Supporting Information

Highly Efficient and Durable P, Ru-CeO2 Self-supporting

Electrodes Toward Industrial-level Hydrogen Production

Wenguang Ma, Xiaodong Yang, Yanru Xu, Cuncheng Li^{*}, Yiqiang Sun^{*}, Qi Shen^{*}, Zhixin Sun^{*}

Dr. W. G. Ma, Dr. X. D. Yang, Dr. Y. R. Xu, Prof. C. C. Li, Prof. Y. Q. Sun, Prof. Q. Shen School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250055, P.

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250055, P. R. China

Dr. Z. X. Sun Shandong University of Traditional Chinese Medicine

Figure S1. The optical photo of the P, Ru-CeO₂ self-supporting electrode.

Figure S2. (a) Optical photo, (b) TEM image, (c) TEM image and (d) XRD pattern of the pristine CeO₂ self-supporting electrode.

Figure S3. (a) Optical photo, (b) TEM image, (c) TEM image and (d) XRD pattern of the Ru-CeO₂ self-supporting electrode.

Figure S4. SAED pattern of the P, Ru-CeO₂ catalyst.

Figure S5. EDX spectrum of the P, Ru-CeO₂ self-supporting electrode.

Distribution Map Total Spectrum						
element	Line Type	Weight%	wt% Sigma	Atomic%		
0	K	17.03	0.10	54.05		
Р	K	1.48	0.03	2.49		
Ru	L	6.66	0.10	3.43		
Ce	М	71.57	0.18	26.62		
Other	-	3.26	-	13.41		
total	_	100	_	100		

Table S1. Relative proportions of main elements, corresponding to Figure S5.

Figure S6. The SEM image for elemental mapping of the P, Ru-CeO₂ self-supporting electrode.

Figure S7. The corresponding elemental mapping image in Figure S5 of the P, Ru-CeO₂ self-supporting electrode.

Oxygen vacancy defects

Figure S8. Peak intensity ratio of I_D/I_{F2g} over CeO₂, P-CeO₂, Ru-CeO₂ and P, Ru-CeO₂ catalysts.

Figure S9. XPS survey scan spectrum of the pristine CeO₂, P-CeO₂, Ru-CeO₂ and P, Ru-CeO₂ catalysts.

Figure S10. XPS of the pristine CeO_2 , P-CeO₂ catalysts: (a) Ce 3d orbitals, (b) O 1s orbitals.

Figure S11. XPS of Ru-CeO₂ and P, Ru-CeO₂ catalysts: Ru 3p orbitals.

Figure S12. XPS of P-CeO₂ and P, Ru-CeO₂ catalysts: P 2p orbitals.

Figure S13. EPR spectrum of the catalysts: (a) CeO₂ and P-CeO₂, (b) CeO₂ and Ru-CeO₂, (c) Ru-CeO₂ and P, Ru-CeO₂, (d) CeO₂, P-CeO₂, Ru-CeO₂ and P, Ru-CeO₂.

Figure S14. (a) Commercial Pt/C working electrode loaded on CC. iR-corrected polarization curves of the pure CeO₂, P-CeO₂, P, Ru-CeO₂ self-supporting working electrodes and commercial Pt/C/CC: (b) @low-current density; (c) @high-current density.

Figure S15. (a) the comparison between the front and back of the P, Ru-CeO₂ selfsupporting working electrode. (b) iR-corrected polarization curves of the Full-Cover-P, Ru-CeO₂, P, Ru-CeO₂ self-supporting working electrodes.

Figure S16. Electrochemical double-layer capacitance measurements at different scan rates for HER. Cyclic voltammograms of (a) pure CeO₂, (b) Ru-CeO₂ and (c) P, Ru-CeO₂ self-supporting working electrodes. (d) HER polarization curves normalized by the electrochemical double-layer capacitance.

Figure S17. iR-corrected polarization curves of the Ir-CeO₂, Ru-CeO₂, Pt-CeO₂ self-supporting working electrodes, and the Ru-CeO₂/CC.

