Theoretical and experimental study of pharmaceutical salts: A case of Trimethoprim

Liang Zhang^a, Di Wu^a, Menglong Zhang^a, Fuhai Yu^a, Ying Bao^{a,c}, Chuang Xie^{a,c}, Baohong Hou^{a,c}, Dingding Jing^d, Chuntao Zhang^{*b}, Wei Chen^{*a,c}

^a National Engineering Research Center of Industrial Crystallization Technology,
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072,
P. R. China;

^b School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China;

^c Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China;

^d Asymchem Life Science Tianjin Co., Ltd., Tianjin 300457, PR China.

Contents

Fig. S1 ROC curve for COSMO-RS methodology.

Fig. S2 PXRD patterns of TMP, coformers, salts and calculated from the single crystals. (Cal: Calculated from the crystal structure).

Fig. S3 Pawley fitting patterns of XRD of TMP salts.

Fig. S4 DSC curves of TMP and coformers.

Fig. S5 DSC curves of salts.

Fig. S6 DSC and TGA curves of TMP-2,4DA-ACN.

Fig. S7 DSC and TGA curves of TMP-2,3PA-Me.

Fig. S8 DSC and TGA curves of TMP-2,3PA-H₂O.

Fig. S9 The variable temperature XRD pattern of TMP-2,4DA-ACN.

Fig. S10 FTIR spectrogram of TMP, coformers and salts.

Fig. S11 Topological geometry of eight salts of TMP.

Fig. S12 HPLC standard curve of TMP.

Fig. S13 PXRD comparison of samples before and after storage (40°C, RH=75%) for 3 months.

Table S1. The preparation conditions for salts.

Table S2. The excess enthalpy (ΔH_{ex}) and $\Delta p K_a$ values of the reported TMP salts.

Table S3 Crystal structure parameters and fitting parameters of TMP salts.

Table S4. Crystallographic parameters of salts.

Table S5. Hydrogen bond geometrical parameters of salts

Table S6. Parameters of the hydrogen bonds for eight salts in AIM analysis.

Fig. S1 ROC curve for COSMO-RS methodology.

Fig. S2 PXRD patterns of TMP, coformers, salts and calculated from the single crystals. (Cal: Calculated from the crystal structure).

Fig. S3 Pawley fitting patterns of XRD of TMP salts.

Fig. S4 DSC curves of TMP and coformers.

Fig. S5 DSC curves of salts.

Fig. S6 DSC and TGA curves of TMP-2,4DA-ACN.

Fig. S7 DSC and TGA curves of TMP-2,3PA-Me.

Fig. S8 DSC and TGA curves of TMP-2,3PA-H₂O.

Fig. S9 The variable temperature XRD pattern of TMP-2,4DA-ACN.

Fig. S10 FTIR spectrogram of TMP, coformers and salts. (a) TMP-2,4DA-ACN, (b) TMP-1,5NAT, (c) TMP-2,5FA, (d) TMP-2,3PA-Me, (e) TMP-2,3PA-H₂O, (f) TMP-3,4,5TBA, (g) TMP-5CSA.

Fig. S11 Topological geometry of eight salts of TMP. The purple, orange, yellow and green spheres correspond to the (3, -3), (3, -1), (3, +1), (3, +3) critical points of electron density (nuclear critical point, bond critical point, ring critical point, cage critical point), respectively. The orange curve corresponds to the bond diameter. (a) TMP-2,4DA-ACN, (b) TMP-1,5NAT, (c) TMP-1,5NAT-Me, (d) TMP-2,5FA, (e) TMP-2,3PA-Me, (f) TMP-2,3PA-H₂O, (g) TMP-3,4,5TBA, (h) TMP-5CSA.

Fig. S12 HPLC standard curve of TMP.

Fig. S13 PXRD comparison of samples before and after storage (40°C, RH=75%) for 3 months.

