Electronic Supplementary Information

Facile syntheses, structures and photocatalytic properties of 3-D iodoargentate frameworks derived from TM-flexible-amino-ligand templates

Yan Gao, Xiao Yang, Taohong Ren, Dingxian Jia*

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

Table of Contents

Table S1. Crystallographic and refinement data of 1-3.
Table S2. Selected Bond Lengths (Å) and angles (°) for 1
Table S3. Selected Bond Lengths (Å) and angles (°) for 2 4
Table S4. Selected Bond Lengths (Å) and angles (°) for 3 4
Table S5. Selected H···A distances(Å) and D–H···A angles (°) for 1-3 4
Table S6. Summary of Catalytic Activities in Photodegradation of Organic Dyes for Some Iodoargentate Hybrids.
Fig. S1 IR spectrum of compound 17
Fig. S2 IR spectrum of compound 2 7
Fig. S3 IR spectrum of compound 3 7
Fig. S4 Simulated and experimental powder XRD patterns of compound 1 (a), 2 (b) and 3 (c)8
Fig. S5 Packing diagrams of 1 viewed along the <i>a</i> axis (a), <i>b</i> axis (b) and <i>c</i> axis (c), showing cross -section size of the channels. $[Co(en)_3]^{2+}$ cations are omitted for clarity
Fig. S6 A view of N–H···I and N–H···I H-bonding interaction between $[Co(en)_3]^{2+}$ and α - $[Ag_2I_4]_n$ ^{2n–} framework in 1
Fig. S7 Packing diagrams of 3 viewed along the <i>a</i> axis (a), <i>b</i> axis (b) and <i>c</i> axis (c), showing cross-section size of the channels. $[Co(dien)_2]^{2+}$ cations are omitted for clarity10
Fig. S8 A packing diagram of 3 viewed along the <i>c</i> axis, showing N–H···I H-bonding interactions between $[Co(dien)_2]^{2+}$ cation and β - $[Ag_2I_4]_n^{2n-}$ framework. H ₂ O molecules are omitted for clarity.
Fig. S9 Time dependent absorption spectra of CV solutions with photodegradation over compounds 1 (a), 2 (b) and 3 (c)11
Fig. S10. Simulated PXRD patterns and experimental PXRD patterns after photocatalysis for compounds 1 (a), 2 (b) and 3 (c)11

Fig. S11 Time dependent absorption spectra of CV solutions with photodegradation catalyzed by compound 2 in cycle 1 (a), cycle 2 (b) and cycle 3 (c)12
Fig. S12 Time dependent absorption spectra of CV solution with photodegradation catalyzed by compound 1 in the presence of radical quenching agents BQ (a), AO (b), and TBA (c)12
Fig. S13 Time dependent absorption spectra of CV solution with photodegradation catalyzed by compound 2 in the presence of radical quenching agents BQ (a), AO (b), and TBA (c)13
Fig. S14 Time dependent absorption spectra of CV solution with photodegradation catalyzed by compound 3 in the presence of radical quenching agents BQ (a), AO (b), and TBA (c)13
Fig. S15 Catalytic activities for photodegradation of CV over compound 3 in the presence of quenchers BQ, TBA and AO14
Fig. S16 Thermal gravimetric curves of compounds 1 (a), 2 (b), and 3 (c)14

	1	2	3
Empirical formula	$C_6H_{24}N_6CoAg_2I_4\\$	$C_6H_{24}N_6FeAg_2I_4\\$	C ₈ H ₂₈ N ₆ OCoAg ₂ I ₄
Fw	962.58	959.50	1006.63
Crystal system	hexagonal	hexagonal	tetragonal
Space group	<i>P</i> 6 ₃ 22	<i>P</i> 6 ₃ 22	I4 ₁ /amd
<i>a</i> / Å	9.0389(11)	9.0851(11)	21.681(4)
<i>b</i> / Å	9.0389(11)	9.0851(11)	21.681(4)
<i>c</i> / Å	14.437(3)	14.411(3)	9.2216(19)
$\alpha / ^{\circ}$	90	90	90
β / °	90	90	90
γ/°	120	120	90
$V/\text{\AA}^3$	1021.5(3)	1030.1(3)	4334.6(19)
Ζ	2	2	4
T/K	293(2)	293(2)	293(2)
$D_c/Mg \cdot m^{-3}$	3.130	3.093	1.543
<i>F</i> (000)	870	868	1836
$2\theta(\max) / \circ$	50.70	50.70	50.70
Measured reflections	9919	2488	19638
Unique reflections	634	633	1056
R _{int}	0.0413	0.0308	0.0949
No.of parameters	33	37	35
R_1 [I>2 σ (I)]	0.0240	0.0235	0.0430
wR_2 (all data)	0.0551	0.0501	0.1053
Goodness of fit	1.273	1.122	1.085

