# **Supporting Information**

# **Crystal to Crystal Polymorphic Phase Transition in a Cocrystal Accompanied by Expansion and Surface Wettability Change**

Plabon Saikia,<sup>a</sup> Poonam Gupta,<sup>a</sup> Tridib R. Nath<sup>b</sup> and Naba K. Nath<sup>a</sup>\*

<sup>a</sup>Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, India.

<sup>b</sup>Sophisticated Analytical Instrumentation Centre, Tezpur University, Tezpur 784001, Assam, India.

E-mail: nabakamal.nath@gmail.com, nabakamal.nath@nitm.ac.in

### Content

|                                                                               | Page no    |
|-------------------------------------------------------------------------------|------------|
| 1. Supporting methods                                                         | S3-S4      |
| Reagents                                                                      | S3         |
| Synthesis of PP                                                               | S3         |
| Synthesis of BPA                                                              | S3         |
| Synthesis of cocrystal                                                        | S3         |
| Instrumentation                                                               | S4         |
| 2. Supporting figures                                                         | S5-S17     |
| Figure S1. FT-IR spectra of BPA, PP and PP                                    | S5         |
| Figure S2. <sup>1</sup> H NMR spectra of PP                                   | <b>S</b> 6 |
| Figure S3. <sup>1</sup> H NMR spectra of BPA                                  | <b>S</b> 7 |
| Figure S4. ORTEP with 50% probability ellipsoid                               | <b>S</b> 7 |
| Figure S5. TGA for the cocrystal.                                             | S8         |
| Figure S6. Simulated and experimental PXRDs of polymorph 1                    | S9         |
| Figure S7. FT-IR comparison of the polymorphs.                                | S10        |
| Figure S8. PXRD of polymorph 1 after grinding experiments.                    | S11        |
| Figure S9. PXRD of polymorph 2 after grinding experiments.                    | S12        |
| Figure S10. Pictures of crystals before and after the phase transition.       | S13        |
| Figure S11. BFDH morphology showing wider face.                               | S14        |
| Figure S12. Contact angle for polymorph 1 and polymorph 2 using water as a    | S14-S15    |
| probe liquid                                                                  |            |
| Figure S13. Contact angle for both polymorphs using diiodomethane as a        | S16-S17    |
| probe liquid.                                                                 |            |
| 3. Supporting Table                                                           | S18-S20    |
| Table S1. Crystallography Table                                               | S18        |
| Table S2. Length and width of the crystals before and after phase transition. | S19        |
| Table S3. Surface free energy (in $mJ/m^2$ ) calculation for Polymorph 1.     | S20        |
| Table S4. Surface free energy (in $mJ/m^2$ ) calculation for Polymorph 2.     | S20        |
| 3. Supporting Video                                                           | S20        |

#### 1. Supporting Methods

**Reagents:** *p*-Hydroxybenzoic Acid (SRL), *n*-propyl alcohol (Spectrochem), sulfuric acid (Finar), hydrazine monohydrate (Spectrochem), 4-pyridine carboxaldehyde (Sigma-Aldrich), ethanol (SRL) diiodomethane (TCI) were used as received.

**Synthesis of PP:** 1 equivalent (3.62 m mol, 0.5 g) of *p*-hydroxybenzoic acid was added to a one necked round bottom flask containing 10.16 equivalent (36.57 mmol, 2.73 ml) *n*-propanol. Catalytic amount of conc.  $H_2SO_4$  (0.21 equivalent, 0.756 m mol, 0.04 ml) was added to the reaction mixture and the resulting solution was refluxed for 4 hours. Excess *n*-propanol was distilled off, and the residue obtained was purified by solvent extraction. The residue was mixed with dichloromethane and water and shaken vigorously in a separatory funnel. The lower organic layer containing the product was collected, and the upper layer (aqueous) was discarded. The organic layer was again introduced in the separatory funnel, mixed with a sodium hydrogen carbonate solution and shaken vigorously to eliminate any leftover free acid. The organic layer was collected in a beaker containing anhydrous sodium sulphate to remove traces of water, filtered, and the solution was distilled off to obtain the pure PP.



Scheme S1. Synthesis of PP.

