Bimetallic Pt-M (M = Fe, Co, Ni) nanobunches assembed by ultrathin nanowires with strong synergy and rich surface defects for enhanced methanol oxidation electrocatalysis

Suwen Li^{a,b,1}, Yu Zhang^{a,b,1}, Yulan Liu^{a,b}, Fangfei Lv^{a,b}, Yiming Yan^{a,b}, Baocang Liu^c,

Lili Huo^{a,b*}

^aChemical Engineering College, Inner Mongolia University of Technology, 49 Aimin Street, Hohhot 010051, P. R. China

^bKey Laboratory of CO₂ Resource Utilization at Universities of Inner Mongolia Autonomous Region, 49 Aimin Street, Hohhot 010051, P. R. China

^cInner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China

^{*}Corresponding Author: L. Huo, Email: HuoLLl01@imut.edu.cn

Catalysts	Pt/M					
	Designed ratio	EDS	ICP	XPS		
Pt ₃ Co	75.00/25.00	79.80/20.20	75.91/24.09	71.15/28.55		
PtCo	50.00/50.00	52.61/47.39	51.87/48.13	46.06/53.94		
PtCo ₃	25.00/75.00	21.67/78.33	23.62/76.38	20.15/79.85		
Pt ₃ Ni	75.00/25.00	77.16/22.84	72.49/27.51	70.33/29.67		
PtNi	50.00/50.00	37.86/62.84	37.37/62.63	34.37/65.63		
PtNi ₃	25.00/75.00	21.32/78.68	23.35/76.65	19.71/80.29		
Pt ₃ Fe	75.00/25.00	69.62/30.38	68.39/31.61	64.23/35.77		
PtFe	50.00/50.00	45.92/54.08	46.28/53.72	42.34/57.66		
PtFe ₃	25.00/75.00	29.47/70.53	28.66/71.34	31.98/68.02		

Table S1. Actual contents of elements in different catalysts as determined by EDS, XPS and ICP-MS results

Catalyst	Media	Onset	j₽/	j _p /	ECSA
		potential/ V	mA∙mg ⁻¹ _{Pt}	mA·cm ⁻²	$(m^2 \cdot g^{-1})_{Pt}^{Pt}$
Pt ₃ Co	0.5 M H ₂ SO ₄	0.489	173.83	33.33	22.42
	1.0 M KOH	0.465	208.80	40.03	-
PtCo	0.5 M H ₂ SO ₄	0.449	632.96	78.90	74.75
	1.0 M KOH	0.375	589.85	67.50	-
PtCo ₃	0.5 M H ₂ SO ₄	0.439	419.56	22.78	40.08
	1.0 M KOH	0.485	120.09	6.52	-
Pt ₃ Ni	0.5 M H ₂ SO ₄	0.469	223.57	42.37	24.15
	1.0 M KOH	0.475	274.15	51.96	-
PtNi	0.5 M H ₂ SO ₄	0.419	908.08	84.34	103.61
	1.0 M KOH	0.395	1162.21	107.65	-
PtNi ₃	0.5 M H ₂ SO ₄	0.519	13.15	0.7	1.59
	1.0 M KOH	0.565	6.31	0.34	-
Pt ₃ Fe	0.5 M H ₂ SO ₄	0.479	225.82	39.09	23.17
	1.0 M KOH	0.455	348.92	60.39	-
PtFe	0.5 M H ₂ SO ₄	0.469	502.60	57.35	46.87
	1.0 M KOH	0.395	543.85	67.30	-
PtFe ₃	0.5 M H ₂ SO ₄	0.539	140.74	12.15	18.78
	1.0 M KOH	0.415	360.48	31.06	-
Pt/C	0.5 M H ₂ SO ₄	0.499	255.90	34.48	44.45
	1.0 M KOH	0.465	222.30	29.95	-

Table S2. The MOR performance of the catalysts in acidic and alkaline media

Figure S1. SEM images of Pt₃Co (a-c), Pt₃Fe (d-f) and Pt₃Ni NBs.

Figure S2. SEM images of PtCo3 (a-c), PtFe3 (d-f) and PtNi3 NBs.

Figure S3. XPS survey spectra of PtCo NBs.

Figure S4. XPS survey spectra of PtNi NBs.

Figure S5. XPS survey spectra of PtFe NBs.

Figure S6. CVs of Pt-Co NBs in (a) $0.5 \text{ M H}_2\text{SO}_4$, (b) $0.5 \text{ M H}_2\text{SO}_4 + 1.0 \text{ M CH}_3\text{OH}$, (c) 1.0 M KOH, and (d) $1.0 \text{ M KOH} + 1.0 \text{ M CH}_3\text{OH}$. Mass- and area-specific activities of Pt-Co NBs at 0.929 and 0.835 V (vs. RHE) in (e) $0.5 \text{ M H}_2\text{SO}_4 + 1.0 \text{ M}$ CH₃OH and (f) $1.0 \text{ M KOH} + 1.0 \text{ M CH}_3\text{OH}$, respectively.

Figure S7. CVs of Pt-Ni NBs in (a) $0.5 \text{ M H}_2\text{SO}_4$, (b) $0.5 \text{ M H}_2\text{SO}_4 + 1.0 \text{ M CH}_3\text{OH}$, (c) 1.0 M KOH, and (d) $1.0 \text{ M KOH} + 1.0 \text{ M CH}_3\text{OH}$. Mass- and area-specific activities of Pt-Ni NBs at 0.929 and 0.835 V (vs. RHE) in (e) $0.5 \text{ M H}_2\text{SO}_4 + 1.0 \text{ M}$ CH₃OH and (f) $1.0 \text{ M KOH} + 1.0 \text{ M CH}_3\text{OH}$, respectively.

Figure S8. CVs of Pt-Fe NBs in (a) $0.5 \text{ M H}_2\text{SO}_4$, (b) $0.5 \text{ M H}_2\text{SO}_4 + 1.0 \text{ M CH}_3\text{OH}$, (c) 1.0 M KOH, and (d) $1.0 \text{ M KOH} + 1.0 \text{ M CH}_3\text{OH}$. Mass- and area-specific activities of Pt-Fe NBs at 0.929 and 0.835 V (vs. RHE) in (e) $0.5 \text{ M H}_2\text{SO}_4 + 1.0 \text{ M}$ CH₃OH and (f) $1.0 \text{ M KOH} + 1.0 \text{ M CH}_3\text{OH}$, respectively.

Figure S9. TEM and HRTEM images of PtNi NBs after 2000 cycles in 0.5 M $\rm H_2SO_4$ + 1.0 M CH_3OH .