MS of PH1.

Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectrum of PH 2 .

Fig. S5 ${ }^{13} \mathrm{C}$ NMR spectrum of PH 2 .

Fig. S6 HR-MS of PH2.

Fig. $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum of PH3.

Fig. S8 ${ }^{13} \mathrm{C}$ NMR spectrum of PH3.

Fig. S9 HR-MS spectrum of PH3.

Fig. S10 ${ }^{1} \mathrm{H}$ NMR spectrum of PD1.

Fig. S11 ${ }^{13} \mathrm{C}$ NMR spectrum of PD1.

Fig. S12 HR-MS of PD1.

Fig. $\mathbf{S 1 3}^{1} \mathrm{H}$ NMR spectrum of PD2.

Fig. S14 ${ }^{13} \mathrm{C}$ NMR spectrum of PD2.

Fig. S15 HR-MS of PD2.

Fig. S16 ${ }^{1} \mathrm{H}$ NMR spectrum of PD3.

Fig. S17 ${ }^{13} \mathrm{C}$ NMR spectrum of PD3.

Fig. S18 HR-MS of PD3.

Crystal Structure Analyses of PH \& PD Series Compounds

Table S1. Crystal and structure refinement data for PH1, PH3, and PD1-PD3.

	PH1	PH3	PD1	PD2	PD3
Crystallization solvents	Methanol \& dichloromethane	Methanol \& dichloromethane	 dichloromethane	Methanol \& dichloromethane	Methanol \& dichloromethane
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}$	$\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{NO}$	$\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	$\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	$\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	297.359	371.442	530.65	580.712	604.73
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	Pca ${ }_{1}$	$P 2_{1} / n$	$P 2_{1} / n$	$P-1$	$P-1$
$a(\AA)$	15.9480(6)	15.5838(15)	7.4377(3)	10.5913(7)	8.0458(5)
$b(\AA)$	6.6074(3)	6.6875(6)	14.7657(4)	11.8069(7)	13.1703(9)
$c(\AA)$	14.6479(6)	18.8389(19)	23.7592(7)	12.2854(7)	14.8309(13)
$\alpha\left(^{\circ}\right.$)	90.00	90	90.00	103.279(5)	74.204(7)
$\beta\left({ }^{\circ}\right)$	90.00	107.494(11)	93.154(3)	103.085(5)	74.975(6)
$\gamma\left(^{\circ}\right)$	90.00	90	90.00	96.474(5)	86.981(5)
$V\left(\AA^{3}\right)$	1543.52(11)	1872.5(3)	2605.36(14)	1434.23(16)	1460.25(18)
Z	4	4	4	2	2
$\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.280	1.318	1.353	1.345	1.375
$\mu\left(\mathrm{mm}^{-1}\right)$	0.079	0.623	1.414	1.335	1.336
$F(000)$	624.0	778.3	1268.0	610.0	722.0
T	N/A	N/A	N/A	N/A	N/A
Reflections collected	3419	5854	8875	8716	8600
Independent reflections	$\begin{gathered} 2471\left[\mathrm{R}_{\mathrm{int}}=\right. \\ 0.0231, \mathrm{R}_{\text {sigma }}= \\ 0.0390] \end{gathered}$	$\begin{gathered} 3275\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0200, \mathrm{R}_{\text {sigma }}= \\ 0.0277] \end{gathered}$	$\begin{gathered} 4575\left[\mathrm{R}_{\mathrm{int}}=\right. \\ 0.0194] \end{gathered}$	$\begin{gathered} 5036\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0248, \mathrm{R}_{\text {sigma }}= \\ 0.0327] \end{gathered}$	$\begin{gathered} 4393\left[\mathrm{R}_{\mathrm{int}}=\right. \\ 0.0602] \end{gathered}$
Data/ restraints/parameters	2471/1/209	3275/0/263	4575/0/354	5036/0/390	4393/0/407
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$	$\begin{aligned} \mathrm{R}_{1}= & 0.0480, \mathrm{wR}_{2} \\ = & 0.1070 \end{aligned}$	$\begin{gathered} \mathrm{R}_{1}=0.0432, \\ \mathrm{wR}_{2}=0.1143 \end{gathered}$	$\begin{aligned} \mathrm{R}_{1}= & 0.0403, \mathrm{wR}_{2} \\ = & 0.1101 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1}= & 0.0415, \mathrm{wR}_{2} \\ = & 0.1079 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1}= & 0.0554, \mathrm{wR}_{2} \\ = & \mathrm{N} / \mathrm{A} \end{aligned}$
R indices (all data)	$\begin{aligned} \mathrm{R}_{1}= & 0.0623, \mathrm{wR}_{2} \\ & =0.1198 \end{aligned}$	$\begin{gathered} \mathrm{R}_{1}=0.0631 \\ \mathrm{wR}_{2}=0.1357 \end{gathered}$	$\begin{aligned} \mathrm{R}_{1}= & 0.0513, \mathrm{wR}_{2} \\ & =\mathrm{N} / \mathrm{A} \end{aligned}$	$\begin{aligned} \mathrm{R}_{1}= & 0.0521, \mathrm{wR}_{2} \\ & =0.1172 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1}= & 0.0740, \mathrm{wR}_{2} \\ = & 0.1360 \end{aligned}$
GOF	1.090	1.049	1.080	1.058	0.979
$R_{l}=F_{o}-F_{C} / F_{o} . w R_{2}=\left[w\left(F_{o}{ }^{2}-F_{c}^{2}\right)^{2} / w\left(F_{o}\right)^{2}\right]^{1 / 2}$.					

