ELECTRONIC SUPPORING INFORMATION

Supporting Information

Fig. S2 FTIR spectrum for 1.

Fig. S4 The photoluminescent spectra for 1 and bip ligand.

Fig. S5 The spectral overlap between the emission spectra of **1** and bip ligand with the Uv-Vis spectrum of dichromate anion.

Fig. S6 Adsorption isotherms for dichromate adsorption over 1 at 288, 303 and

Fig. S7 Adsorption capacity for dichromate adsorption over 1 at 288, 303 and

333 K

Fig. S8 The BET surface area analyses (a) before and (b) after adoption $Cr_2O_7^{2-}$ anion.

Fig. S9 Scanning electron microscopic images for 1 (a) before adsorption experiments and (b) after adsorption experiments.

MOF based fluorescent materials	LOD	$Ksv(M^1)$	Ref.
Cd -MOF-1	4.29 μΜ		This work
Cd LMOF LCU 125	0.085 µM	5.61 x 10 ³	1
RhB@9 1 MOF 253 NH ₂	0.863 µM	/	2
${[Zn (TTPA)] \cdot 1.5 DMA}n$	7.48 μM	5.61×10^4	3
$[Zn_2(TzTz)_2(BDC)_2] \cdot 2DMF$	4 μΜ	9×10^7	4
Tb MOF	2.92 μM	8.45×10^{3}	5
$[Cd_2 (TFBA) (HCOO) (bpe) H_2O]_n$	235 μM	1.22×10^4	6
Cd bdcbpy	/	8.217×10^{3}	7
[Ni BDC MOF	0.159 nM	$1.056 imes 10^8$	8
{[Tb (dppa) (H ₂ O) ₂]·dima·H ₂ O·0.5O} _n	0.55 μΜ	$1.9057 imes 10^4$	9
BUT 25	0.15 μM	6.5×10^{4}	10
$[Zn_2 (tpeb) (bpdc)_2]$	1.04 μM	1.122×10^4	11
$[Zn (OBA)_2 (L_1) 2DMA]_n$	3.87 µM	1.8972×10^{4}	12
Eu MOF	/	1.141×10^4	13
Tb MOF	/	8.23×10^{3}	13
Zn MOF	0.09 µM	2.003×10^4	14
$[Ln_4 (pta)_5 (Hpta)_2 (H_2o_4)] xH_2O$	38 µM	1.02×10^4	15
$\{[(CH_3)_2NH_2]_4[Ca_2Zn_4(L)_4]\cdot 4DMF\}n(1)$	29.1 μM	1.15×10^{3}	16
${[Ln(dpc)(2H_2O)] \cdot (Hbibp)_{0.5}}_n$	10.1 μM	3.97×10 ³	17
${[Zn(L)(bpe)0.5] \cdot DMF}n(1)$	59.2 ppb	$1.1 imes 10^4$	18
${[Eu_3 (BTDC)_4 (HCOO) (H_2O)_2] \cdot solvents}n$	1.23 μM	/	19
Zn ₄ O (ECMTDC) ₃ 10DMF	13.9 μM	$7.1 imes 10^4$	20
$[Ln_2(L)_3(DMF)_2(H_2O)_4] \cdot 2DMF 1$	5.11 μM	1.04×10^4	21
$[Ln_2(L)_3(DMF)_2(H_2O)_4] \cdot 2DMF 2$	1.97 μM	1.37×10^4	21
$[Ln_2(L)_3(DMF)_2(H_2O)_4] \cdot 2DMF 3$	1.71 μM	2.31×10^4	21
$[Ln_2(L)_3(DMF)_2(H_2O)_4] \cdot 2DMF 4$	2.10 μM	2.85×10^4	21
Eu ³⁺ /DUT-52 COOH	25.7 nM	$1.727 imes 10^6$	22
BUT-MOF	9.0 ppb	3.2×10^5	23
Eu-mtb-MMM	5.73 nM	/	24
[Cd (DPTTZ) (5-AIP)] (IUST-1)	0.602 µM	3.314×10^4	25
$[Zn (OBA)_2 (L_1) \cdot 2DMA]_n$	3.87 µM	1.8972×10^{5}	26
MOF-1@MF	0.60 µM	$1.5 imes 10^4$	27

Table S1 Sensing performance comparison between other MOF based fluorescent sensors

