Electronic Supporting Information

Facile synthesis of 2,5-dihydroxyterephthalic acid-based charge transfer cocrystal for photoelectric applications

Pei-Pei Yin,^{a,b} Yu-E Chen,^b Jia-Wei Diao,^b Yi-Yang Cheng,^b Xiao-Gang Yang,^b* Bao-Zhong Liu^a* and Lu-Fang Ma,^{a,b}

^aCollege of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000,
P. R. China.
^bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
*Corresponding Author

E-mail: bzliu@hpu.edu.cn; yxg2233@126.com

A. Experimental Section.

1. Materials and general procedures.

Without additional purification, all of the chemicals were of analytical grade and were acquired from commercial sources. Powder X-ray diffraction analysis (PXRD) patterns were collected using Cu K radiation ($\lambda = 1.5418$ Å) on a Bruker D8-ADVANCE X-ray diffractometer. Measurements were performed in a 20 range of 5–50° at room temperature, with steps of 0.02° (20) and counting intervals of 0.2 s/step. 40 KV and 40 mA of operational power were used. The C, H, and N elements were analyzed using a Perkin-Elmer 240 elemental analyzer. FT-IR spectrometer by incorporating the samples in KBr disks. Elemental analyses for carbon, hydrogen and nitrogen atoms were performed on a Vario EL III elemental analyzer. Thermogravimetric analysis (TGA) experiments were carried out using SII EXStar6000 TG/DTA6300 thermal analyzer from room temperature to 800 °C under a nitrogen atmosphere at a heating rate of 10 °C min⁻¹. An UV-3600 plus UV-vis-NIR spectrophotometer from Shimadzu was used to analyze UV-vis absorption spectra. In order to obtain room temperature photoluminescence (PL) spectra and time-resolved lifetime measurements, an Edinburgh FLS1000 fluorescence spectrometer equipped with a xenon arc lamp (Xe900) and a nanosecond flash-lamp (nF900) was used.

Optoelectronic measurements were performed with a CHI 660E electrochemical workstation (CH Instruments, Chenhua Co., Shanghai, China) by using Phen-DTPA modified indium tin oxide (ITO) as the working electrode (working area 1.0 cm²), Ag/AgCl as a reference electrode, platinum wire electrode as a counter electrode. All electrochemical tests were performed at room temperature in 0.5 M Na₂SO₄ solution. The system was conducted in a quartz glass reactor about 50 cm³, and irradiated by a 300 W Xe lamp. All the cyclic voltammograms (CV) with a scan rate of 50 mV/s, electrochemical impedance spectroscopy (EIS) measurements recorded at the

potential of 0 and -0.5 V potential in the frequency range of 100 kHz to 100 mHz. Transient photocurrent responses with the on-off cycle's illumination and constant potential electrolysis curves with bias potential of 0 and -0.5 V were tested in three-electrode system at ambient pressure and room temperature.

2. Synthesis of Phen-DTPA

Upon mixing equimolar (0.1 mmol) ethanol solutions (2 mL) of DTPA and Phen, light-yellow layered crystals of Phen-DTPA can be obtained in a few minutes. Elemental analysis calcd. (%) for $C_{20}H_{14}N_2O_6$: C 63.49, H 3.73, N 7.40; Found: C 62.92, H 3.91, N 7.73.

3. X-ray crystal structure

Single-crystal X-ray diffraction data for Phen-DTPA was collected at room temperature (293K) on an Oxford Diffraction SuperNova area-detector diffractometer using mirror optics monochromated Mo K α radiation ($\lambda = 0.71073$ Å). CrysAlisPro¹ was used for the data collection, data reduction and empirical absorption correction. The crystal structure were solved by direct methods, using SHELXS-2014 and least-squares refined with SHELXL-2014 using anisotropic thermal displacement parameters for all non-hydrogen atoms.² The crystallographic data for **1** are listed in Table S1 and 2. The CIF file of **1** (CCDC No. 2340776) can be downloaded free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html.

4. Preparation of working electrode

The ITO $(1 \times 4 \text{ cm}^2)$ substrate was washed by ethanol, and water under ultrasonic processing for about 30 min then dried in natural environment. The powder of the cocrystal complex (10 mg) were added into 1 mL anhydrous ethanol and ultrasonicated for 30 min to form suspension liquid. The working electrodes were prepared by dropping the above suspension (0.2 mL) onto the surface of the pre-treated ITO by controlling the coating area about 1 cm², and allowing it to dry at room temperature.