Table S1.	The preparation	conditions for	r multicomponent	crystals.
-----------	-----------------	----------------	------------------	-----------

Compound	Detail
	Slow solvent evaporation method
TMP-2,4DA-ACN	TMP (29 mg, 0.1mmol), 2,4DA (15.4 mg, 0.1mmol), acetonitrile (4 ml)
TMP-1,5NAT	TMP (58 mg, 0.1mmol), 1,5NAT (36 mg, 0.1mmol), methanol (4ml)

TMP-2,5FA	TMP (29 mg, 0.1mmol), 2,5FA (15.6 mg, 0.1mmol), methanol (4ml)
TMP-2,3PA-Me	TMP (29 mg, 0.1mmol), 2,3PA (16.8 mg, 0.1mmol), methanol (4ml)
TMP-2,3PA-H ₂ O	TMP (58 mg, 0.2mmol), 2,3PA (16.8 mg, 0.1mmol), ethanol (4ml)
ТМР-3,4,5ТВА	TMP (29 mg, 0.1mmol), 3,4,5TBA (21.2 mg, 0.1mmol) methanol (4ml)
TMP-5CSA	TMP (29 mg, 0.1mmol), 5CSA (17.3 mg, 0.1mmol) methanol (4ml)
	Cooling crystallization method
TMP-1,5NAT-Me	TMP (1.45 g, 0.1mmol), 1,5NAT (36 mg, 0.1mmol), methanol (4ml)
	Slurry suspension method
TMP-2,4DA-ACN	TMP (1.45 g, 5 mol), 2,4DA (0.77 g, 5 mol), acetonitrile (20 ml)
TMP-1,5NAT	TMP (1.45 g, 5 mol), 1,5NAT (0.9 g, 2.5 mol), methanol (20 ml)
TMP-2,5FA	TMP (1.45 g, 5 mol), 2,5FA (0.78 g, 5 mol), ethyl acetate (20 ml)
TMP-2,3PA-Me	TMP (1.45 g, 5 mol), 2,3PA (0.84 g, 5 mol), methanol (20 ml)
TMP-2,3PA-H ₂ O	TMP (1.45 g, 5 mol), 2,3PA (0.42 g, 2.5 mol), ethanol (20 ml)
TMP-3,4,5TBA	TMP (1.45 g, 5 mol), 3,4,5TBA (1.06 g, 5 mol), ethanol (20ml)
TMP-5CSA	TMP (1.45 g, 5 mol), 5CSA (0.865 g, 5 mol), methanol (20ml)

|--|

API/Coformer	$\Delta H_{\rm ex}(\rm kcal/mol)$	pK _a	$\Delta \mathbf{p} K_{\mathbf{a}}$
TMP		7.12	
Oxalic acid	-5.357665	1.23	5.89
Sulfosalicylic acid	-5.326675	2.48	4.64
2,5-Dihydroxybenzoic acid	-4.247795	2.75	4.37
Gallic acid	-4.065365	4.24	2.88
Phthalic acid	-3.979215	2.89	4.23
Benzenesulfonic acid	-3.934695	0.70	6.42
Sulfanilic acid	-3.92702	3.24	3.88
p-Toluenesulfonic acid	-3.88384	-0.51	7.63
2-Ketoglutaric acid	-3.774315	2.47	4.65
Fumaric acid	-3.76432	3.02	4.10
3-Nitrobenzoic acid	-3.720265	3.47	3.65
3,5-Dinitrosalicylic acid	-3.701945	0.3	6.82
DL-Malic acid	-3.4344	3.46	3.66
Terephthalic acid	-3.36769	3.51	3.61
Pyridine-2,6-dicarboxylic acid	-3.343745	2.16	4.96

p-Nitrobenzoic acid	-2.97194	3.41	3.71
Succinic acid	-2.919295	4.16	2.96
Salicylic acid	-2.87963	2.98	4.14
2,6-Dihydroxybenzoic acid	-2.63133	1.30	5.82
2-Picolinic acid	-2.5365	1.07	6.05
Malonic acid	-2.51721	2.83	4.29
Glutaric acid	-2.409645	4.31	2.81
5-Methyl-2-thiophenecarboxylic acid	-2.337725	3.75	3.37
Adipic acid	-2.28998	4.43	2.69
Sebacic acid	-2.10115	4359	2.53
Flufenamic acid	-2.09056	3.90	3.22
Tolfenamic acid	-2.050175	3.66	3.46
3-Chlorobenzoic acid	-2.02994	3.82	3.30
Mefenamic acid	-2.01616	4.20	2.92
Syringic acid	-2.013465	4.20	2.92
2-Nitrobenzoic acid	-1.61943	2.16	4.96
trans-Cinnamic acid	-1.497265	4.44	2.68
Trifluoroacetic acid	-1.425355	0.30	6.82
Sorbic acid	-1.34473	4.76	2.36
Nicotinic acid	-1.167365	4.85	2.27

^aAll the reported TMP salt were obtained from the CCDC database; all the pK_a values were obtained from CAS SciFinder.