Parameter	1
Formula	$C_{22}H_{22}CdN_{12}O_8$
Formula weight	694.91
Crystal system	Monoclinic
Space group	$P2_1/n$
a, Å	9.5220(15)
b, Å	10.5289(15)
c, Å	13.8101(19)
α, °	90
β, °	104.454(2)
γ, °	90
V, Å ³	1340.7(3)
Z	2
pcalcd, g/cm ³	1.721
μ , mm ⁻¹	0.886
F(000)	700
θ Range, deg	2.3-27.8
Reflection Collected	7975
Independent reflections (R _{int})	0.035
Reflections with $I \ge 2\sigma(I)$	2245
Number of parameters	197
R1, wR2 ($I > 2\sigma(I)$)*	0.0371, 0.1053
R1, wR2(all data)**	0.0603, 0.1272

Table S2.	Crystallographic	data and structure	e refinement details fo	r 1

* $R = \sum (F_{o} - F_{c}) / \sum (F_{o}), ** wR_{2} = \{ \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum (F_{o}^{2})^{2} \}^{1/2}$

		1		
Cd(1) -O(1)	2.319(3)	Cd(1)-N(1)	2.339(3)	
Cd(1)-N(5)#1	2.319(3)	Cd(1)-O(1)#2	2.319(3)	
Cd(1)-N(1)#2	2.339(3)	Cd(1)-N(5)#3	2.319(3)	
1				
O(1)-Cd(1)-N(1)	95.67(10)	O(1)-Cd(1)-N(5)#1	88.22(10)	
O(1)-Cd(1)-O(1)#2	180.00	O(1)-Cd(10-N(1)#2	84.33(10)	
O(1)-Cd(1)-N5#3	91.78(10)	N(1)-Cd(1)-N(5)#1	87.50(11)	
O(1)#2-Cd(1)-N(1)	84.33(10)	N(1)-Cd(1)-N(1)#2	180.00	
N(1)-Cd(1)-N(5)#3	92.50(11)	O(1)#2-Cd(1)-N(5)#1	91.78(10)	
N(1)#2-Cd(1)-N(5)#1	92.50(11)	N(5)#1-Cd(1)-N(5)#3	180.00	
O(1)#2-Cd(1)-N(1)#2	95.67(10)	O(1)#2-Cd(1)-N(5)#3	88.22(10)	
N(1)#2-Cd(1)-N(5)#3	87.50(11)			

 Table S3. Selected bond distances (Å) and angles (deg) for 1

Symmetry Code: #1= 1/2-x, 1/2+y, 3/2-z; #2= 1-x, 1-y, 1-z; #3= 1/2+x, 1/2-y, -1/2+z.

Contact	Distance, Å			Angle
D-H····A	D-H	Н…А	D····A	D-H…A, deg
O(1)-H(1A)····N(3)	0.8500	1.8800	2.718(4)	167.00
O(1)-H(1B)····O(2)	0.8500	1.9800	2.809(5)	164.00
C(2)-H(2)····O(4)	0.9300	2.5800	3.423(6)	151.00
C(8)-H(8)····O(4)	0.9300	2.5400	3.450(5)	168.00
C(9)-H(9)····O(3)	0.9300	2.5900	3.257(8)	129.00

Table S4. Selected hydrogen bond distances (Å) and angles (deg) for 1

1. Ma, H. Y.; Wu, Q.; Ma, K. X.; Yang, H.; Li, D. C.; Dou, J. M.; Li, Y. W.; ;Wang, S. N. An amide groups functionalized Cd MOF as multi responsive luminescent sensor for detecting Fe^{3+} , $Cr_2O_7^{2-}$;OTC in water media. Journal of Molecular Structure. **2023**, 1291, 136009.

2. Jin, Y. M.; Lu, H. F ; Yan, B. A multivariate luminescent MOF based on dye covalently modification serving as a sensitive sensor for $Cr_2O_7^{2-}$, CrO_4^{2-} anions ; its applications. Dyes and Pigments. **2021**, 194,109588.

3. Ma, Z. L.; Chen Wang, M.; Tian, L.; Cheng, L. A multi responsive luminescent indicator based on a Zn(II) metal organic framework with "Turn on" sensing of pyridine ;"Turn off" sensing of Fe³⁺, $Cr_2O_7^{2-}$; antibiotics in aqueous media. Inorganica Chimica Acta. **2021**, 526, 120513.