Table S2. Details of the weak bonding interactions in PH1 and PH3.

D	H	A	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \mathbf{A}$	$\mathbf{d}(\mathbf{H}-\mathbf{A}) / \mathbf{1}$	d(D-A)/Å	D-H-A/ ${ }^{\circ}$
PH1						
C2	H2	O1 ${ }^{1}$	0.9300	2.802(4)	3.609(4)	145.67(8)
C11	H11	O1 ${ }^{1}$	0.9300	2.545(4)	3.318(4)	140.79(9)
C20	H20	$\mathrm{O} 1^{1}$	0.9300	2.808(4)	3.459(4)	128.03(9)
C5	H5	$\mathrm{N} 1^{2}$	0.9300	3.189(4)	$3.762(4)$	121.69(8)
C17	H17	Ol^{3}	0.9300	2.817(4)	3.620(5)	145.29(12)
C17	H17	$\mathrm{N} 1^{3}$	0.9300	3.247 (5)	3.804(5)	120.41(9)
Symmetry codes: ${ }^{13 / 2-X,+Y,-1 / 2+Z ; ~}{ }^{2}+\mathrm{X},-1+\mathrm{Y},+\mathrm{Z} ;{ }^{3} 1-\mathrm{X}, 2-\mathrm{Y},-1 / 2+\mathrm{Z}$						
PH3						
C23	H23	$\mathrm{O} 1^{1}$	0.9300	2.940(3)	3.585(3)	127.64(5)
C21	H21	O^{2}	0.9300	$2.625(3)$	3.348(3)	135.07(7)
C17	H17	Ol^{3}	0.9300	3.057(3)	3.780(3)	135.84(6)
C5	H5	$\mathrm{N} 1^{4}$	0.9300	2.996 (3)	3.616(3)	125.42(6)
C16	H16	Ol^{3}	0.9300	3.389(3)	3.946 (3)	120.77(5)
C6	H6	Ol^{4}	0.9300	2.977(3)	3.585(3)	124.41(5)
Symmetry codes: ${ }^{1} 1 / 2-\mathrm{X}, 1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z} ;{ }^{2} 1 / 2+\mathrm{X}, 3 / 2-\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{3} 1-\mathrm{X}, 2-\mathrm{Y}, 1-\mathrm{Z} ;{ }^{4}+\mathrm{X},-1+\mathrm{Y},+\mathrm{Z}$						

Fig. S19 Unit cell of PH3. Each molecule is part of supramolecular infinite 1D chains formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, shown as hanging contacts in red. The interconnection of molecules through certain $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also shown.

Analysis of Supramolecular $\mathbf{C}-\mathbf{H}^{\cdots} \boldsymbol{\pi}$ Interactions in PH series Compounds. ${ }^{6}$

Scheme S2. Graphical presentation of the parameters used for the description of $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ stacking interactions in the present study. See Reference 6 for details.

Table S3. Analyses of possible $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in PH1 and PH3.