 Table S3 Crystal structure parameters and fitting parameters of TMP salts.

Compounds		a (Å)	b (Å)	c (Å)	a (°)	β (°)	γ (°)	Rwn(%)
		u (11)	0(11)	• (11)	ω()	P()	1()	100p(70)
	Single	12.0964	9.7449	20.4019	90	101.150	90	
TMP-2,4DA-	crystal							
ACN	Pawley	11.9428	9.7353	20.2245	90	101.290	90	10.23
	fit							
	Single	12.2812	11.5143	14.0953	90	107.887	90	
TMP-	crystal							
1,5NAT	Pawley	12.2238	11.6123	14.0885	90	107.726	90	14.22
	fit							
	Single	16.9699	17.1267	17.9029	63.782	64.481	84.746	
TMD 2 5EA	crystal							
1МР-2,3ГА	Pawley	16.8877	17.1563	17.9839	64.028	64.797	84.718	6.28
	fit							
	Single	14.4664	12.6295	12.7478	90	111.155	90	
TMP-2,3PA-	crystal							
Me	Pawley	14.2329	12.3525	12.4719	90	111.202	90	4.40
	fit							
	Single	10.6038	12.9331	14.4781	67.818	84.598	84.690	
TMP-2,3PA-	crystal							
H ₂ O	Pawley	10.2182	12.5668	13.8210	67.208	85.659	84.740	9.85
-	fit							

тмр	Single	17.5775	8.5067	16.7661	90	106.408	90	
1 IVIF -	crystar							
3,4,5TBA	Pawley	17.1566	8.3423	16.2581	90	107.076	90	8.34
	fit							
	Single	11.7204	8.4362	21.7076	90	98.393	90	
	crystal							
TMP-5CSA	Pawley	11.9513	8.7628	22.0095	90	98.906	90	10.51
	fit							

Table S4. Crystallographic parameters	of salts.
---------------------------------------	-----------

compound	TMP-5CSA	TMP-3,4,5TBA	TMP-1,5NAT	TMP-2,4DA-ACN
Empirical formula	C ₂₁ H ₂₃ ClN ₄ O ₆	$C_{24}H_{30}N_4O_8$	$C_{38}H_{44}N_8O_{12}S_2$	$C_{23}H_{27}N_5O_7$
Formula weight	462.88	502.52	868.93	485.49
Temperature (K)	113.15	293	113.15	293
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/c$	$P2_1/n$	$P2_1/c$
a (Å)	11.7204(2)	17.5775(9)	12.2812(2)	12.0964(3)
b (Å)	8.4362(2)	8.5067(4)	11.5143(2)	9.7449(2)
c (Å)	21.7076 (5)	16.7661(9)	14.0952(2)	20.4019(6)
α (°)	90	90	90	90
β (°)	98.393(2)	106.408(6)	107.887(2)	101.150(2)
γ (°)	90	90	90	90
Ζ	4	4	2	4
Volume(Å ³)	2123.37(8)	2404.9(2)	1896.85(6)	2359.54(10)
$\rho_{calc}\left(g/cm^3\right)$	1.448	1.388	1.521	1.367
$\mu(mm^{-1})$	0.227	0.105	0.219	0.103
F(000)	968.0	1064.0	912.0	1024.0
Reflections collected	29871	19423	26794	50758
R _{int}	0.0484	0.0993	0.0334	0.0862
Goodness-of-fit on F ²	1.036	1.144	1.009	1.062
R_1 indexes $[I > 2\sigma (I)]$	0.0441	0.0918	0.0365	0.0944