Figure S18. iR-corrected polarization curves of the P, $Ru-CeO_2$ self-supporting electrode before and after 5000 CV cycles in 1 M KOH.

materials	η _{HER} (mV)	Tafel(mV/dec)	Reference
This work	215	25	—
Pt/TiO ₂ /Ni(OH) ₂ /NF	227	39	Ref.1 ¹
NiCo@RuO2 HNAs/NF	236	69	Ref.2 ²
FeNiZn/FeNi ₃ @NiFe	245	45	Ref.3 ³
Ru-CoO _x /NF	252	28	Ref.4 ⁴
Ni-W ₂ N@NF	276	46	Ref.5 ⁵
Sr ₂ RuO ₄ bulk SC	278	26	Ref.6 ⁶
Co-SA/CC	294	97	Ref.7 ⁷
Ni-Co-P/CFP	295	31	Ref.8 ⁸
Self-Standing Pt NC/CF	331	61	Ref.9 ⁹
Cu ₃ P-FeP@CC	338	84	Ref.10 ¹⁰

Table S2. Comparison of the HER performance of the P, Ru-CeO₂ self-supporting working electrode with the similar catalysts at 1000 mA \cdot cm⁻² in 1.0 M KOH.

Figure S19. iR-corrected polarization curves of the P, Ru-CeO₂ self-supporting electrode before and after 5000 CV cycles in 1 M KOH+1.5 M NaCl.

Figure S20. Chronoamperometric curves of the Ru-CeO₂ self-supporting electrodes and the P, Ru-CeO₂ self-supporting electrodes.

Figure S21. SEM images of the P, Ru-CeO₂ self-supporting electrode (a) before and (b) after durability test in 1 M KOH+1.5 M NaCl.

Figure S22. XRD pattern of the P, Ru-CeO₂ catalyst after durability test in 1 M KOH+1.5 M NaCl.

Figure S23. XPS of the P, Ru-CeO₂ catalyst after durability test in 1 M KOH+1.5 M NaCl. (a) Ce 3d. (b) O 1s. (c) Ru 3p. (d) P 2p.

Figure S24. TEM images of the P, Ru-CeO₂ catalyst after durability test in 1 M KOH+1.5 M NaCl. (a) HADDF-STEM. (b) EDS. (c) HRTEM.

Figure S25. EDX spectrum of the P, Ru-CeO₂ catalyst, corresponding to Figure S24.

Distribution Map Total Spectrum					
element	Line Type	Weight%	σ		
Ce	М	72.48	0.2		
0	K	17.57	0.1		
Ru	L	6.12	0.2		
Р	K	1.61	0.1		
Other	-	2.22	-		
total	_	100	_		

Table S3. Relative proportions of main elements, corresponding to Figure S25.

References

- 1 A. Kong, M. Peng, M. Liu, Y. Lv, H. Zhang, Y. Gao, J. Liu, Y. Fu, W. Li and J. Zhang, *Applied Catalysis B-Environmental*, 2022, **316**, 121654.
- 2 H. Yi, X. Zhang, Z. Ai, S. Song and Q. An, *ChemSuSchem*, 2022, **15**, 2201532.

- 3 Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian, S. Yan and H. Liu, *Nano-Micro Letters*, 2023, **15**, 95.
- 4 D. Wu, D. Chen, J. Zhu and S. Mu, *Small*, 2021, 17, 2102777.
- 5 Z. Dan, W. Liang, X. Gong, X. Lin, W. Zhang, Z. Le, F. Xie, J. Chen, M. Yang, N. Wang, Y. Jin and H. Meng, ACS Materials Letters, 2022, 4, 1374-1380.
- 6 Y. Zhang, K. E. Arpino, Q. Yang, N. Kikugawa, D. A. Sokolov, C. W. Hicks, J. Liu, C. Felser and G. Li, *Nature Communications*, 2022, **13**, 7784.
- 7 P. Zhao, C. Peng, Q. Zhang, X. Fan, H. Chen, Y. Zhu and Y. Min, *Chemical Engineering Journal*, 2023, **461**, 142037.
- 8 X. Chen, X. Zhao, Y. Wang, S. Wang, Y. Shang, J. Xu, F. Guo and Y. Zhang, *ChemCatChem*, 2021, **13**, 3619-3627.
- 9 Y. Tan, R. Xie, S. Zhao, X. Lu, L. Liu, F. Zhao, C. Li, H. Jiang, G. Chai, D. J. L. Brett, P. R. Shearing, G. He and I. P. Parkin, *Advanced Functional Materials*, 2021, **31**, 2105579.
- C. Chai, J. Yang, C. Jiang, L. Liu and J. Xi, *Acs Applied Energy Materials*, 2022, 5, 2909-2917.