Table S1 Crystallographic and refinement data of 1-3

 Table S2. Selected Bond Lengths (Å) and angles (°) for 1

Ag(1)–I(1)	2.8574(5)	Ag(1)–I(2)	2.8818(13)
Co(1)-N(1)	2.169(6)		
I(1)-Ag(1)-I(1)#2	113.752(19)	I(1)–Ag(1)–I(2)	104.75(2)
Ag(1)–I(1)#3–Ag(1)	142.89(3)	Ag(1)–I(2)–Ag(1)	180.0
N(1)#6-Co(1)-N(1)	92.7(4)	N(1)#5-Co(1)-N(1)#4	93.7(2)
N(1)#5-Co(1)-N(1)#6	171.6(4)	N(1)#1-Co(1)-N(1)#6	80.5(4)

Symmetry transformations used to generate equivalent atoms: #1) -y+1, -x+1, -z+1/2; #2) -y+1, x-y+1, z; #3) -x+y, -x+1, z; #4) -y+1, x-y-1, z; #5) x, x-y-1, -z+1/2; #6) -x+y+2, y, -z+1/2.

Ag(1)–I(1)	2.8592(5)	Ag(1)–I(2)	2.8758(12)
Fe(1)–N(1)	2.214(6)		
I(1)#1–Ag(1)–I(1)	113.767(16)	I(1)–Ag(1)–I(2)	104.73(2)
Ag(1)–I(2)–Ag(1)#2	180.0	Ag(1)#3–I(1)–Ag(1)	144.30(2)
N(1)-Fe(1)-N(1)#4	94.0(2)	N(1)-Fe(1)-N(1)#5	93.5(3)
N(1)-Fe(1)-N(1)#6	170.2(4)	N(1)#4–Fe(1)–N(1)#6	79.3(3)

Table S3. Selected Bond Lengths (Å) and angles (°) for 2

Symmetry transformations used to generate equivalent atoms: #1) -y+1, x-y, z; #2) -y+1, -x+1, z-1/2; #3) x-y, -y+1, -z+2; #4) -y+1, x-y-1, z; #5) -x+y+2, y, -z+1/2; #6) x, x-y-1, -z+1/2.

Ag(1)–I(1)	2.899(3)	Ag(1)–I(2)#1	2.841(4)
Co(1)–N(1)	2.06(3)	Co(1)–N(2)#4	2.00(6)
I(1)–Ag(1)–I(1)	101.06(16)	I(2)#3–Ag(1)–I(1)#1	113.15(7)
I(2)#1-Ag(1)-I(2)#1	108.53(16)	I(2)#3–Ag(1)–I(1)#3	110.45(8)
Ag(1)–I(1)–Ag(1)#2	177.89(16)	Ag(1)#1–I(2)–Ag(1)	71.47(16)
N(1)#6-Co(1)-N(1)#4	91.0(3)	N(2)-Co(1)-N(1)#6	82.4(12)
N(1)#5-Co(1)-N(1)#4	165(2)	N(2)-Co(1)-N(1)#5	97.6(12)

Table S4. Selected Bond Lengths (Å) and angles (°) for 3

Symmetry transformations used to generate equivalent atoms: #1) -x+1, -y+1, -z+1; #3) -y+1, x-y+1, z; #4) -y+3/4, x+1/4, z-1/4; #5) -y+1, -x+1, -z+1/2; #6) x-y, -y+1, -z; #7) -y+5/4, x+1/4, -z+3/4.