wR ₂ indexes (all data)	0.1178	0.2000	0.0984	0.2138
CCDC	2283871	2283924	2283930	2283958
compound	TMP-1,5NAT-2Me	2TMP-2,3PA-H ₂ O	TMP-2,3PA-Me	TMP-2,5FA
Empirical formula	$C_{26}H_{34}N_4O_{11}S_2$	$C_{34}H_{42}N_{10}O_{11} \\$	$C_{20.37}H_{23.49}N_6O_{7.2}$	$C_{20}H_{22}N_4O_8$
Formula weight	642.69	766.77	470.37	446.41
Temperature (K)	293(2)	293(2)	113.15	113.15
Crystal system	triclinic	triclinic	monoclinic	triclinic
Space group	р1	pl	$P2_1/c$	pl
a (Å)	11.43180(10)	10.6038(7)	14.4664(4)	16.9699(4)
b (Å)	11.93110(10)	12.9331(11)	12.6295(2)	17.1267(5)
c (Å)	12.8427(2)	14.4781(8)	12.7478(4)	17.9029(3)
α (°)	83.4930(10)	67.818(6)	90	63.782(3)
β (°)	68.6770(10)	84.598(5)	111.155(3)	64.481(2)
γ (°)	61.8010(10)	84.690(6)	90	84.746(2)
Ζ	2	2	4	8
Volume(Å ³)	1434.43(3)	1826.9(2)	2172.10(11)	4181.1(2)
$\rho_{calc}\left(g/cm^3\right)$	1.488	1.394	1.438	1.418
$\mu(mm^{-1})$	0.254	0.893	0.112	0.111
F(000)	676.0	808.0	987.0	1872.0
Reflections collected	37718	24796	30763	17016
R _{int}	0.0416	0.0774	0.0854	
Goodness-of-fit on F ²	1.037	1.026	1.020	1.030
R_1 indexes $[I > 2\sigma (I)]$	0.0464	0.0600	0.0512	0.0595
wR2 indexes (all data)	0.1201	0.1786	0.1395	0.1662
CCDC	2288509	2288508	2283935	2286188

 Table S5. Hydrogen bond geometrical parameters of salts.

D-H····A	d(D-H)/ Å	d(H…A)∕ Å	d(D…A)∕ Å	$\theta(D-H\cdots A)/^{\circ}$	Symmetry code
TMP-2,4DA-ACN					
$N_1\!\!-\!\!H_1\!\cdots\!O_7$	0.86	1.84	2.696(2)	172	
$N_3 – H_{3A} \cdots O_1$	0.86	2.18	3.005(2)	160	1+x,y,z
$N_3 – H_{3B} \cdots O_6$	0.86	2.00	2.855(2)	174	
$N_4\!\!-\!\!H_{4B}\!\cdots\!N_{22}$	0.86	2.31	3.100(3)	154	
$O_4 – H_{4C} \cdots O_7$	0.82	1.81	2.623(2)	148	1-x,-1/2+y,3/2-z
O_5 - H_5 ··· O_6	0.82	1.77	2.500(2)	148	
$C_5 – H_{5A} \cdots O_5$	0.96	2.35	3.219(3)	150	-1+x,3/2-y,-1/2+z
C_5 – H_{5B} ···O ₅	0.96	2.42	3.210(3)	139	-x,2-y,1-z
$C_5 – H_{5B} \cdots O_3$	0.96	2.31	3.122(3)	142	-x,2-y,1-z
C_7 – H_7 ···· N_2	0.93	2.57	3.471(2)	162	1-x,2-y,1-z
TMP-1,5NAT					
$N_1 – H_{1A} \cdots O_6$	0.879(19)	2.200(19)	2.9944(15)	150.2(16)	2-x,-y,1-z
$N_1 – H_{1B} \cdots O_5$	0.875(19)	2.08(2)	2.9258(15)	162.5(18)	
$N_2 – H_{2A} \cdots O_6$	0.864(19)	2.081(18)	2.8405(14)	146.3(17)	1/2+x,1/2-y,1/2+z
$N_2 – H_{2B} \cdots O_3$	0.89(2)	2.47(2)	3.3210(15)	159.2(17)	1/2+x,3/2-y,1/2+z
$N_4 – H_4 \cdots O_4$	0.888(17)	1.863(17)	2.7503(13)	177.2(14)	
$C_4 – H_{4A} \cdots O_1$	0.95	2.28	3.1515(14)	152	1-x,1-y,1-z
C_{16} - H_{16} ···O ₅	0.95	2.41	2.8328(14)	107	
$C_{18} – H_{18} \cdots O_4$	0.95	2.49	3.0552(15)	118	1-x,-y,1-z
TMP-1,5NAT-Me					
$N_1\!\!-\!\!H_{1A}\!\cdots\!O_{10}$	0.86	2.14	2.8648(15)	141	
$N_1 – H_{1B} \cdots O_9$	0.86	2.05	2.8490(19)	154	1-x,1-y,-z
N_2 - H_2 ···O ₇	0.86	1.82	2.6731(15)	175	
$N_3 – H_{3A} \cdots O_5$	0.86	1.95	2.8021(17)	170	
$N_3 – H_{3B} \cdots O_8$	0.86	2.08	2.8895(15)	158	
N_4 - H_4 ···O_6	0.86	1.84	2.6777(16)	164	
$O_{10} - H_{10} \cdots O_{11}$	0.82	1.94	2.753(2)	170	
O_{11} - H_{11} ···· O_8	0.86	2.06	2.8897(15)	161	1-x,1-y,-z
C_1 – H_{1D} ···· N_3	0.96	2.57	3.5088(17)	167	x,-1+y,z
C_3 – H_{3C} ···· O_4	0.96	2.56	3.412(2)	148	-1+x,y,z
$C_{10}H_{10A}O_9$	0.97	2.59	3.3171(17)	132	1-x,1-y,-z
C_{12} - H_{12} ···· O_1	0.93	2.30	3.1033(15)	144	1-x,-y,1-z
$C_{15} - H_{15} \cdots O_4$	0.93	2.60	3.1861(16)	122	2-x,-y,1-z
TMP-2,5FA					
$N_1 – H_1 \cdots O_{21}$	0.88	1.94	2.752(3)	153	1+x,1+y,-2+z
$N_1\!\!-\!\!H_{2A}\!\cdots\!N_7$	0.88	2.23	3.082(4)	162	1-x,-y,-z