4. Safaei, S.; Wang, J.; Junk, P.C. Incorporation of thiazolothiazole fluorophores into a MOF structure: A highly luminescent Zn(II) based MOF as a selective ;reversible sensor for $Cr_2O_7^{2-}$; MnO_4^{-} anions. Journal of Solid State Chemistry. **2021**, 294, 121762.

5. Li, J.; Yu, B.; Fan, L.; Wang, L.; Zhao, Y.; Sun, C.; Li, W.; ;Chang, Z. A novel multifunctional Tb MOF fluorescent probe displaying excellent abilities for highly selective detection of Fe^{3+} , $Cr_2O_7^{2-}$; acetylacetone. Journal of Solid State Chemistry. **2022**, 306, 122782.

6. Ru, J.; Zhang, R. F.; Li, X. Y.; Wang, Y. X.; Li, L. L.; Ma, C. L. Multi responsive luminescent probes for Fe^{3+} , $Cr_2O_7^{2-}$ acetylacetone with Cd MOF based on tris (3'-F-4' carboxybiphenyl) amine ;trans 1,2 bis(4 pyridyl)ethene. Journal of Solid State Chemistry. **2022**, 307, 122820.

7. Zuo, M. H.; Liu, Y.; Yuan, N.; Gao, Y.; Li, Y.; Ma, Y.; Sun, M.; Cui, S. Synthesis ;properties of a novel photochromic metal organic framework for rapid amine selective sensing $Cr_2O_7^{2-}$ detection. Journal of Solid State Chemistry. **2022**, 307, 122868.

8. Kaur, J.; Kaur, M.; Kansal, S. K.; Umar, A.; Algadi, H. Highly fluorescent nickel based metal organic framework for enhanced sensing of Fe^{3+} ; $Cr_2O_7^{2-}$ ions. Chemosphere. **2023**, 311, 136832.

9. Chen, X. L.; Shang, L.; Liu, L.; Yang, H.; Cui, H. L.; ;Wang, J. J. A highly sensitive ;multi responsive Tb MOF fluorescent sensor for the detection of Pb^{2+} , $Cr_2O_7^{2-}$, $B_4O_7^{2-}$, aniline, nitrobenzene; cefixime. Dyes and Pigments. **2021**, 196, 109809.

Talha, K.; Alamgir, A.; Ahmed, N.; Iqbal, M.J.; Riaz, M.S.; Zhang, X.; Li, J. R. A Zn based two dimensional metal organic framework as a dual ion sensor in aqueous media. Journal of Engineering Research. 2022 , 19525.
 Rath, B.B.; Vittal, J.J. Water Stable Zn(II) Metal Organic Framework as a Selective ;Sensitive Luminescent Probe for Fe(III); Chromate Ions. Inorganic Chemistry. 2020, 59, 8818–8826.

12. Qin, B.; Zhang, X.; Qiu, J.; Gahungu, G.; Yuan, H.; Zhang, J. Water Robust Zinc–Organic Framework with Mixed Nodes ;Its Handy Mixed Matrix Membrane for Highly Effective Luminescent Detection of Fe^{3+} , CrO^{4-} , $Cr_2O_7^{2-}$ in Aqueous Solution. Inorganic Chemistry. **2021**, 60, 1716–1725.

13. Yu, H.; Fan, M.; Liu, Q.; Su, Z.; Li, X.; Pan, Q.; Hu, X. Two Highly Water Stable Imidazole Based Ln MOFs for Sensing Fe³⁺, Cr₂O₇²⁻/CrO₄²⁻ in a Water Environment. Inorganic Chemistry. **2020**, 59, 2005–2010.

 Zhang, Y.; Liu, Y.; Huo, F.; Zhang, B.; Su, W.; Yang, X. Photoluminescence Quenching in Recyclable Water Soluble Zn Based Metal–Organic Framework Nanoflakes for Dichromate Sensing. ACS Applied Nano Materials. 2022, 5, 9223–9229.

15. Duan, L. J.; Zhang, C.; Cen, P.; Jin, X.; Liang, C.; Yang, J.; Liu, X. Stable Ln MOFs as multi responsive photoluminescence sensors for the sensitive sensing of Fe^{3+} , $Cr_2O_7^{2-}$, ;nitrofuran. CrystEngComm. **2020**, 22, 1695–1704.