**Synthesis of BPA:** 1 equivalent (4.67 m mol, 0.44 ml) of 4-pyridine carboxaldehyde was added to a beaker containing a solution of 0.5 equivalent of hydrazine hydrate (2.33 m mol, 0.11 ml) in ethanol. The resulting reaction mixture was stirred vigorously at room temperature for 4 hours. The obtained precipitate was filtered, dried, and recrystallized to purify the product.



Scheme S2: Synthesis of BPA

**Synthesis of Cocrystal:** The cocrystal BPA and PP was prepared by grinding both the compounds in a ball mill grinder, at a speed of 400 RPM for 3 hours. The BPA and PP were taken in a 1:2 stoichiometric ratio, and a block-type crystal of the co-crystal was obtained by slow evaporation from methanol solvent.

#### Instrumentation

**Thermal microscopy**: Thermal microscopy was carried out with a Leica DM 2700P microscope attached to a Linkam thermal stage and equipped with a Leica MC170HD camera. The heat-induced mechanical effects were studied with a Leica M80 microscope equipped with an MC170HD camera. Analysis of the videos was carried out with LAS Ver. 4.9.0 software. The crystals were heated with IKAC-MAG HS 7 hot plate to induce the mechanical motion of the crystals.

FT-IR: The FT-IR spectra were recorded with a Perkin Elmer FTIR spectrometer in UATR mode.

<sup>1</sup>**HNMR:** <sup>1</sup>HNMR spectra of the two starting materials PP and BPA were recorded by using Bruker Avance 400 MHz spectrometer (Bruker-Biospin, Karlsruhe, Germany) in a CD<sub>3</sub>OD solvent.

**Scanning Electron Microscope:** The scanning electron microscopy (SEM) of the two polymorphs was carried out with JSM 6390LV scanning electron microscope.

**Differential Scanning Calorimetry:** DSC was performed on a Mettler Toledo DSC instrument at a heating rate of 10  $^{\circ}$ C min<sup>-1</sup> aluminium pan under an ultra-high pure nitrogen environment purged at 40 mL min<sup>-1</sup>.

**Powder X-ray Diffraction:** Powder X-ray Diffraction was carried out using Cu K $\alpha$  ( $\lambda$ = 1.54 Å) radiation in the range of 5°-50° using Rigaku powder X-ray diffractometer (Model: SmartLab SE).

**Contact Angle:** The contact angle measurements were carried out using a DMs-401 contact angle meter.

**Single Crystal X-ray Diffraction**: The X-ray diffraction data was collected on a Bruker AXS SMART APEX-I diffractometer. The APEX II program was used to determine the unit cell parameters and data collection. SADABS (Bruker, 2016/2) was used for absorption correction. SAINT (V8.38A, Bruker, 2018) is used for unit cell refinement and data reduction, and Olex 2 (Bourhis et al., 2015) is used for structural refinement. All hydrogen atoms except O—H hydrogens are placed at calculated positions, whereas O—H hydrogens are located from the electron density map.

## 2. Supporting Figures



Figure S1. FT-IR spectra of (a) BPA, (b) cocrystal, and (c) PP.



Figure S2. <sup>1</sup>H NMR spectra of PP.







Figure S4. ORTEP with 50% probability ellipsoid.



Figure S5. TGA for the cocrystal of BPA and PP.



**Figure S6**. Comparison of (a) simulated and (b) experimental PXRDs of polymorph 1 of the cocrystal. The difference in intensity on the experimental PXRD pattern may be due to the preferred orientation. Black dotted lines are drawn to show the matching of major peak positions.



Figure S7. FT-IR comparison of the polymorph 1 and 2.



**Figure S8**. Experimental PXRD of (a) polymorph 1 crystals at room temperature, (b) after solid-state grinding of polymorph 1 crystal for 1 hour, (c) solvent-mediated grinding of polymorph 1 crystals for 1 hour, d) simulated PXRD of polymorph 1.



**Figure S9**. Experimental PXRD of (a) polymorph 2 crystals, (b) after solid-state grinding of polymorph 2 crystals or 1 hour, (c) after solvent-mediated grinding of polymorph 2 for 1 hour, (d) simulated PXRD of Polymorph 1.