D–H····A	d(H···A)	d(D····A)	<(DHA)
1			
N(1)-H(1B)…I(1)#1	3.041	3.842	150.71
C(1)-H(1D)…I(1)#2	3.154	3.895	134.33
2			
N(1)-H(1B)…I(1)#1	3.040	3.842	150.93
C(1)-H(1D)…I(1)#2	3.184	3.927	134.72
3			
N(1)-H(1A)····I(1)#1	2.993	3.803	152.17
N(1)-H(1B)····I(1)#2	2.993	3.803	152.17

Table S5. Selected H···A distances(Å) and D–H···A angles (°) for 1-3

Symmetry transformations used to generate equivalent atoms: For 1: #1) -y+1, x-y, z; #2) x+1, y, z. For 2: #1) -y+1, x-y, z-1; #2) x-y+1, x, z-1/2. For 1: #1) -x+1, -y+1, -z+1; #2) y+1/4, -x+5/4, z-1/4.

with Different Cations							
Compound	organic dyes	light	irradiation	band gaps	degradation	Ref	
	organic dyes	source	time	of hybrids	ratio	Kel.	
(Et ₂ mbt)[Ag ₂ I ₃]	^d MO	UV light	60 min	2.95 eV	94%	1	
$a{(Hmbt)[AgI]}_n$	МО	UV light	80 min	2.78 eV	85%	1	
$b[(Hpy)(Ag_2I_3)]_n$	^e RhB	Hg lamp	180 min	2.93 eV	89%		
$\{[(Hpy)_2 \cdot dmf][Ag_6I_8]\}_n$	RhB	Hg lamp	180 min	3.05 eV	93%	2	
$\{[(Hpy)_2 \cdot H_2O][Ag_3I_5]\}_n$	RhB	Hg lamp	180 min	2.99 eV	83%		
$[(Hpy)(Ag_5I_6)]_n$	RhB	Hg lamp	180 min	2.71 eV	98%		
$Fe(2,2'-bipy)_3]Ag_3I_5$	^f CV	Xe lamp	60 min	1.87 eV	93%		
Ni(2,2'-bipy) ₃]Ag ₃ I ₅	CV	Xe lamp	60 min	2.01 eV	89%	2	
$Zn(2,2'-bipy)_3]Ag_3I_5$	CV	Xe lamp	60 min	2.61 eV	56%		
$Mn(2,2'-bipy)_3]Ag_3I_5$	CV	Xe lamp	60 min	2.28 eV	100%		
$[(M_{\alpha}), 2, 2]$ himsel $A = I$	CV	Xe lamp	50 min	2.03 eV	100%	1	
$[(Me)_2 - 2, 2 - opy]_2 Ag_7 I_{11}$	RhB	Xe lamp	60 min	2.03 eV	100%	4	
$[Zn(2, 2'-bipy)_3]Ag_5I_7$	CV	UV light	60 min	2.58 eV	98%		
[Ni(2, 2'-bipy) ₃]Ag ₅ I ₇	CV	UV light	60 min	2.10 eV	98%	5	
[Co(2, 2'-bipy) ₃]Ag ₅ I ₇	CV	UV light	60 min	1.94 eV	98%]	
^c K _x [TM(2,2'-bipy) ₃] ₂ Ag ₆ I ₁₁	CV	Valama	50 (Omin	1.66 -2.08	56 1000/		
(TM = Mn, Fe, Co, Ni, Zn)	Cv	Xe lamp	50-60min	eV	50-100%		
[(Ni(2,2'-bipy) ₃][H-2,2-bipy]Ag ₃ I ₆	CV	Xe lamp	60 min	2.75 eV	71%		
^c K _x [Mn(2,2'-bipy) ₃] ₂ Ag ₆ I ₁₁	RhB	Xe lamp	30min	2.01 eV	100%	6	
^c K _x [TM(2,2'-bipy) ₃] ₂ Ag ₆ I ₁₁	D1 D	V - 1	100	1.66-2.08	00.1000/		
(TM = Fe, Co, Ni, Zn)	KnB	Xe lamp	180 min	eV	88-100%		
[(Ni(2,2'-bipy) ₃][H-2,2-bipy]Ag ₃ I ₆	RhB	Xe lamp	180 min	2.75 eV	100%		
[Co(phen) ₃]Ag ₃ I ₅ ·2CH ₃ CN	RhB	Hg lamp	180 min	3.04 eV	51%		
$[Co(phen)_3]_2Ag_{11}I_{15} \cdot H_2O$	RhB	Hg lamp	180 min	2.84 eV	62%]	
$[Cu(phen)_3]_2Ag_{11}I_{15} \cdot H_2O$	RhB	Hg lamp	180 min	2.87 eV	80%	7	
$[Co(phen)_3]_2Ag_{13}I_{17}$	RhB	Hg lamp	180 min	2.89 eV	40%]	
$[Cd(phen)_3]_2Ag_{13}I_{17}$	RhB	Hg lamp	180 min	3.19 eV	29%		
[Ni(DMSO) ₆][Ag ₅ I ₇]	<i>g</i> MV	UV light	150 min	2.73 eV	92%	0	
[V(DMSO) ₅ (H ₂ O)][Ag ₆ I ₈]	^h MB	UV light	60 min	2.61 eV	100%	8	
	MB	UV light	9 h	2.28 eV	90%		
^{<i>i</i>} [Fe(DMSO) ₆][Ag ₆ I ₉]·DMSO	MV	UV light	180 min	2.28 eV	80%		
	MB	UV light	240 min	1.92 eV	94%		
$[Fe(H_2O)_6][Ag_{15}I_{18}]$	MV	UV light	180 min	1.92 eV	90%	9	
	MB	UV light	9 h	2.46 eV	91%		
$^{\prime}$ [Cd(DMSO) ₆][Ag ₈ I ₁₀]	MV	UV light	180 min	2.46 eV	80%	1	
$^{j}(EtPPh_{3})Ag_{3}I_{4}$ (Et = ethyl)	RhB	Xe lamp	160 min	3.26 eV	80%		
$(n-PrPPh_3)Ag_3I_4$ $(n-Pr = n-propyl)$	RhB	Xe lamp	160 min	3.37 eV	85%	10	
$(i-PrPPh_3)Ag_5I_6$ $(i-Pr = isopropyl)$	RhB	Xe lamp	160 min	2.76 eV	89%	1	
k[Co(2,2'-bipy) ₃]Ag ₃ I ₆	CV	Xe lamp	120 min	2.03 eV	100%	11	

