Supplementary information

Precisely Tailoring Precursor Solution for Efficient AgBiS₂ Solar

<u>Cells</u>

Zongwei Li,^a Guodong Zhang,^a Zhiwei Li,^a Yuqian Xie,^a Yingdong Xia,^a Zhelu Hu,^a Lingfeng Chao,^{a*} Fu Wang,^{b*} Yonghua Chen^a

^a Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, Jiangsu, China.

^b School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Experimental

Materials

Bi(NO₃)₃·5H₂O (99.99%), Thiourea (99%) and AgNO₃ (99.8%) was purchased from Aladdin. 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (Spiro-OMeTAD) and fluorine-doped tin oxide (FTO)-coated glass were purchased from Youxuan Tech, China. lithium bis(trifluoromethylsulfonyl)imide salt (LiTFSI) and 4-tertbutyl-pyridine (tBP, 96%) were purchased from Sigma-Aldrich. Chlorobenzene (CB, anhydrous), *N*,*N*-dimethylformamide (DMF, anhydrous) and acetonitrile (ACN) were purchased from Sigma-Aldrich. SnO₂ colloid precursor was purchased from Alfa Aesar. All the materials were used without further purification.

The Solution Preparation

Thiourea (Tu) and Bi(NO₃)₃·5H₂O were mixed in DMF and stirred for 30 min to obtain Bi³⁺-Tu complexes solution. Tu and AgNO₃ were mixed in DMF and stirred for 30 min to obtain Ag⁺-Tu complexes solution. For the recipe Bi-Tu-Ag, Tu and Bi(NO₃)₃·5H₂O were mixed in DMF and stirred for 30 min, then AgNO₃ was added to continue stirring for 2h. For the recipe Mixed, the Bi(NO₃)₃·5H₂O, Tu and AgNO₃ were mixed in DMF by stirring for 2 h. For the recipe Ag-Tu-Bi, Tu and AgNO₃ were mixed in DMF and stirred for 30 min, then Bi(NO₃)₃·5H₂O was added to continue stirring for 2 h. All precursor solutions were at a concentration of 0.5 M and stirred at 25 °C. The molar ratio for AgNO₃, Bi(NO₃)₃·5H₂O and Tu is 1:1:3. The solution of hole transporting layer (HTL) was prepared by dissolving 18.8 mg Spiro-OMeTAD, 7.2 µL tBP and 4.4 µL Li-TFSI/ACN (520 mg mL⁻¹) into 1 mL CB.

Devices Fabrication

FTO glass substrates were cleaned with detergent, de-ionized water, acetone, and iso-propanol, in sequence, then dried in an oven at 120 °C for 30 min and treated with ultraviolet ozone for 15 min. A diluted SnO₂ nanoparticle solution

(2.67 wt %) was deposited on FTO substrate at 4,000 rpm for 30 s, and then annealed at 150°C for 30 min. After cooling to room tempreature, the substrates of FTO glass/SnO₂ were transferred into a N₂-filled glovebox after ultraviolet ozone for 15 min. The prepared AgBiS₂ precursor solution was deposited on the SnO₂ substrate at 5,000 rpm for 30 s. Then, a multi-step annealing procedure was carried out for AgBiS₂ film at temperatures of 100 °C and 200 °C for 10 min, respectively. After cooling to room tempreature, the second layer of AgBiS₂ film is deposited again in the same way. After cooling down to room temperature, the HTL was made by drop-casting HTL solution onto the AgBiS₂ absorbers at 4000 rpm for 30 s. Finally, Au electrode of 80 nm with an active area of ~0.05 cm² and an antireflection layer were deposited by a thermal evaporation at a rate of 0.1-1.0 Å s⁻¹ under the vacuum (< 4×10⁻⁴ Pa) to complete device fabrication process.

