Supplementary Information

Mixed matrix membranes based on fluorescent coordination polymers for detecting Cr2O72- in water

Yu-Kang Teng,^a Qian Wu,^a Yao Sun,^a Chen Wang,^a Rui Zhang,^{b*} Zhen-Zhong Lu^{a*}

Table of Contents:

Further descriptions of crystal structures2
PXRD patters for m-1, m-2 and m-3······3
The FT-IR spectra m-1 , m-2 and m-3 ······3
Fluorescent emission spectra of m-1, m-2 and m-33
Detecting $Cr_2O_7^{2-}$ by m-2 and m-3 4
Quenching efficiency of m-1 , m-2 and m-3 in different pH values5
Time-resolved fluorescence decay curves of m-1, m-2 and m-3·······6
The TG profile of 1, 2 and 3 6
The UV-vis absorption spectra of Cr ₂ O ₇ ²⁻ ······6
SEM images of m-1 , m-2 and m-3 6
Crystal data of 1, 2 and 37
Performance Cr ₂ O ₇ ²⁻ detection by fluorescent CPs8
The bond lengths and angles for 1, 2 and 39
References9-10

Figure S1. The O-H…O hydrogen bonds formed between adjacent layers in **1**.

Figure S2. The π - π interactions between the anthranene groups and C-H··· π interactions between *dia* and *cda* ligands in **3**.

Figure S3. a) Powder XRD of **1**, **m-1** and **m-1** in aqueous solutions at pH 1, 14 for 24 hours and after 10 cycles detecting tests. b) Powder XRD of **2**, **m-2** and **m-2** in aqueous solutions at pH 1 or 14 for 24 hours and after 10 cycles detecting tests. c) Powder XRD of **3**, **m-3** and **m-3** in aqueous solutions at pH 1 or 14 for 24 hours and after 10 cycles detecting tests.

Figure S4. The FT-IR spectra for m-1, m-2 and m-3.

Figure S5. The emission spectra of 1-3 and m-1, m-2 and m-3 (excited at 365 nm).

Figure S6. a) Fluorescence quenching of **m-2** towards different concentrations of $Cr_2O_7^{2-}$ solution (0 - 1.0 × 10⁻⁴ mol·L⁻¹, λ_{ex} = 350 nm). b) Stern-Volmer plot of I_0/I_1 vs. concentration of $Cr_2O_7^{2-}$ solution for **m-2**. c) Relative fluorescence intensity of **m-2** dispersed in aqueous solutions of interfering anions (blue) and subsequent addition of $Cr_2O_7^{2-}$ (orange). d) The variations of relative fluorescence intensity of **m-2** for detecting $Cr_2O_7^{2-}$ under 10 cycles.

Figure S7. a) Fluorescence quenching of **m-3** towards different concentrations of $Cr_2O_7^{2-}$ solution (0 - 1.0 × 10⁻⁴ mol·L⁻¹, λ_{ex} = 350 nm). b) Stern-Volmer plot of I_0/I_1 vs. concentration of $Cr_2O_7^{2-}$ solution for **m-3**. c) Relative fluorescence intensity of **m-3** dispersed in aqueous solutions of interfering anions (blue) and subsequent addition of $Cr_2O_7^{2-}$ (orange). d) The variations of relative fluorescence intensity of **m-3** for detecting $Cr_2O_7^{2-}$ under 10 cycles.

Figure S8. Relative fluorescence intensity of **m-1** (a), **m-2** (b) and **m-3** (c) in different pH aqueous solutions (blue) and subsequent addition of $Cr_2O_7^{2-}$ (1 × 10⁻³ mol·L⁻¹, red).

Figure S9. Time-resolved fluorescence decay curves of **m-1**, (a) and **m-2**, (b) and **m-3**,(c) before and after the addition of $Cr_2O_7^{2-}$.

Figure S10. TG profile of 1, 2 and 3.

Figure S11. The excitation and emission spectra of **1**, **2** and **3**, and UV–Vis absorption spectra of $Cr_2O_7^{2-}$ solution.

Figure S12. The SEM images for **m-1**, **m-2** and **m-3**.