$N_2 – H_{2B} \cdots O_{22}$	0.88	2.37	3.247(3)	178	1+x,1+y,-2+z
$N_2 – H_{2B} \cdots O_{23}$	0.88	2.52	2.985(3)	114	1+x,1+y,-2+z
$N_4 – H_{4A} \cdots O_5$	0.88	2.18	3.049(3)	171	
$N_4 – H_{4A} \cdots O_6$	0.88	2.56	2.895(3)	104	
$N_4 – H_{4B} \cdots O_7$	0.88	2.35	3.130(3)	148	
$O_4 – H_{4C} \cdots O_{12}$	0.860(13)	1.627(14)	2.485(2)	175(4)	x,y,-1+z
$N_5\!\!-\!\!H_{5A}\!\cdots\!O_{18}$	0.88	2.02	2.898(3)	178	-x,-y,1-z
$N_5 – H_{5B} \cdots O_8$	0.88	2.11	2.971(3)	167	
N_6 - H_6 ···O ₁₂	0.88	1.90	2.729(3)	155	1-x,-y,1-z
$N_8\!\!-\!\!H_{8A}\!\cdots\!O_{23}$	0.88	1.93	2.805(3)	175	x,y,-1+z
$N_8 – H_{8B} \cdots O_{20}$	0.88	2.37	3.030(3)	132	x,y,-1+z
$O_9 – H_{9A} \cdots O_8$	0.85(7)	1.61(7)	2.447(3)	169(8)	
$C_4 – H_4 \cdots O_7$	0.95	2.46	3.343(4)	154	
$C_{10} – H_{10D} \cdots O_7$	0.99	2.49	3.417(4)	155	
C_{17} - H_{17} ···N ₅	0.95	2.54	3.400(3)	150	
TMP-2,3PA-Me					
$N_1 – H_{1A} \cdots O_5$	0.87(2)	1.95(2)	2.8117(17)	170(2)	-x,-1/2+y,1/2-z
$N_1 – H_{1B} \cdots N_5$	0.85(2)	2.20(2)	3.0151(16)	162.8(19)	
$N_1 – H_2 \cdots O_4$	0.89(2)	1.91(2)	2.7689(15)	161.3(19)	
$N_4 – H_{4A} \cdots O_4$	0.897(19)	2.364(19)	3.1907(17)	153.3(15)	-x,1-y,-z
$N_4 – H_{4B} \cdots N_6$	0.90(2)	2.126(19)	2.9761(16)	158.0(18)	x,y,-1+z
$O_7 – H_{7B} \cdots O_4$	0.92(2)	1.66(2)	2.5729(13)	171(2)	x,3/2-y,1/2+z
C_2 - H_{2A} ···O ₆	0.95	2.46	3.1713(15)	131	x,3/2-y,-1/2+z
TMP-2,3PA-H ₂ O					
$N_1\!\!-\!\!H_{1A}\!\cdots\!O_{11}$	0.88(3)	2.41(3)	3.039(3)	129(2)	-1+x,y,z
$N_1 – H_{1B} \cdots O_9$	0.87(4)	2.28(4)	3.145(3)	172(4)	1-x,1-y,1-z
N_3 - H_{3A} ···O ₅	0.84(3)	2.09(3)	2.916(3)	167(3)	1-x,1-y,1-z
$N_3 – H_{3B} \cdots O_4$	0.90(4)	1.99(4)	2.799(3)	148(4)	
$N_4 – H_4 \cdots O_4$	0.92(4)	1.97(4)	2.792(3)	148(4)	
N_4 - H_4 ··· N_5	0.92(4)	2.33(4)	3.047(3)	135(3)	
N_7 – H_{7A} ···O ₅	0.93(3)	2.05(3)	2.801(4)	138(3)	
$N_7\!\!-\!\!H_{7B}\!\cdots\!N_2$	0.90(4)	2.05(4)	2.938(3)	166(4)	1-x,1-y,1-z
$N_8 – H_8 \cdots O_7$	1.04(3)	1.55(4)	2.592(3)	176(4)	
$N_{10} - H_{10A} \cdots O_{11}$	0.91(4)	1.95(4)	2.842(3)	165(3)	2-x,1-y,1-z
$O_{11}\!\!-\!\!H_{11A}\!\cdots\!O_8$	0.80(4)	2.19(4)	2.922(4)	152(4)	-1+x,-1+y,z
$O_{11} – H_{11B} \cdots O_4$	1.00(5)	1.79(5)	2.779(3)	171(4)	
C_1 – H_{1D} ···· N_6	0.96	2.61	3.570(4)	177	1-x,1-y,-z
C_2 - H_{2A} ···· O_3	0.96	2.46	2.817(5)	102	