$\mathbf{X}-\mathbf{H}(\mathbf{I})$	$\mathbf{C g}(\mathrm{J})$	[ARU(J]	$\mathbf{H} \cdots \mathrm{Cg}$	H-Perp	$\gamma(0)$	$\mathrm{X}-\mathrm{H} \cdots \mathrm{Cg}$	$\mathbf{X} \cdots \mathrm{Cg}$	$\mathbf{X}-\mathbf{H}, \boldsymbol{\pi}$
PH1								
C5-H5[1]	Cg3	4565.01	2.65	2.63	5.68	133	3.3510(2)	49
C5-H5[1]	Cg6	4565.01	2.87	-2.63	23.75	128	$3.5211(2)$	49
C7-H7[1]	Cg3	3565.01	2.98	-2.92	11.34	152	3.8298 (2)	61
C15-H15[1]	Cg 1	4455.01	2.86	2.83	8.53	130	$3.5308(2)$	48
$[4565]=1 / 2+\mathrm{X}, 1-\mathrm{Y}, \mathrm{Z} ;[3565]=1 / 2-\mathrm{X}, 1+\mathrm{Y}, 1 / 2+\mathrm{Z} ;[4455]=-1 / 2+\mathrm{X},-\mathrm{Y}, \mathrm{Z}$. Where, $\mathrm{CgX}=$ Ring Center-of-Gravity of ring X. Ring $1=\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$; Ring $3=\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 21$; Ring $6=$ C12-C13-C14-C15-C16-C17-C18-C19-C20-C21; see Figure 1 of main manuscript.								
PH3								
C2-H2[1]	Cg9	1545.01	2.90	2.88	7.35	135	3.6232(4)	39
C2-H2[1]	Cg13	1545.01	2.97	2.88	14.19	140	$3.7309(4)$	39
C14-H14[1]	Cg1	3555.01	2.82	-2.78	9.09	133	3.5131(4)	39
C14-H14[1]	Cg7	3555.01	2.85	-2.76	14.34	127	$3.4951(4)$	39
C19-H19[1]	Cg5	2455.01	2.68	-2.67	4.78	149	3.5150(4)	58
C19-H19[1]	Cg10	2455.01	2.84	-2.67	20.09	137	$3.5795(4)$	58
C19-H19[1]	Cg12	2455.01	2.92	-2.67	23.68	125	$3.5372(4)$	59
C19-H19[1]	Cg14	2455.01	2.94	-2.67	24.87	126	$3.5725(4)$	59
C24-H24[1]	Cg 2	2555.01	2.97	2.95	7.67	143	$3.7548(4)$	48
$[1545]=\mathrm{X},-1+\mathrm{Y}, \mathrm{Z} ;[3555]=-\mathrm{X},-\mathrm{Y},-\mathrm{Z} ;[2455]=-1 / 2-\mathrm{X}, 1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z} ;[2555]=1 / 2-\mathrm{X}, 1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z}$. Where, $\mathrm{CgX}=$ Ring Center-of-Gravity of ring X. Ring $1=$ N1-C1-C2-C3-C4-C9; Ring $2=$ C4-C5-C6-C7-C8-C9; Ring 5 $=$ C18-C19-C20-C21-C22-C27; Ring 7 = N1-C1-C2-C3-C4-C5-C6-C7-C8-C9; Ring 9 = C12-C13-C14-C15-C26-C27- C22-C23-C24-C25; Ring $10=$ C15-C16-C17-C18-C19-C20-C21-C22-C27-C26; Ring $12=$ C18-C19-C20-C21-C22-C23- C24-C25-C26-C27; Ring 13 = C12-C13-C14-C15-C16-C17-C18-C27-C22-C23-C24-C25; Ring $14=$ C15-C16-C17-C18- C19-C20-C21-C22-C23-C24-C25-C26, see Figure 1 of main manuscript.								

Table S4. Details of weak bonding interactions in PD1-PD3.