16. Ji, W. J.; Liu, G. F.; Wang, B. Q.; Lu, W. B.; Zhai, Q. G. Design of a heterometallic Zn/Ca MOF decorated with alkoxy groups on the pore surface exhibiting high fluorescence sensing performance for Fe^{3+} ; $Cr_2O_7^{2-}$. CrystEngComm. **2020**, 22,4710–4715.

17. Du, Y.; Yang, H.; Liu, R.; Shao, C. ;Yang, L. A multi responsive chemosensor for highly sensitive ;selective detection of Fe3+, Cu2+, Cr2O72 ;nitrobenzene based on a luminescent lanthanide metal organic framework. Dalton Transactions. **2020**, 49, 13003–13016.

ELECTRONIC SUPPORING INFORMATION

18. Wang, X.; Lei, M.; Zhang, T.; Zhang, Q.; Zhang, R. ;Yang, M. A water stable multi responsive luminescent Zn MOF sensor for detecting TNP, NZF ; $Cr_2O_7^{2-}$ in aqueous media. Dalton Transactions. **2021**, 50, 3816-3824.

19. He, Q. Q.; Yao, S. L.; Zheng, T. F.; Xu, H.; Liu, S. J.; Chen, J. L.; Li, N. ;Wen, H. R. Multi responsive luminescent sensor based on a stable Eu(III) metal organic framework for sensing Fe^{3+} , MnO_4^{-} , ; $Cr_2O_7^{2-}$ in aqueous solution. CrystEngComm. **2022**, 24,1041–1048.

20. Ding, S.; Cheng, C.; Xu, J. H.; Tang, Z.; Yang, G. S.; Peng, S. F.; Yu, L. Q.; Jiang, C. J.; Su, Z. M. A water stable Zn₄O based MOF decorated with carbazolyl chromophores for multi responsive fluorescence sensing of Fe^{3+} , $Cr_2O_7^2$; nitro compounds. New Journal of Chemistry. **2022**, 46, 18710–18717.

21. Zhao, L. J.; ;Yong, G. P. Four isostructural lanthanide metal–organic frameworks: luminescence properties ;fluorescence sensing for Fe^{3+} ; $Cr_2O_7^{2-}$ ions. Journal of Solid State Chemistry. **2023**,25, 2813–2823.

22. Transactions, D.; Wen, X.; Zhang, W.; Ding, C.; Li, Z. ;Xin, C. A new dual lig;DUT 52 type metal–organic framework for ratiometric luminescence detection of aqueous phase Cu^{2+} ; $Cr_2O_7^{2-}$. Inorganica Chimica Acta. **2021**, 526,120513.

Pournara, A. D.; Evangelou, D. A.; Roukounaki, C.; Andreou, E. K.; Armatas, G. S.; Lazarides, T.; Manos, M. J. Highly Efficient Sorption and Luminescence Sensing of Oxoanionic Species by 8 Connected Alkyl Amino Functionalized Zr⁴⁺ MOFs. Dalton Transactions. **2022**, 51, 17301–17309.

24. Zhang, S.; Zheng, H.; Yang, Y.; Qian, G.; Cui, Y. Cationic Metal–Organic Framework Based Mixed Matrix Membranes for Fast Sensing and Removal of Cr₂O₇^{2–} Within Water. Frontiers in Chemistry. **2022**, 10, 852402.

25. Karbalaee Hosseini, A.; Pourshirzad, Y.; Tadjarodi, A. A Water Stable Luminescent Cadmium Thiazole Metal Organic Framework for Detection of Some Anionic and Aromatic Pollutants. Journal of Solid State Chemistry. **2023**, 317, 123676.

26. Qin, B.; and Zhang, X.; Qiu, J. J.; Gahungu, G.; Yuan, H. Y. Zhang, J. P. Water-Robust Zinc–Organic Framework with Mixed Nodes and Its Handy Mixed-Matrix Membrane for Highly Effective Luminescent Detection of Fe^{3+} , CrO_4^{2-} , and $Cr_2O_7^{2-}$ in Aqueous Solution. Inorganic Chemistry. **202**1, 60, 1716-1725.

27. Lei, M.; Ge, F.; Ren, S.; Gao, X.; Zheng, H. A Water Stable Cd-MOF and Corresponding MOF@melamine Foam Composite for Detection and Removal of Antibiotics, Explosives, and Anions. Separation and Purification Technology. **2022**, 286, 120433.