$C_{10} - H_{10D} \cdots O_5$	0.97	2.47	3.433(4)	172	-1+x,-1+y,z
C_{17} - H_{17} ··· O_2	0.93	2.37	3.275(4)	164	-x,1-y,-z
$C_{25}\!\!-\!\!H_{25A}\!\cdots\!N_6$	0.97	2.55	3.434(3)	152	2-x,2-y,-z
$C_{27}\!\!-\!\!H_{27}\!\cdots\!O_6$	0.93	2.42	3.308(4)	160	1+x,y,z
TMP-3,4,5TBA					
$N_1\!\!-\!\!H_1\!\cdots\!O_5$	0.86	1.79	2.641(4)	168	
$N_3\!\!-\!\!H_{3A}\!\cdots\!O_4$	0.88(4)	2.08(4)	2.949(4)	166(4)	1-x,-1/2+y,3/2-z
$N_3 – H_{3B} \cdots O_4$	1.02(5)	1.09(5)	2.914(4)	171(4)	
$N_4\!\!-\!\!H_{4A}\!\cdots\!N_2$	0.86	2.29	3.131(4)	164	1-x,-y,1-z
$N_4\!\!-\!\!H_{4B}\!\cdots\!O_4$	0.86	2.20	2.865(4)	134	x,1/2-y,-1/2+z
$C_2 – H_{2B} \cdots O_3$	0.96	2.49	2.874(4)	104	
$C_3 – H_{3D} \cdots O_2$	0.96	2.41	2.924(4)	113	
$C_3 – H_{3E} \cdots O_5$	0.96	2.58	3.376(4)	141	x,1/2-y,-1/2+z
TMP-5CSA					
$N_1\!\!-\!\!H_{1A}\!\cdots\!O_5$	0.88(2)	1.91(2)	2.7860(17)	173.8(19)	
$N_1\!\!-\!\!H_{1B}\!\cdots\!O_4$	0.866(18)	2.42(2)	2.9868(18)	123.9(15)	-1/2-x,1/2+y,1/2-z
$N_2 – H_{2A} \cdots O_6$	0.902(18)	2.198(18)	3.0455(17)	156.4(18)	x,1+y,z
$N_2 – H_{2B} \cdots O_2$	0.89(2)	2.445(19)	3.2278(17)	147.2(16)	1-x,3-y,1-z
$N_2 – H_{2B} \cdots O_3$	0.89(2)	2.535(19)	3.0538(16)	118.0(14)	1-x,3-y,1-z
$N_4 – H_4 \cdots O_6$	0.902(17)	1.840(17)	2.7350(16)	171.7(18)	
$O_4 – H_{4B} \cdots O_5$	0.97(3)	1.60(3)	2.5201(17)	157(2)	
$C_4 – H_{4A} \cdots O_3$	0.95	2.47	3.3174(17)	148	1-x,2-y,1-z
$C_{13} – H_{13A} \cdots O_1$	0.98	2.36	2.9535(19)	118	
$C_{14}\!\!-\!\!H_{14C}\!\cdots\!O_6$	0.98	2.59	3.2719(19)	127	1-x,2-y,1-z
C_{19} - H_{19} ··· O_1	0.95	2.50	3.4300(19)	168	1/2-x,-3/2+y,1/2-z