D	H	A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/ ${ }^{\circ}$
PD1						
C28	H28	$\mathrm{O} 2{ }^{1}$	0.9300	2.729(3)	3.630(3)	163.47(6)
C30	H30	O2	0.9300	2.432(3)	3.030(3)	122.07(6)
C3	H3	$\mathrm{N} 2^{2}$	0.9300	2.938(3)	3.848(3)	166.24(6)
C6	H6	O3 ${ }^{3}$	0.9300	2.650(3)	3.384(3)	136.33(6)
C15	H15	$\mathrm{O3}^{2}$	0.9300	2.837(3)	3.634(3)	144.42(6)
C16	H16	Ol^{4}	0.9300	2.849(3)	3.678(3)	149.08(6)
C20	H20	$\mathrm{O} 2{ }^{1}$	0.9300	3.018(3)	3.793(3)	141.83(6)
C33	H33c	S1 ${ }^{5}$	0.9600	$3.306(13)$	3.943(2)	125.6(11)
C33	H33c	$\mathrm{O} 2^{5}$	0.9600	2.895(5)	3.711(3)	143.5(6)
C32	H32b	$\mathrm{O} 2{ }^{1}$	0.9600	2.735(12)	3.577(3)	146.7(17)
PD2						
C11	H11	$\mathrm{O} 2{ }^{1}$	0.9300	2.922(2)	3.843(2)	170.71(5)
C2	H2	$\mathrm{O} 2{ }^{1}$	0.9300	2.846(2)	$3.765(2)$	170.15(5)
C19	H19	$\mathrm{O3}^{2}$	0.9300	3.066(3)	3.925(3)	154.30(5)
C14	H14	$\mathrm{O} 2{ }^{1}$	0.9300	3.171(3)	3.844(3)	130.82(5)
C21	H21	$\mathrm{O3}^{2}$	0.9300	3.022(3)	3.886(3)	155.11(5)
C22	H22	$\mathrm{O} 2^{3}$	0.9300	2.679(3)	3.565(3)	159.57(6)
Symmetry codes: ${ }^{1}-1+\mathrm{X},+\mathrm{Y},+\mathrm{Z} ;{ }^{2}-1+\mathrm{X},+\mathrm{Y},-1+\mathrm{Z} ;{ }^{3} 1-\mathrm{X},-\mathrm{Y},-\mathrm{Z}$.						
PD3						
C36	H36	O3	0.9300	2.330(4)	2.996 (4)	128.29(8)
C7	H7	$\mathrm{O} 2{ }^{1}$	0.9300	2.517(3)	3.320 (3)	144.73(8)
C7	H7	O3 ${ }^{1}$	0.9300	3.364(3)	3.978 (3)	125.57(6)
C6	H6	O3 ${ }^{1}$	0.9300	3.214(4)	$3.906(4)$	132.80(7)
C38	H38b	Ol^{2}	0.9600	2.928(18)	3.681(4)	136.2(19)
C38	H38c	$\mathrm{N} 1^{2}$	0.9600	3.01(2)	$3.732(4)$	133(2)
C16	H16	O3 ${ }^{3}$	0.9300	2.543(4)	$3.466(4)$	171.77(10)
C3	H3	$\mathrm{N} 2^{4}$	0.9300	2.744(4)	$3.667(4)$	171.72(9)
Symmetry codes: ${ }^{12-X, 2-Y, 1-Z ; ~}{ }^{2}-1+\mathrm{X},+\mathrm{Y},+\mathrm{Z} ;{ }^{3} 1-\mathrm{X}, 1-\mathrm{Y}, 2-\mathrm{Z} ;{ }^{4} 1-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z}$.						

Fig. S20 The extension of 1D chains into 2D sheets through $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions in PD3. The short contacts are shown in turquoise color.

Analysis of Supramolecular π-Stacking and $\mathbf{C}-\mathbf{H} \cdots \pi$ Interactions in PD series Compounds.

The 'Analysis of short ring interactions' obtained using the CALC ALL option of PLATON ${ }^{[7,8]}$ were used. Out of the several such interactions listed, only the strong interactions characterized by short centroid-centroid contacts ($<3.8 \AA$), near parallel ring planes $\left(\alpha<10^{\circ}\right.$ to $\sim 0^{\circ}$), small slip angles $\left(\beta, \gamma<25^{\circ}\right)$ and vertical displacements (slippage $<1.5 \AA$), which denote sizable overlap of the aryl plane areas, were considered. ${ }^{[9,10]}$

Scheme S3. Graphical presentation of the parameters used for the description of $\pi-\pi$ stacking interactions in the present study.