Measurements and Characterizations

Photocurrent density-voltage (I-V) curves were measured in an N₂-filled glovebox using a Keithley 2400 source meter at a step size of 20 mV and delay time of 10 ms under a simulated AM1.5G spectrum and a xenon arc lamp based solar simulator (EnliTech, Taiwan). The light intensity was calibrated to be 100 mW cm⁻² using a NIST-certified monocrystalline Si solar cell (Newport 532 ISO1599). The device performance parameters were calculated from the current-voltage curves of the photovoltaic device under a illumination. No protocol for preconditioning the device before its characterization was followed. The active area of the device is 0.05 cm². Above tests are carried out in glove box filled with nitrogen at room temperature. The dark current measurements, light intensity and I-T measurements, stability measurements were all carried out with the same system. The external quantum efficiency was measured by an EQE instrument (Enlitech). NMR spectra was measured with a JOEL NMR spectrometer (JNM-ECZ400S, 400 MHz Japan). Fourier transform infrared spectrometer (FTIR) were measured by Bruker, INVENIO-S. DLS experiments were performed using a ZetaPALS instrument. TGA spectra were obtained using a thermogravimetric analyzer TA Q500 with a flow rate of 20 mL min⁻¹. The temperature is set from 25 to 500 °C at a rate of 15 °C min⁻¹. The XAFS spectra of the Bi L3 edge (13419 eV) for precursor solution were characterized at the 1W1B beamline of the Beijing Synchrotron Radiation Facility (BSRF). It is provided with a double Si (111) monochromator which was used to monochromatize the X-ray white beam. Spectral data were processed and analyzed using Athena. The X-ray diffraction patterns were performed using Cu K α radiation as the X-ray source by a Smart Lab diffractometer from Japan. Absorption spectra were acquired using a Shimadzu UV-3600 ultraviolet visible near-infrared spectrophotometer. The SEM images of the AgBiS₂ films were taken with a field-emission scanning electron microscope (FE-SEM, S-4800, Hitachi). Surface topographies AFM were imaged using an atomic force microscope (Keysight 5500).

Figure S1. AFM surface topography profiles of the AgBiS₂ thin films prepared based on recipe Bi-Tu-Ag, Ag-Tu-Bi and Mixed. (scan range: $5\mu m \times 5\mu m$). Corresponding root-mean-square (Rq) roughness value was respectively labeled.

Figure S2. Cross-sectional SEM images of the films prepared based on different recipes.

Figure S3. The size distributions of the different stirring times after addition of $Bi(NO_3)_3 \cdot 5H_2O$ to Ag⁺-Tu complexes solutions (left) and the different stirring times after the addition of AgNO₃ to Bi³⁺-Tu complexes solutions (right)

Figure S4. Photographs of Ag⁺-Tu complexes solutions (a) and Bi³⁺-Tu complexes solutions (b) with different Tu contents. For all precursors, the molar concentration of Ag equals to that of Bi, is 0.5 M, only the concentration of Tu varies. Here 1 Tu means that the concentration of Tu is 0.25 M. From a-1 (b-1) to a-5 (b-5), the Tu/M ratio is 0.5, 1, 1.5, 2 and 3.

Figure S5. UV-vis spectroscopy of solutions prepared based on Ag⁺-Tu complexes, Bi³⁺-Tu complexes and different recipes.

Figure S6. XPS of of the AgBiS₂ films prepared based on different recipes.

Figure S7. Statistics photovoltaic parameters for the $AgBiS_2$ thin films solar cells based on different recipes.

	(111)	(200)	(220)
Bi-Tu-Ag	0.223	0.225	0.315
Ag-Tu-Bi	0.266	0.300	0.339
Mixed	0.268	0.272	0.312

Table S1. FWHM (°) of the three main peaks of AgBiS₂ thin films prepared based on different recipes.

	(111)	(200)	(220)
Schapbachite	27.327	31.657	45.380
Bi-Tu-Ag	27.321	31.659	45.499
Ag-Tu-Bi	27.408	31.775	45.530
Mixed	27.429	31.756	45.550

Table S2. X-ray diffraction angles of (111), (200) and (220) crystal planes of AgBiS₂ thin films prepared with different recipes compared to standard card of Schapbachite.

Recipe	<i>V</i> oc (V)	FF (%)	Jsc (mA cm ⁻²)	PCE (%)
Bi-Tu-Ag	0.28	41.9	30.9	3.68
Ag-Tu-Bi	0.19	38.6	24.3	1.86
Mixed	0.24	43.1	25.5	2.64

Table S3. The photovoltaic parameters of the cells based on different recipes.