Table S6. Parameters of the hydrogen bonds for eight salts in AIM analysis.

Bond type	ρ (a.u.)	$\nabla^2 \rho$ (a.u.)	G (a.u.)	V (a.u.)	H (a.u.)	E (kcal/mol)
		TI	MP-2,4DA-AG	CN		
$N_1 – H_1 \cdots O_7$	0.03350	0.13192	0.03113	-0.02927	0.00185	-12.19949
N_3 – H_{3B} ···O ₆	0.02309	0.09353	0.02038	-0.01738	0.00300	-8.73983
$N_3 – H_{3A} \cdots O_1$	0.01416	0.06047	0.01238	-0.00965	0.00273	-5.77203
			TMP-1,5NAT			
$N_4\!\!-\!\!H_4\!\cdots\!O_4$	0.03017	0.12467	0.02867	-0.02616	0.00250	-11.09280
N_2 - H_{2B} ···O ₆	0.01879	0.07936	0.01672	-0.01360	0.00312	-7.31077
N_1 – H_{1B} ···O ₅	0.01837	0.07624	0.01613	-0.01320	0.00293	-7.17119
$N_1 – H_{1A} \cdots O_6$	0.01437	0.05696	0.01189	-0.00954	0.00235	-5.84183
		TI	MP-1,5NAT-N	Ле		