 Table S6. Summary of Catalytic Activities in Photodegradation of Organic Dyes for Some Iodoargentate Hybrids

 with Different Cations

	MB	Xe lamp	11 h	2.03 eV	100%	
	RhB	Xe lamp	120 min	2.03 eV	90%	
	МО	Xe lamp	8 h	2.03 eV	2%	
$[(Me)_2-2,2'-bipy]Ag_8I_{10}$	RhB	Xe lamp	80 min	1.92 eV	95%	12
(Me = methyl)	МО	Xe lamp	60 min	1.92 eV	100%	12
	CV	Xe lamp	210 min	2.58 eV	27%	
$-[La(DNA)_8]Ag_{91_2} \cdot 2H_2O$	RhB	Xe lamp	210 min	2.58 eV	68%	
	CV	Xe lamp	210 min	2.77 eV	80%	13
$[Pr(DMA)_{7}]_{2}Ag_{16}I_{22}$	RhB	Xe lamp	210 min	2.77 eV	19%	
[Sm(DMA) ₇] ₂ Ag ₁₆ I ₂₂	CV	Xe lamp	210 min	2.74 eV	87%	
	RhB	Xe lamp	210 min	2.74 eV	37%	
^m [MBI][Ag ₂ I ₃]	RhB	Xe lamp	140 min	3.46 eV	60%	14
ⁿ [MDMBI][Ag ₂ I ₃]	RhB	Xe lamp	140 min	3.31 eV	80%	14
^o [Mn(2,2'-bipy) ₂ (DMF) ₂]Ag ₅ I ₇	CV	Xe lamp	6 h	2.68 eV	91%	
$[{Cd(2,2'-bipy)_2}_2(\mu_4-Ag_2I_6)]$	CV	Xe lamp	6 h	2.84 eV	28%	15
$p[{Zn(DMF)_2(H_2O)_2}(4,4'-$	CV	Valamn	6 h	2.75 oV	020/	
bipy) _{1.5}]Ag ₅ I ₇ ·2DMF	CV	ле татр	0 11	2.75 eV	93%	
$[{Nd(DMSO)_8}(Ag_7I_{10})]_n$	MB	Xe lamp	80 min	3.04 eV	96%	16
$[{Nd(DMSO)_8}(Pb_2Ag_2I_9)]_n$	MB	Xe lamp	80 min	3.07 eV	90%	10

