Electronic supplemental information for

"Predictive nonlinear optical crystal formation energy regression model based on convolutional neural networks"

Zhen Fan,*a, Shuai Lian^b, Guangyong Jin,^a Chao Xin*a, Ye Li^a, and Boshi Yuan,*a

- a. School of Science, Changchun University of Science and Technology, Changchun 130022, China.
- b. School of Medical Technology, Beijing Institute of Technology, Beijing 100080, China

Corresponding Author

fz@cust.edu.cn (Zhen Fan)

xinchao@cust.edu.cn (Chao Xin)

yuanboshi1986@163.com (Boshi Yuan)

Hyperparameters	Train_	Train_RM	Train_M	Test_	Test_RM	Test_M
	R2	SE	AE	R2	SE	AE
batchsize8_outchannel7_neure1st40_ne	0.999	0.034	0.023	0.973	0.171	0.103
ure2sec10						
batchsize8_outchannel8_neure1st40_ne	0.997	0.057	0.042	0.977	0.156	0.104
ure2sec10						
batchsize8_outchannel9_neure1st40_ne	0.999	0.038	0.027	0.981	0.143	0.084
ure2sec10						
batchsize8_outchannel7_neure1st40_ne	0.997	0.055	0.039	0.981	0.143	0.097
ure2sec20						
batchsize8_outchannel8_neure1st40_ne	0.998	0.045	0.032	0.98	0.148	0.092
ure2sec20						
batchsize8_outchannel9_neure1st40_ne	0.998	0.042	0.031	0.978	0.153	0.095
ure2sec20						
batchsize8_outchannel7_neure1st40_ne	0.997	0.062	0.045	0.978	0.152	0.106
ure2sec30						
batchsize8_outchannel8_neure1st40_ne	0.998	0.046	0.03	0.984	0.133	0.088
ure2sec30						
batchsize8_outchannel9_neure1st40_ne	0.999	0.04	0.03	0.98	0.148	0.092
ure2sec30						
batchsize8_outchannel7_neure1st50_ne	0.997	0.055	0.039	0.981	0.143	0.096
ure2sec10						
batchsize8_outchannel8_neure1st50_ne	0.999	0.031	0.022	0.981	0.143	0.091
ure2sec10						
batchsize8_outchannel9_neure1st50_ne	0.998	0.046	0.032	0.983	0.136	0.092
ure2sec10						
batchsize8_outchannel7_neure1st50_ne	0.999	0.038	0.026	0.976	0.162	0.103
ure2sec20						
batchsize8_outchannel8_neure1st50_ne	0.999	0.038	0.029	0.979	0.151	0.094
ure2sec20						
batchsize8_outchannel9_neure1st50_ne	0.999	0.041	0.028	0.983	0.135	0.088
ure2sec20						
batchsize8_outchannel7_neure1st50_ne	0.998	0.051	0.036	0.981	0.144	0.091
ure2sec30						
batchsize8_outchannel8_neure1st50_ne	0.999	0.033	0.025	0.982	0.141	0.092
ure2sec30						
batchsize8_outchannel9_neure1st50_ne	0.998	0.042	0.031	0.979	0.15	0.093
ure2sec30						
batchsize8_outchannel7_neure1st60_ne	0.999	0.034	0.024	0.977	0.156	0.096
ure2sec10						
batchsize8_outchannel8_neure1st60_ne	0.997	0.058	0.042	0.983	0.136	0.092