N_2 - H_2 ···O ₇	0.03298	0.15890	0.03599	-0.03225	0.00374	-12.02667
N_4 - H_4 ··· O_6	0.03151	0.15024	0.03375	-0.02994	0.00381	-11.53813
$O_{10} - H_{10} \cdots O_{11}$	0.02545	0.10823	0.02435	-0.02165	0.00271	-9.52415
$N_3 – H_{3A} \cdots O_5$	0.02429	0.11048	0.02378	-0.01995	0.00384	-9.13864
$N_1\!\!-\!\!H_{1B}\!\cdots\!O_9$	0.01982	0.08624	0.01818	-0.01480	0.00338	-7.65308
O_{11} - H_{11} ··· O_8	0.01917	0.07656	0.01682	-0.01449	0.00233	-7.43706
$N_3 – H_{3B} \cdots O_8$	0.01915	0.08193	0.01733	-0.01419	0.00315	-7.43041
$N_1 – H_{1A} \cdots O_{10}$	0.01857	0.07295	0.01573	-0.01322	0.00251	-7.23765
			TMP-2,5FA			
$N_9 – H_9 \cdots O_{28}$	0.02583	0.12160	0.02623	-0.02206	0.00417	-9.65044
$N_5 – H_{5B} \cdots O_8$	0.01784	0.06840	0.01455	-0.01199	0.00255	-6.99505
$N_4 – H_{4A} \cdots O_5$	0.01430	0.05735	0.01178	-0.00921	0.00256	-5.81856
N_{12} - H_{12A} ···O ₁₃	0.01323	0.04584	0.00959	-0.00773	0.00186	-5.46296
N_{12} - H_{12B} ···· O_{10}	0.01137	0.04181	0.00879	-0.00712	0.00167	-4.84481
$N_4\!\!-\!\!H_{4B}\!\cdots\!O_7$	0.01120	0.03979	0.00838	-0.00681	0.00157	-4.78831
N_{10} - H_{10B} ···O ₂₇	0.00970	0.03874	0.00776	-0.00584	0.00192	-4.28980
		,	TMP-2,3-Me			
$N_2 – H_2 \cdots O_4$	0.02622	0.11627	0.02551	-0.02196	0.00356	-9.78005
$N_4 \!\!-\!\! H_{4A} \!\cdots \! O_4$	0.02593	0.08290	0.01997	-0.01921	0.00076	-9.68368
$N_1 – H_{1A} \cdots O_5$	0.02369	0.10464	0.02237	-0.01858	0.00379	-8.93923
$N_1 – H_{1B} \cdots N_5$	0.01827	0.06392	0.01347	-0.01097	0.00251	-7.13795
$C_2 – H_{2A} \cdots O_6$	0.00908	0.03365	0.00695	-0.00550	0.00146	-4.08375
		TN	ИР-2,3РА-Н ₂	0		
$N_8\!\!-\!\!H_8\!\cdots\!O_7$	0.07027	0.14088	0.05427	-0.07332	-0.01905	-24.41963
N_4 – H_4 ···O_4	0.02605	0.09347	0.02151	-0.01965	0.00186	-9.72356
N_{10} - H_{10A} ···O ₁₁	0.02513	0.10461	0.02307	-0.01998	0.00308	-9.41780
$N_7\!\!-\!\!H_{7B}\!\cdots\!N_2$	0.02358	0.08510	0.01870	-0.01613	0.00258	-8.90268
$N_3 – H_{3B} \cdots O_4$	0.02253	0.09867	0.02064	-0.01737	0.00327	-8.55372
$N_7\!\!-\!\!H_{7A}\!\cdots\!O_5$	0.01891	0.08582	0.01778	-0.01410	0.00368	-7.35065
$N_3 – H_{3A} \cdots O_5$	0.01888	0.07470	0.01590	-0.01312	0.00278	-7.34068
$N_1 – H_{1B} \cdots N_9$	0.01503	0.05126	0.01054	-0.00826	0.00228	-6.06117
N_4 – H_4 ··· N_5	0.01427	0.05027	0.01046	-0.00835	0.00211	-5.80860
$N_1\!\!-\!\!H_{1A}\!\cdots\!O_{11}$	0.00955	0.03875	0.00799	-0.00630	0.00169	-4.23995
		Т	MP-3,4,5TBA	A		
$N_1 – H_1 \cdots O_5$	0.03713	0.15322	0.03670	-0.03509	0.00161	-13.40588
$N_3 – H_{3B} \cdots O_4$	0.02804	0.10040	0.02337	-0.02165	0.00173	-10.38491
$N_3 – H_{3A} \cdots O_4$	0.02288	0.09496	0.02084	-0.01795	0.00290	-8.67004
$N_4 – H_{4B} \cdots O_4$	0.01483	0.06626	0.01359	-0.01061	0.00298	-5.99470

$N_4 – H_{4A} \cdots N_2$	0.01443	0.05137	0.01053	-0.00821	0.00232	-5.86177
$C_{17} - H_{17} \cdots N_4$	0.00802	0.02230	0.00493	-0.00410	0.00082	-3.73147
			TMP-5CSA			
N_4 - H_4 ··· O_6	0.03351	0.12525	0.03007	-0.02883	0.00124	-12.20281
$N_1\!\!-\!\!H_{1A}\!\cdots\!O_5$	0.02742	0.11411	0.02548	-0.02243	0.00304	-10.17886
$N_2\!\!-\!\!H_{2A}\!\cdots\!O_6$	0.01429	0.05328	0.01115	-0.00898	0.00217	-5.81524
$N_2\!\!-\!\!H_{2B}\!\cdots\!O_2$	0.00856	0.03238	0.00667	-0.00525	0.00142	-3.91093
N_2 - H_{2B} ···O ₃	0.00833	0.03331	0.00690	-0.00547	0.00143	-3.83450