Electronic Supporting Information

Construction of honeycomb porous silicon as a high-capacity and long-life anode toward Li-ion batteries

Guangrui Han, Lang Liu, Minyu Jia, Xuting Li,* Linrui Hou, Changzhou Yuan*

School of Material Science & Engineering, University of Jinan, Jinan, 250022, P. R. China

*E-mail: mse_lixt@ujn.edu.cn (Dr. X. Li)

mse_yuancz@ujn.edu.cn; ayuancz@163.com (Prof. C. Yuan)
Fig. S1 XRD pattern of SiO$_2$ NSs.
Fig. S2 (a, b) FESEM images of SiO$_2$ NSs.
Fig. S3 (a, b) FESEM images of pristine Si and corresponding (c – h) elemental mappings of Mg, Si, Cl, O and Na.
Fig. S4 (a) FESEM, (b, c) TEM and (d) HRTEM images of Nano-Si.
Fig. S5 (a) N$_2$ adsorption-desorption isotherms and (b) pore size distribution plots of P-Si and Nano-Si as indicated.
Fig. S6 (a) CV curves (0.1 mV s$^{-1}$) and (b) charge-discharge plots (0.1 A g$^{-1}$) of Nano-Si.
Fig. S7 Charge and discharge plots of (a) Nano-Si and (b) P-Si under different current densities (0.1 – 5.0 A g$^{-1}$).
Fig. S8 Selected Charge and discharge plots of (a) Nano-Si and (b) P-Si at 0.1 A g⁻¹.
Fig. S9 Nyquist plots of P-Si and Nano-Si. The insets for the enlarged square region and corresponding equivalent circuit model for fitting, respectively.