^{*a*}Hmbt = 2-mercaptobenzothiazole , ^{*b*}Hpy⁺ = protonated pyridine, ^{*c*} x = 0.89–1, ^{*d*}MO methyl orange, ^{*c*}RhB = rhodamine B, ^{*f*}CV= crystal violet, ^{*s*}MV = methyl violet, ^{*h*}MB = methylene blue, ^{*i*}DMSO = dimethyl sulfoxide, ^{*j*}PPh₃ = aromatic triphenylphosphine, ^{*k*}2,2'- bipy = 2,2'-bipyridine, ^{*l*}DMA = N,N-dimethylacetamide, ^{*m*}MBI⁺ = N,N-dimethylbenzimidazolium, ^{*n*}MDMBI⁺ = N,N-dimethylformamide, ^{*p*}4,4'-bipy = 4,4'-bipyridine.

[Reference]

- 1. G. N. Liu, K. Li, Q. S. Fan, H. Sun, X. Y. Li, X. N. Han, Y. Li, Z. W. Zhang, and C. Li, Dalton Trans. 2016, 45, 19062–19071.
- 2. T. Yu, J. Shen, Y. Wang and Y. Fu, Eur. J. Inorg. Chem., 2015, 1989-1996.

3. X.-W. Lei, C.-Y. Yue, J.-Q. Zhao, Y.-F. Han, Z.-R. Ba, C. Wang, X.-Y. Liu, Y.-P. Gong and X.-Y. Liu, Eur. J. Inorg. Chem., 2015, 4412–4419.

4. X.-W. Lei, C.-Y. Yue, L.-J. Feng, Y.-F. Han, R.-R. Meng, J.-T. Yang, H. Ding, C.-S. Gao and C.-Y. Wang, CrystEngComm., 2016, 18, 427–436.

5. X. W. Lei, C. Y. Yue, F. Wu, X. Y. Jiang, and L. N. Chen, Inorg. Chem. Commun. 2017, 77, 64-67.

6. X. W. Lei, C. Y. Yue, J. Q. Zhao, Y. F. Han, J. T. Yang, R. R. Meng, C. S. Gao, H. Ding, C. Y. Wang, W. D. Chen, and M. C. Hong, *Inorg. Chem.* 2015, **54**, 10593–10603.

- 7. T. Yu, Y. Fu, Y. Wang, P. Hao, J. Shen and Y. Fu, CrystEngComm., 2015, 17, 8752–8761.
- 8. Y. Mu, D. Wang, X. D. Meng, J. Pan, S. D. Han, and Z. Z. Xue, Cryst. Growth Des. 2020, 20, 1130-1138.
- 9. Q. Wei, D. Wang, J. Pan, S. D. Han, and G. M. Wang. Chem. Asian J., 2019, 14, 640-646.

10. G. N. Liu, X. Zhang, H. M. Wang, H. Xu, Z. H. Wang, X. L. Meng, Y. N. Dong, R. Y. Zhao, and C. C. Li. *Dalton Trans.*, 2017, 46, 12474–12486.