5. Fabrication of LED device

The powder of the Phen-DTPA cocrystal complex (20 mg) was evenly dispersed in epoxy resin. The mixture was coated on a commercial 365 nm diode chip attached with two electrode, then heated at 100 °C for 1 hour.

6. Theoretical calculations.

The density functional theory (DFT) calculations were performed based on the crystallographic information file (cif) of the title complex. Perdew-Wang (PW91)⁵ generalized gradient approximation (GGA) method was used for the full optimization of initial configuration. The self-consistent field (SCF) converged criterion was within 1.0×10^{-5} hartree atom⁻¹ and the converging criterion of the structure optimization was 1.0×10^{-3} hartree bohr⁻¹.

The density functional theory (DFT) and charge density distribution were carried out using Dmol3³ and CASTEP⁴ module in Material Studio software package⁵, respectively. The DFT calculations were calculated by the crystallographic information file (cif) of Phen-DTPA directly. While the calculations for CASTEP were performed by removing the symmetry of the crystallographic information file (cif) for the cocrystal. Perdew-Wang (PW91)⁵ generalized gradient approximation (GGA) method was used for the full optimization of initial configuration. The self-consistent field (SCF) converged criterion was within 1.0×10^{-5} hartree atom⁻¹ and the converging criterion of the structure optimization was 1.0×10^{-3} hartree bohr⁻¹.

B. Supporting Figures

Figure S1. Normalized fluorescence spectra of DTPA ethanol solution after addition of Phen (black) and Phen-DTPA cocrystal dispersed in ethanol.

Figure S2. Powder X-ray diffraction patterns (PXRD) of the simulated (black) and as-synthesized (red) title Phen-DTPA cocrystal.

Figure S3. SEM images of the as-prepared Phen-DTPA cocrystal.

Figure S4. Thermogravimetric analysis (TGA) curve of Phen-DTPA.

Figure S5. FT-IR spectrum of Phen-DTPA.

Figure S6. View of the asymmetric unit of Phen-DTPA showing inter- and intra-molecular hydrogen bonds.

Figure S7. View of 1D chain along *b* direction consisting O-H···O hydrogen bonds interactions between DTPA molecules.

Figure S8. $\pi \cdots \pi$ interactions between the phenyl ring of DTPA.

Figure S9. View of 2D double layer along *b* (a) and *c* (b) direction via inter-chain $\pi \cdots \pi$ interactions between the phenyl ring of DTPA.

Figure S10. Electron density distribution of Phen (b) and DTPA (b). Red and blue iso-surface presents electron accumulation and depletion, respectively.

Figure S11. (a) Transient current density-time curve of Phen-DTPA under -0.5 V bias potential. (b) Electrochemical impedance spectroscopy (EIS) Nyquist plots of Phen-DTPA under light and dark states with the addition of -0.5 V bias potential.

C. Supporting Table

Sample	Phen-DTPA
Chemical formula	C ₂₀ H ₁₄ N ₂ O ₆
Formula weight	378.33
Crystal system	triclinic
Space group	Pī
<i>a</i> (Å)	9.0499(8)
<i>b</i> (Å)	9.5985(10)
<i>c</i> (Å)	11.2088(11)
$V(Å^3)$	808.51(16)
a/ °	64.656(10)
eta / \circ	78.043(8)
γ/ °	66.903(9)
Ζ	2
$D (\text{g cm}^{-3})$	1.554
$\mu (\mathrm{mm}^{-1})$	0.117
<i>T</i> (K)	293(2)
R _{int}	0.0244
Goof	1.058
$R_1^{a}(I>2\sigma(I))$	0.0594
$wR_2^{b}(I>2\sigma(I))$	0.0869

Table S1. Crystallographic data and experimental details for Phen-DTPA.

 ${}^{\mathrm{a}}R_{1} = \Sigma(||F_{\mathrm{o}}| - |F_{\mathrm{c}}||) / \Sigma |F_{\mathrm{o}}|; {}^{\mathrm{b}}wR_{2} = [\Sigma w(|F_{\mathrm{o}}|^{2} - |F_{\mathrm{c}}|^{2})^{2} / \Sigma w(F_{\mathrm{o}}^{2})^{2}]^{1/2}$

D. Supporting References

- 1. CrysAlisPro, Rigaku Oxford Diffraction, Version 1.171.39.6a.
- (a) G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112; (b) G. M. Sheldrick, Acta Cryst. 2015, A71, 3–8.
- 3. B. Delley, J. Chem. Phys. 2000, 113, 7756–7764.
- S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Zeitschrift füer Kristallographie 2005, 220, 567–570.
- 5. B. Delley, J. Chem. Phys. 1990, 92, 508-517.