- $\quad \mathrm{Cg}(\mathrm{I})=$ Ring Center-of-Gravity (Plane number I)
- $\alpha=$ Dihedral Angle between Planes I and J (${ }^{\circ}$)
- $\quad \beta=$ Angle $\mathrm{Cg}(\mathrm{I})-->\mathrm{Cg}(\mathrm{J})$ vector and normal to plane $\mathrm{I}\left({ }^{\circ}\right)$
- $\quad \gamma=$ Angle $\mathrm{Cg}(\mathrm{I})-->\mathrm{Cg}(\mathrm{J})$ vector and normal to plane $\mathrm{J}\left({ }^{\circ}\right)$
- $\mathrm{d}[\mathrm{Cg}(\mathrm{I}) \cdots \mathrm{Cg}(\mathrm{J})]=$ Distance between ring Centriods (\AA)
- $\mathrm{d}[\mathrm{Cg}(\mathrm{I}) \cdots \mathrm{P}(\mathrm{J})]=$ Perpendicular distance of $\mathrm{Cg}(\mathrm{I})$ on ring $\mathrm{J}(\AA)$
- $\mathrm{d}[\mathrm{Cg}(\mathrm{J}) \cdots \mathrm{P}(\mathrm{I})]=$ Perpendicular distance of $\mathrm{Cg}(\mathrm{J})$ on ring $\mathrm{I}(\AA)$
- Slippage d[a] = Distance between $\mathrm{Cg}(\mathrm{I})$ and Perpendicular Projection of $\mathrm{Cg}(\mathrm{J})$ on Ring I (A).

Table S5 Analyses of possible $\pi-\pi$ interactions in PD2 and PD3.

$\mathbf{C g}(\mathbf{I})$	$\mathbf{C g}(\mathrm{J})$	[ARU(J)]	$\mathrm{d}[\mathrm{Cg}-\mathrm{Cg}]$ (A)	α (0)	$\boldsymbol{\beta}$ (0)	$\gamma(0)$	$\begin{gathered} \mathrm{d}[\mathrm{Cg}(\mathrm{I}) \cdots \mathrm{P}(\mathrm{~J})] \\ \AA \end{gathered}$	$\begin{gathered} \mathbf{d}[\operatorname{Cg}(\mathrm{J}) \cdots \mathrm{P}(\mathrm{I})] \\ \AA \end{gathered}$	Slippage d[a] (Aㅇ)
PD2									
Cg5[1]	Cg5	2555.01	3.8296(3)	0	28.4	28.4	3.3687	3.3687	1.821
Cg5[1]	Cg10	2555.01	3.6900(2)	1	25.2	24.7	3.3531	3.3399	1.569
Cg10[1]	Cg 5	2555.01	3.6900(2)	1	24.7	25.2	3.3399	3.3531	1.540

Where, $\mathrm{CgX}=$ Ring Center-of-Gravity of ring X. Ring $5=$ C20-C21-C22-C23-C24-C25; Ring $10=$ C12-C13-C18-C19-C20-C21-C22-C23-C24-C25; see Figure 7 of main manuscript.

PD3									
Cg4[1]	Cg4	2675.01	3.8544(3)	0	26.9	26.9	3.4359	3.4359	1.747
Cg4[1]	Cg5	2775.01	3.9059(3)	1	27.8	27.7	3.4589	3.4560	1.820
Cg4[1]	Cg10	2675.01	3.8841(3)	0	28.1	27.9	3.4319	3.4250	1.832
Cg5[1]	Cg4	2775.01	3.9059(3)	1	27.7	27.8	3.4560	3.4589	1.814
Cg10[1]	Cg4	2675.01	3.8841(3)	0	27.9	28.1	3.4250	3.4319	1.819

Cg12[1]	Cg 12	2775.01	$3.9047(3)$	0	27.7	27.7	3.4574	3.4574	1.815

Where, $\mathrm{CgX}=$ Ring Center-of-Gravity of ring X. Ring $4=$ C15-C16-C17-C18-C27-C26; Ring 5 = C18-C19-C20-C21-C22C27; Ring $10=$ C12-C13-C14-C15-C16-C17-C18-C27-C26-C25; Ring 12 = C15-C16-C17-C18-C19-C20-C21-C22-C27-C26; see Figure 10 of main manuscript.

Table S6. Analyses for possible $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in and PD1-PD3.