11. C. Y. Tang, Y. W. Sun, J. B. Liu, Q. F. Xu, C. Y. Zhang. Dalton Trans., 2022, 51, 16784–16789.

12. C. Y. Yue, B. Hu, X. W. Lei, R. Q. Li, F. Q. Mi, H. Gao, Y. Li, F. Wu, C. L. Wang, and N. Lin. *Inorg. Chem.*, 2017, 56, 10962–10970.

- 13. Y. Gao, N. N. Chen, Y. M. Tian, J. H. Zhang, and D. X. Jia. Inorg. Chem., 2021, 60, 3761–3772.
- 14. P. F. Hao, Y. Xu, X. Li, J. J. Shen, and Y. L. Fu. Inorg. Chem. Front., 2020, 7, 3184-3194.
- 15. W. Zheng, Y. Gao, N. N. Chen, B. Wu, D. X. Jia, and S. X. Zhao. Inorg. Chim. Acta., 2020, 510, 119762.
- 16. J. Y. Lu, J. H. Zhang, X. Yang, D. X. Jia, and S. X. Zhao. Inorg. Chim. Acta., 2022, 537, 120962.

Fig. S1 IR spectrum of compound 1.

Fig. S2 IR spectrum of compound 2.

Fig. S3 IR spectrum of compound 3.

Fig. S4 Simulated and experimental powder XRD patterns of compound 1 (a), 2 (b) and 3 (c).

Fig. S5 Packing diagrams of 1 viewed along the *a* axis (a), *b* axis (b) and *c* axis (c), showing cross-section size of the channels. $[Co(en)_3]^{2+}$ cations are omitted for clarity.

Fig. S6 A view of N–H…I and N–H…I H-bonding interaction between $[Co(en)_3]^{2+}$ and α - $[Ag_2I_4]_n^{2n-}$ framework in 1.

Fig. S7 Packing diagrams of 3 viewed along the *a* axis (a), *b* axis (b) and *c* axis (c), showing cross-section size of the channels. $[Co(dien)_2]^{2+}$ cations are omitted for clarity.

Fig. S8 A packing diagram of **3** viewed along the *c* axis, showing N–H…I H-bonding interactions between $[Co(dien)_2]^{2+}$ cation and β - $[Ag_2I_4]_n^{2n-}$ framework. H₂O molecules are omitted for clarity.

Fig. S9. Time dependent absorption spectra of CV solutions with photodegradation over compounds 1 (a), 2 (b)

and 3 (c).

Fig. S10. Simulated PXRD patterns and experimental PXRD patterns after photocatalysis for compounds 1 (a), 2 (b) and 3 (c)

Fig. S11 Time dependent absorption spectra of **CV** solutions with photodegradation catalyzed by compound **2** in cycle 1 (a), cycle 2 (b) and cycle 3 (c).

Fig. S12 Time dependent absorption spectra of CV solution with photodegradation catalyzed by compound **1** in the presence of radical quenching agents AO (a), BQ (b), and TBA (c).

Fig. S13 Time dependent absorption spectra of CV solution with photodegradation catalyzed by compound **2** in the presence of radical quenching agents AO (a), BQ (b), and TBA (c).

Fig. S14 Time dependent absorption spectra of CV solution with photodegradation catalyzed by compound **3** in the presence of radical quenching agents AO (a), BQ (b), and TBA (c).

Fig. S15 Catalytic activities for photodegradation of CV over compound 3 in the presence of quenchers BQ, TBA and AO.

Fig. S16 Thermal gravimetric curves of compounds 1 (a), 2 (b), and 3 (c).

Thermal stabilities of compounds 1–3 were investigated using thermogravimetric analysis (TGA) method under a nitrogen atmosphere (Fig. S16). TGA curve shows that compound 1 has a mass loss of 17.6% between 190 and 400 °C, which is consistent with the theoretical mass loss of three en molecules (theoretical value: 18.7%). Compound 2 exhibits a similar decomposition process with a mass loss of 17.9 % between 180 °C and 400 °C (theoretical value: 18.8 % for 3 en). The total mass loss of 21.3 % in 110-400 °C of compound 3 is attributed to the loss of a H₂O and two dien molecules (theoretical value: 22.3%).