High-quality heteroepitaxy of ε-Ga2O3 films on 4H-SiC substrates via MOCVD

Shujian Chen^{1,2}, Zimin Chen², Weiqu Chen², Paiwen Fang^{1,2}, Zesheng Lv², Bindi Cai², Congcong Che^{1,2}, Jun Liang^{1,2}*, Xinzhong Wang¹*, Gang Wang^{2,3}, and Yanli Pei^{2,3}*

¹Shenzhen Institute of Information Technology, Shenzhen 518172, China

²State Key Lab of Optoelectronics Materials & Technology, School of Electronics

and Information Technology, Sun Yat-sen university, Guangzhou 510006, PR China

³Foshan Institute of Sun Yat-Sen University, Foshan 528225, China

*E-mail : liangjun@sziit.edu.cn (Jun Liang), wangxz@sziit.edu.cn (Xinzhong Wang) , peiyanli@mail.sysu.edu.cn (yanli Pei)

Section 1. Twist extraction

The tilt and twist are extracted from the FHMWs of the measured X-ray rocking curves (XRCs) of symmetric (004) and skew symmetric (131), (133), (135) and (136) reflections. The XRCs are shown in Fig. S1 (a)-(d) and the FWHM (W) of different reflections for different samples is shown in Table S1. The tilt and twist of ε -Ga₂O₃ on 4H-SiC were calculated by following formula: [1] $W^{tilt}(\chi) = cos^{-1}[cos^2(\chi)cos(W_{out}) + sin^2(\chi)]$

$$W^{twsit}(\chi) = \cos^{-1} \left[\sin^2(\chi) \cos\left(W_{in}\right) + \cos^2(\chi) \right]$$
$$W^{tilt}_{eff}(\chi) = W^{tilt}(\chi) \exp\left(-m\frac{W^{twsit}(\chi)}{W^{twsit}(90)}\right)$$
$$W^{twist}_{eff}(\chi) = W^{twsit}(\chi) \exp\left(-m\frac{W^{tilt}(\chi)}{W^{tilt}(0)}\right)$$
$$W(\chi) = \left\{ \left[W^{tilt}_{eff}(\chi)\right]^n + W^{twist}_{eff}(\chi)\right]^n \right\}^{\frac{1}{n}}$$

where χ is the angle of inclination between crystal plane of interest and the surface normal, W_{out} and W_{in} are the out-plane tilt and in-plane twist angle. *m* is a parameter to characterize the interdependence between the tilt and the twist. The constant n = 1 + (1 - f) depends on the fraction (*f*) of the Lorentzian character in the XRD rocking curves in terms of the pseudoVoigt (PV) function, PV(x) = (1 - f)G(x) + fL(x), where G(x) and L(x) represent the Gaussian and Lorentz functions, respectively.

As shown in Fig. S2, good fittings of $W(\chi)$ as a function of χ are obtained for all samples and the values of W_{out} and W_{in} are obtained, listing in Table S2.

FIG. S1. X-ray rocking curves (XRCs) of different planes under symmetric and skew symmetric geometries. (a) $T_{necl.} = 550$ °C samples, (b) $T_{necl.} = 570$ °C samples, (c) $T_{necl.} = 600$ °C samples and (d) $T_{necl.} = 600$ °C, 5 hours samples.

Reflection	2θ (°)	X (°)	FWHM (°)			
			550 °C	570 °C	600 °C	600 °C(5h)
(131)	18.28	74.87	0.70	0.60	0.62	0.56
(133)	22.95	50.96	0.61	0.52	0.51	0.46
(135)	30.61	36.50	0.51	0.43	0.41	0.36
(136)	35.24	31.66	0.47	0.42	0.37	0.33
(004)	38.94	0	0.30	0.25	0.17	0.09

FIG. S2. $W(\chi)$ as a function of inclination angle χ . The lines are fitting results using a model developed by Srikant et al.

Table S2. The tilt and twist for different samples extracted from the mosaic model

T _{nucl.} (°C)	Growth T. (h)	W _{out} (°)	W _{in} (°)
550	2	0.30	0.73
570	2	0.25	0.63
600	2	0.17	0.66
600	5	0.09	0.58

 V. Srikant, J. S. Speck, and D. R. Clarke, "Mosaic structure in epitaxial thin films having large lattice mismatch," *J. Appl. Phys.*, vol. 82, no. 9, pp. 4286-4295, 1997, doi: 10.1063/1.366235.