Table S1 Results of hyperparameter testing

ure2sec10						
batchsize8_outchannel9_neure1st60_ne	0.998	0.042	0.03	0.982	0.139	0.088
ure2sec10						
batchsize8_outchannel7_neure1st60_ne	0.999	0.034	0.024	0.979	0.15	0.094
ure2sec20						
batchsize8_outchannel8_neure1st60_ne	0.999	0.038	0.026	0.98	0.146	0.093
ure2sec20						
batchsize8_outchannel9_neure1st60_ne	0.999	0.033	0.023	0.98	0.148	0.09
ure2sec20						
batchsize8_outchannel7_neure1st60_ne	0.998	0.042	0.031	0.979	0.152	0.096
ure2sec30						
batchsize8_outchannel8_neure1st60_ne	0.998	0.047	0.035	0.979	0.15	0.101
ure2sec30						
batchsize8_outchannel9_neure1st60_ne	0.999	0.029	0.019	0.984	0.131	0.085
ure2sec30						
batchsize16_outchannel7_neure1st40_n	0.999	0.035	0.024	0.982	0.138	0.087
eure2sec10						
batchsize16_outchannel8_neure1st40_n	-0.102	1.114	0.889	-0.086	1.082	0.872
eure2sec10						
batchsize16_outchannel9_neure1st40_n	0.999	0.034	0.026	0.976	0.161	0.096
eure2sec10						
batchsize16_outchannel7_neure1st40_n	0.998	0.044	0.035	0.981	0.144	0.093
eure2sec20						
batchsize16_outchannel8_neure1st40_n	0.998	0.052	0.036	0.976	0.16	0.104
eure2sec20						
batchsize16_outchannel9_neure1st40_n	0.999	0.037	0.028	0.982	0.139	0.093
eure2sec20						
batchsize16_outchannel7_neure1st40_n	0.998	0.041	0.03	0.972	0.174	0.103
eure2sec30						
batchsize16_outchannel8_neure1st40_n	0.998	0.042	0.029	0.98	0.147	0.093
eure2sec30						
batchsize16_outchannel9_neure1st40_n	0.998	0.048	0.034	0.981	0.142	0.095
eure2sec30						
batchsize16_outchannel7_neure1st50_n	0.999	0.038	0.027	0.982	0.14	0.094
eure2sec10						
batchsize16_outchannel8_neure1st50_n	0.998	0.052	0.038	0.981	0.142	0.098
eure2sec10						
batchsize16_outchannel9_neure1st50_n	0.999	0.034	0.024	0.983	0.135	0.086
eure2sec10						
batchsize16_outchannel7_neure1st50_n	0.999	0.035	0.024	0.982	0.14	0.089
eure2sec20						
batchsize16_outchannel8_neure1st50_n	0.999	0.035	0.025	0.984	0.133	0.087
eure2sec20						

batchsize16_outchannel9_neure1st50_n	0.998	0.045	0.032	0.984	0.133	0.087
eure2sec20						
batchsize16_outchannel7_neure1st50_n	0.997	0.054	0.04	0.982	0.141	0.094
eure2sec30						
batchsize16_outchannel8_neure1st50_n	0.999	0.033	0.023	0.982	0.138	0.087
eure2sec30						
batchsize16_outchannel9_neure1st50_n	0.999	0.033	0.023	0.984	0.131	0.085
eure2sec30						
batchsize16_outchannel7_neure1st60_n	0.998	0.046	0.033	0.977	0.156	0.094
eure2sec10						
batchsize16_outchannel8_neure1st60_n	0.998	0.042	0.029	0.982	0.139	0.093
eure2sec10						
batchsize16_outchannel9_neure1st60_n	0.999	0.033	0.024	0.984	0.131	0.084
eure2sec10						
batchsize16_outchannel7_neure1st60_n	0.999	0.034	0.024	0.985	0.128	0.083
eure2sec20						
batchsize16_outchannel8_neure1st60_n	0.997	0.062	0.044	0.98	0.146	0.1
eure2sec20						
batchsize16_outchannel9_neure1st60_n	0.997	0.057	0.04	0.979	0.15	0.097
eure2sec20						
batchsize16_outchannel7_neure1st60_n	0.998	0.043	0.032	0.982	0.139	0.093
eure2sec30						
batchsize16_outchannel8_neure1st60_n	0.999	0.031	0.022	0.983	0.134	0.087
eure2sec30						
batchsize16_outchannel9_neure1st60_n	0.999	0.038	0.027	0.982	0.141	0.091
eure2sec30						

Figure S1 Our previous work, we employed Random Forest Regression (RFR), Support Vector Machine Regression (SVR), and Gradient Boosting Regression (GBR) to

forecast the formation energy of nonlinear optical crystals. The training results of RFR (a), SVR(b), and GBR(c) models, and testing results of RFR (d), SVR(e), and GBR(f) models. The gray dash line in each figure represents the ideal curve y = x. The color bar represents absolute error.

Figure S2 The crystal dataset developed in this paper is employed to apply random forest regression (RFR) and gradient boosting regression (GBR) techniques for forecasting the formation energy of nonlinear optical crystals. The training results of RFR (a), and GBR(b) models, and testing results of RFR (c) and GBR(d) models. The gray dash line in each figure represents the ideal curve y = x. The color bar represents absolute error.