Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

2D Hexagonal CuGaSe₂ Nanosheets by Microwave Assisted Synthesis Method: The Photo Response and Optical Study for Optoelectronic Applications

P. Priyadarshini¹, S. Senapati^{1*}, Prabhukrupa C Kumar¹, D. Alagarasan², Rojalin Sahu³, R. Naik^{1*}

¹Institute of Chemical Technology, Indian Oil Odisha Campus, Bhubaneswar, 751013, India.

²Department of Physics, Nitte Meenakshi Institute of Technology, Yelahanka, Bengaluru, 560064, India

³Department of Chemistry, School of Applied Science, KIIT Deemed to be University, Bhubaneswar, 751024, India

*Corresponding author: subrata.uu@gmail.com; ramakanta.naik@gmail.com

Fig. S1. XRD pattern of CGS with different irradiation time.

Sample	CuSe (1 1 2)		Cu ₂ Se (0 6 0)		Ga ₂ Se ₃ (2 0 0)	
	Peak position (2θ ₁₁₂)	FWHM	Peak position (2θ ₀₆₀)	FWHM	Peak position (2θ ₂₀₀)	FWHM
CGS-	27.89	0.34	25.17	0.26	28.20	0.27
3mins						
CGS-	27.91	0.39	25.19	0.24	28.21	0.29
5mins						
CGS-	27.92	0.31	25.21	0.25	28.21	0.28
10mins						
CGS-	27.91	0.41	25.20	0.27	28.25	0.31
15mins						
CGS-	27.93	0.37	25.23	0.26	28.23	0.32
20mins						

Table S1. The variation in positions and FWHM values of CuSe (1 1 2), Cu_2Se (0 6 0), and Ga_2Se_3 (2 0 0) for all samples.

Fig. S2. Nanosheet thickness variation of CGS with different irradiation time.

Sample	CGS-3mins			CGS-20mins		
Elements	EDX	XPS	ICP-	EDX	XPS	ICP-OES
			OES			
Cu	25.01	24.66	24.56	25.21	25.11	24.76
Ga	24.78	24.59	24.33	25.54	24.97	24.34
Se	50.21	50.75	51.11	49.25	49.92	50.90
Total	100	100	100	100	100	100

Table S2. The composition analysis table of irradiation varied CGS NS.

Fig. S3. Cumulative current-voltage curve of CGS NS under dark conditions.

Fig. S4. Resistance evaluation in dark conditions for all studied samples.