$\mathbf{X}-\mathbf{H}(\mathbf{I})$	$\mathbf{C g}(\mathrm{J})$	[ARU(J)]	H $\cdots \mathrm{Cg}$	H-Perp	Gamma	$\mathrm{X}-\mathrm{H} \cdots \mathrm{Cg}$	X \cdots Cg	$\mathbf{X}-\mathbf{H}, \boldsymbol{\pi}$
PD1								
C19-H19[1]	Cg6	2655.01	2.66	-2.65	4.57	144	3.4562(1)	55
Where, Cg6 = Ring Center-of-Gravity of ring 6. Ring 6 = C26-C27-C28-C29-C30-C31; see Figure 5 of main manuscript.								
PD2								
C10-H10[1]	Cg7	1555.01	2.82	-2.77	10.71	155	3.6815(2)	76
C15-H15[1]	Cg6	1455.01	2.81	2.76	10.75	125	3.4339(2)	43
C37-H37A[1]	Cg9	1555.01	2.99	2.88	15.15	171	3.9374(3)	81
$[1555]=\mathrm{X}, \mathrm{Y}, \mathrm{Z} ;[1455]=-1+\mathrm{X}, \mathrm{Y}, \mathrm{Z} .$ Where, $\mathrm{CgX}=$ Ring Center-of-Gravity of ring X. Ring $6=$ C26-C27-C28-C29-C30-C35; Ring $7=$ C30-C31-C32-C33-C34-C35; Ring 9 = C12-C13-C14-C15-C16-C17-C18-C19-C20-C25; see Figure 7 of main manuscript.								
PD3								
C10-H10[1]	Cg8	1555.01	2.88	2.87	5.10	142	3.6530(3)	54
C21-H21[1]	Cg7	1565.01	2.96	-2.95	3.79	122	3.5387(3)	29
$[1555]=\mathrm{X}, \mathrm{Y}, \mathrm{Z} ;[1565]=\mathrm{X}, 1+\mathrm{Y}, \mathrm{Z} .$ Where, $\mathrm{CgX}=$ Ring Center-of-Gravity of ring X. Ring $7=$ C28-C29-C30-C31-C32-C37; Ring $8=$ C32-C33-C34-C35-C36-C37; see Figure 10 of main manuscript.								

Cytotoxicity Study of PD1-PD3.

Fig. S21 Growth inhibitory response of PD1-PD3.

Table S7 A comparison of the cytotoxic activities of PH and PD series compounds with similar styryl quinoline and sulfonate derivatives reported in the literature.

Structure	Cell Line; IC50	References
	MCF-7; $47.6(\mu \mathrm{~g} / \mathrm{ml})$	11

References

1. CrysAlisPro Program, version 171.37.33c, Agilent Technologies, Oxford, UK, 2012.
2. G. M. Sheldrick, Acta Crystallogr. 2008, 64, 112-122.
3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
4. S. Sehlangia, M. Devi, N. Nayak, N. Garg, A. Dhir and C. P. Pradeep, ChemistrySelect, 2020, 5, 54295436.
5. L. Praveen, M. L. P. Reddy and R. L. Varma, Tetrahedron Lett., 2010, 51, 6626-6629.
6. C. Heering, B. Nateghi and C. Janiak, Crystals, 2016, 6, 22.
7. A. L. Spek, Acta Crystallogr. 2009, 65, 148-155.
8. A. L. Spek, PLATON-A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2005.
9. C. Janiak, J. Chem. Soc. Dalton Trans. 2000, DOI: 10.1039/B003010O, 3885-3896.
10. A. Tahli, Ü. Köc, R. F. M. Elshaarawy, A. C. Kautz and C. Janiak, Crystals, 2016, 6.
11. M. M. Ghorab, M. S. Alsaid, M. S. A. El-Gaby, N. A. Safwat, M. M. Elaasser and A. M. Soliman, Eur. J. Med. Chem., 2016, 124, 299-310.
12. D. Kanabar, P. Farrales, M. Gnanamony, J. Almasri, E. M. Abo-Ali, Y. Otmankel, H. Shah, D. Nguyen, M. El Menyewi, V. V. Dukhande, A. D'Souza and A. Muth, Bioorg. Med. Chem. Lett., 2020, 30, 126889.
13. D. Bandyopadhyay, J. C. Granados, J. D. Short and B. K. Banik, Oncol. Lett., 2012, 3, 45-49.
14. A. Barilli, C. Atzeri, I. Bassanetti, F. Ingoglia, V. Dall'Asta, O. Bussolati, M. Maffini, C. Mucchino and L. Marchiò, Mol. Pharm., 2014, 11, 1151-1163.
15. A. Mrozek-Wilczkiewicz, E. Spaczynska, K. Malarz, W. Cieslik, M. Rams-Baron, V. Kryštof and R. Musiol, PloS one, 2015, 10, e0142678.
16. S. Sehlangia, N. Nayak, N. Garg and C. P. Pradeep, ACS Omega, 2022, 7, 24838-24850.
