Support information

Synthesis and luminescent properties of three excellent yellow

emissive Cu(I) complexes based on the diphosphine ligand and

diimine ligand

Wen-Long Mou, ^a Cheng-Jie Gao, ^a Zi-Xi Li, ^a Si-Jie Fan, ^a Chuan-Bin Hou, ^a Jing-Tong Zhao, ^a Shuai Zhang, ^a Zhong-Feng Li, ^a Hong-Liang Han, ^a Chun-Bo Duan, ^b Guo Wang^{*a} and Qiong-Hua Jin,^{*acde}

^{a.} Department of Chemistry, Capital Normal University, Beijing 100048, China. E-mail: <u>jinqh@cnu.edu.cn</u>, <u>jinqh204@163.com</u>

^{b.} Ministry of Education and School of Chemistry and Material Science Heilongjiang University, Harbin 150080, China.

^{c.} State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

^d State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

^{e.} Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.

* Corresponding author.

- E-mail address: jinqh204@163.com (Qiong-Hua Jin)
- [†] These authors contributed equally to this work.

Caption of Figure

Fig. S1 The IR spectra for complex 1

- Fig. S2 The IR spectra for complex 2
- Fig. S3 The IR spectra for complex 3
- Fig. S4 The ¹H NMR spectra for complex 1

Fig. S5 The ¹H NMR spectra for complex 2

Fig. S6 The ¹H NMR spectra for complex 3

Fig. S7 The ³¹P NMR spectra for complex 1

Fig. S8 The ³¹P NMR spectra for complex 2

Fig. S9 The ³¹P NMR spectra for complex 3

Fig. S10 UV-vis spectra of bipy and POP at room temperature

Caption of Table

Table. S1 Selected bond lengths (Å) and angles (°) for complexes 1-3.

Table. S2 Intermolecular weak interactions for complexes 1-3.

Table. S3 The composition of the S-state HOMO and LUMO orbitals

for 1, 2, and 3 in the optimized S₀ structure.

Table. S4 Energy, oscillator strength and major contribution of the calculated transitions for complexes 1-3.

Fig. S2 The IR spectra for complex 2

Fig. S4 The ¹H NMR spectra for complex 1

Fig. S8 The ³¹P NMR spectra for complex 2

a

Fig. S10 UV-vis spectra of bipy and POP at room temperature

_1					
	Cu(1)-P(1)	2.3057(9)	P(1)-Cu(1)-P(2)	112.30(3)	
	Cu(1)-P(2)	2.2645(9)	P(1)-Cu(1)-I(1)	107.80(3)	
	Cu(1)-I(1)	2.6115(6)	P(1)-Cu(1)-N(1)	106.53(8)	
	Cu(1)-N(1) 2.1056(24)		P(2)-Cu(1)- I(1)	114.09(3)	
			P(2)-Cu(1)-N(1)	109.73(7)	
			I(1)-Cu(1)-N(1)	105.93(7)	
2					
	Cu(1)-P(1)	2.2734(9)	P(1)-Cu(1)-P(2)	111.45(3)	
	Cu(1)-P(2)	2.2837(9)	P(1)-Cu(1)-Br(1)	115.74(3)	
	Cu(1)-Br(1)	2.4551(6)	P(1)-Cu(1)-N(1)	109.42(8)	
	Cu(1)-N(1)	2.1231(24)	P(2)-Cu(1)-Br(1)	109.24(3)	
			P(2)-Cu(1)-N(1)	105.86(7)	
			Br(1)-Cu(1)-N(1)	104.46(8)	
3					
	Cu(1)-P(1)	2.2726(10)	P(1)-Cu(1)-P(2)	111.58(3)	
	Cu(1)-P(2)	2.2578(8)	P(1)-Cu(1)-Cl(1)	106.24(4)	
	Cu(1)-Cl(1)	2.3357(11)	P(1)-Cu(1)-N(1)	108.68(8)	
	Cu(1)-N(1)	2.0785(25)	P(2)-Cu(1)-Cl(1)	116.95(4)	
			P(2)-Cu(1)-N(1)	110.97(8)	
			Cl(1)-Cu(1)-N(1)	101.74(8)	

Table. S1 Selected bond lengths (Å) and angles (°) for complexes 1-3.

Table. S2 Intermolecular weak interactions for complexes 1 and 3.

	$Cg(i)/C-H\rightarrow Cg(i)/(A)$	Cg	Symmetry code	Cg(A)/H··· Cg(B)/Å
1	C38-H38A→Cg(6)	C25-C26-C27-C28-	v -1+v z	2.87
1		C29-C30	x, -1 + y, Z	
		Cg(4): C7-C8-C9-		3.8358
		C10-C11-C12	N N 7	
	Cg(4) Cg(6) C16-H16→Cg(6)	Cg(6): C19-C20-C21-	x, y, z	
		C22-C23-C24		
3		C19-C20-C21-C22-	v 1/2 v 1/2+a	2.85
		C23-C24	x, 1/2 - y, -1/2 + Z	
	O2-H2A→Cl1	/	1-x, -y, 1-z	2.36
	C35-H35→Cl2 C47-H47B→Cl1	/	/	2.79
		/	1-x, 1/2+y, 1-z	2.67

structure.					
		Cu / %	X/ %	Ligand N/ %	Ligand P/ %
Complex 1	HOMO-6	27.70	6.61	3.26	62.42
	LUMO	2.73	0.02	90.34	6.90
Complex 2	HOMO-6	35.34	7.92	4.50	52.24
	LUMO	3.24	0.01	89.54	7.21
Complex 3	НОМО-3	43.06	2.11	5.56	49.27
	LUMO	2.26	0.03	92.52	5.19

Table. S3 The composition of the S-state HOMO and LUMO orbitals for 1, 2 and 3 in the optimized S_0

Table. S4 Energy, oscillator strength and major contribution of the calculated transitions for complexes 1-

		3.			
	Energy	Oscillator	Contribution %		
		strength			
1	2.1412 eV 579.04 nm	0.2957	HOMO-6 \rightarrow	LUMO	95.18
2	2.1506 eV 576.50 nm	0.2599	HOMO-7 \rightarrow	LUMO	5.73
			HOMO-6 \rightarrow	LUMO	89.87
3	2.2058Ev 562.09 nm	0.1523	HOMO-3 \rightarrow	LUMO	85.11
			HOMO \rightarrow	LUMO+1	4.78
			HOMO \rightarrow	LUMO+2	2.15