	1	2	3
Formula	$C_{56}H_{49}ZnN_{8}O_{8}$	$C_{56}H_{48}Zn_2N_8O_8$	$C_{46}H_{45}Cd_2N_6O_8$
Molecular weight	1027.43	1091.81	1034.71
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	P-1	P-1	P21/c
a (Å)	12.3978(6)	11.9919(7)	13.1661(2)
b(Å)	13.1970(7)	16.8356(10)	20.0691(4)
c(Å)	21.5304(11)	17.1730(9)	17.0366(3)
α (°)	76.780(2)	64.117(3)	90
β (°)	75.297(2)	79.161(3)	104.9600(10)
γ (°)	62.998(2)	77.410(4)	90
V (Å ³)	3009.5(3)	3027.2(3)	4349.03(13)
Z	2	2	4
F(000)	1332	1128	2156
μ (mm⁻¹)	0.710	0.710	1.541
D _c (g/cm ³)	1.415	1.198	1.629
R(int)	0.0867	0.1667	0.0346
GOF on F ²	1.049	0.990	1.044
R ₁ ^a [I>2σ(I)]	0.0688	0.0904	0.0312
wR ₂ ^b [I>2σ(I)]	0.1784	0.1967	0.1025

Table S1. Crystal data and structure refinement details for 1, 2 and 3.

CPs	LOD(µM)	Linear range (mM)	K _{sv} (M⁻¹)	Response time	ref
[{Zn ₂ (5N ₃ -IPA) ₂ (4,4'- azp) ₂ }(H ₂ O) ₈] _n	0.004	-	5.87×10^{4}	-	1
Eu-mtb MMM (70 wt%)	0.005			seconds	2
Zn(NIPH) ₂ (HPF) ₂]	0.02	-	1.3 × 104	-	3
RhB-Zn-MOF	0.02		1.57× 10 ⁴		4
Zn(tpbpc) ₂]	0.047	0-250	1.65× 10⁵	10 min	5
SQDs@UiO-66-NH ₂	0.16	0-200	2.9 × 10 ⁴	10 s	6
[Cd _{1.5} (L)₂(<i>bpy</i>)(NO₃)]·2DMF· 2H₂O	0.422	-	5.42 × 10 ⁴	-	7
3	0.5	0-100	1.28× 104	Seconds	This work
[AI(OH)(IPA- CHO)]·0.5H ₂ O·0.4DMF	0.69	-	1.43×10^{4}	seconds	8
2	0.7	0-100	8.41× 10 ³	Seconds	This work
1	0.8	0-100	6.79× 10 ³	Seconds	This work
MOF-Cel-Nap	1.07			seconds	9
[Zn(LBIX)(HEA)]n	1.53	10–60	1.15× 10 ⁴		10
NU-100	1.8	-	1.34×10^{4}	-	11
[Ag(btx) _{0.5} (DCTP) _{0.5}] _n	2.04	5-50	1.92 × 10 ⁴	-	12
[Zn ₂ (TPOM)(NDC) ₂]·3.5H ₂ O	2.35	0-120	9.31 × 10 ³	seconds	13
[Cd(IPA)(3-PN)] _n	2.52	0-400	2.91 × 10 ³	-	14
{[Zn ₂ (TPOM)(NH ₂ - BDC)2]·4H ₂ O} _n	3.9	-	7,59 × 10 ³	-	15
[Zn3(OH)2(btca)2·2DMF]·H2O	9.31	5-30	2.0 × 10 ⁴		16
[Zn(IPA)(3-PN)] _n	12.02	-	1.37 × 10 ³	-	13

Table S2. Performance of fluorescent CPs for $Cr_2O_7^{2-}$ detection.

1						
	Zn1-01	1.946(3)	01-Zn1-O2	105.92(1)		
	Zn1-02	1.944(4)	01-Zn1-N1	105.52(1)		
	Zn1-N1	2.036(4)	O2-Zn1-N2	100.00(1)		
	Zn1-N2	1.998(3)	N1-Zn1-N2	104.26(1)		
2						
	Zn1-01	1.917(6)	01-Zn1-O2	100.5(2)		
	Zn1-O2	1.9413(5)	01-Zn1-N1	113.6(3)		
	Zn1-N1	2.0218(6)	O2-Zn1-N2	114.6(3)		
	Zn1-N2	1.9963(6)	N1-Zn1-N2	99.5(3)		
3						
	Cd1-O1	2.3440(2)	01-Cd1-O2	56.57(8)	O3-Cd1-O4	54.55(9)
	Cd1-O2	2.2912(2)	02-Cd1-O4	116.29(1)	O3-Cd1-N1	103.83(1)
	Cd1-O3	2.3085(3)	O4-Cd1-N1	92.78(1)	O6-Cd1-O1	118.38(8)
	Cd1-O4	2.3388(2)	01-Cd1-N1	100.89(8)	O6-Cd1-O2	84.80(8)
	Cd1-O6	2.3190(2)	O3-Cd1-O1	104.67(9)	O6-Cd1-O4	79.15(8)
	Cd1-N1	2.2383(2)	O3-Cd1-O2	103.87(1)	O6-Cd1-N1	88.30(9)
	Cd2-O4	2.6008(3)	O4-Cd2-O6	75.58(8)	N3-Cd2-N2	114.91(1)
	Cd2-O6	2.2170(9)	04-Cd2-O7	87.97(8)	N3-Cd2-O6	99.78(9)
	Cd2-07	2.3310(1)	O4-Cd2-O8	77.94(1)	07-Cd2-O8	56.42(7)
	Cd2-08	2.3503(2)	O4-Cd2-N2	81.10(1)	O6-Cd2-O8	97.22(8)
	Cd2-N2	2.2277(2)	N3-Cd2-O7	89.73(1)	N2-Cd2-O6	105.48(9)
	Cd2-N3	2.2893(3)	N3-Cd2-O8	87.57(9)	07-Cd2-N2	94.14(8)

Table S3 Selected bond lengths (Å) and angles (°) for 1, 2 and 3.

References

- S. Mukherjee, S. Ganguly, D. Samanta and D. Das, ACS Sustain Chem. Eng., 2020, 8, 1195.
- [2] S. Zhang, H. Zheng, Y. Yang, G. Qian, and Y. Cui, *Front Chem.*, 2022, **10**, 852402.
- [3] M. A. Akram, J. W. Ye, G. Y. Wang, L. Shi, Z. Liu, H. Lu, S. Q. Zhang and G. L. Ning, *Polyhedron.*, 2020, **185**, 114604.
- [4] J. M. Shah, S. Sharif, O. Sahin, M. Shahbaz, W. Azeem and S. Ahmad, *Spectrochim Acta A.*, 2024, **310**, 123899.
- [5] J. N. Xiao, J. J. Liu, X. C. Gao, G. F. Ji, D. B. Wang and Z. L. Liu, Sens. Actuators B Chem., 2018, 269, 164.
- [6] Y. Q. Zhang, J. X. Liu, X. H. Wu, W. Q. Tao and Z. Li, *Anal. Chim. Acta.*, 2020, **1131**, 68.
- [7] M. Singh, S. Senthilkumar, S. Rajput and S. Neogi, *Inorg. Chem.*, 2020, **59**, 3012–3025.
- [8] S. Nandi, A. Mondal, H. Reinsch and S. Biswas, *Inorg. Chim. Acta.*, 2019, 497, 119078.
- [9] E.Y. Kayhan, M. B. Yildirim, A. Koce and M. Yilmaz, Int J Biol Macromol., 2023, 240,

124426.

- [10] Y. Wang, N. Gao and J. Hu, *ChemistrySelect.*, 2023, **8**, 549.
- [11] Z. J. Lin, H. Q. Zheng, H. Y. Zheng, L. P. Lin, Q. Xin and R. Cao, *Inorg. Chem.*, 2017, 56, 14178.
- [12] H. N. Chang, L. W. Liu, Z. C. Hao and G. H. Cui, J. Mol. Struct., 2018, 1155, 496.
- [13] R. Lv, H. Li, J. Su, X. Fu, B. Y. Yang, W. Gu and X. Liu, *Inorg. Chem.*, 2017, **56**, 12348.
- [14] B. Parmar, Y. Rachuri, K. K. Bisht, R. Laiya and E. Suresh, *Inorg. Chem.*, 2017, 56, 2627.
- [15] R. Lv, J. Y. Wang, Y. P. Zhang, H. Li, L. Y. Yang, S. Y. Liao, W. Gu and X. Liu, J. Mater. Chem. A., 2016, 4, 15494.

[16] H. Liu, Z. Ma, F. Meng, Y. Ding, Y. Fu, M. Zheng and J. Yang, *Polyhedron.*, 2022, **222**, 115930.