Figure S10. Crystals of BPA-PP cocrystal are undergoing expansion and cracking after the phase transition.



Figure S11. BFDH morphology showing wider face.





Figure12. Contact angle for polymorph 1 and polymorph 2 using water as a probe liquid.





Figure 13. The contact angle for both polymorphs using diiodomethane as a probe liquid.

# **3.** Supporting Tables

 Table S1. Crystallography Table

|                                                  | Cocrystal (BPA + PP) |
|--------------------------------------------------|----------------------|
| Crystal habit                                    | Plate                |
| Temperature/K                                    | 296.15               |
| Radiation source                                 | Мо                   |
| Formula weight                                   | 285.325              |
| Crystal system                                   | Triclinic            |
| Space group                                      | P-1                  |
| <i>a</i> / Å                                     | 7.048 (8)            |
| <i>b</i> / Å                                     | 7.351 (8)            |
| <i>c</i> / Å                                     | 15.499 (16)          |
| α / °                                            | 78.09 (3)            |
| β/°                                              | 84.05 (3)            |
| γ/°                                              | 69.20 (3)            |
| Volume / Å <sup>3</sup>                          | 734.1 (14)           |
| Z                                                | 2                    |
| Density / (g cm <sup>-3</sup> )                  | 1.291                |
| $\mu / \mathrm{mm}^{-1}$                         | 0.090                |
| $F_{000}$                                        | 302.206              |
| $h_{min}, h_{max}$                               | -9, 9                |
| k <sub>min</sub> , k <sub>max</sub>              | -9, 9                |
| l <sub>min</sub> , l <sub>max</sub>              | -20, 20              |
| No. of measured Reflections                      | 23890                |
| No. of unique reflections                        | 3717                 |
| No. of reflections used                          | 2170                 |
| $R_{ m all}, R_{ m obs}$                         | 0.1099, 0.0581       |
| $wR_{2,all}, wR_{2,obs}$                         | 0.1688, 0.1356       |
| $\Delta  ho_{ m min,max}$ / (e Å <sup>-3</sup> ) | -0.2977, 0.3308      |
| GooF                                             | 1.0435               |
| CCDC number                                      | 2345382              |

| Crystal number | polymorph | Length | Width | Percentage  | Percentage  |
|----------------|-----------|--------|-------|-------------|-------------|
|                |           | (mm)   | (mm)  | increase in | increase in |
|                |           |        |       | length      | width       |
| Crystal 1      | 1         | 6.88   | 3.32  | 1.30        | 0.90        |
|                | 2         | 6.97   | 3.35  |             |             |
| Crystal 2      | 1         | 5.35   | 1.39  | 2.24        | 5.75        |
|                | 2         | 5.47   | 1.47  |             |             |
| Crystal 3      | 1         | 1.96   | 0.95  | 6.63        | 1.05        |
|                | 2         | 2.09   | 0.96  |             |             |
| Crystal 4      | 1         | 2.45   | 1.39  | 3.67        | 8.63        |
|                | 2         | 2.54   | 1.51  |             |             |
| Crystal 5      | 1         | 0.88   | 0.46  | 1.13        | 8.69        |
|                | 2         | 0.89   | 0.50  |             |             |
| Crystal 6      | 1         | 6.20   | 2.34  | 4.83        | 2.56        |
|                | 2         | 6.50   | 2.40  |             |             |
| Crystal 7      | 1         | 6.43   | 2.51  | 0.93        | 13.54       |
|                | 2         | 6.49   | 2.85  |             |             |
| Crystal 8      | 1         | 4.43   | 2.03  | 3.38        | 4.43        |
|                | 2         | 4.58   | 2.12  |             |             |
| Crystal 9      | 1         | 3.41   | 3.20  | 1.46        | 3.125       |
|                | 2         | 3.46   | 3.30  |             |             |
| Crystal 10     | 1         | 1.75   | 1.34  | 4.57        | 3.73        |
|                |           | 1.83   | 1.39  |             |             |
| Crystal 11     | 1         | 2.30   | 1.61  | 2.60        | 6.83        |
|                | 2         | 2.36   | 1.72  |             |             |
| Crystal 12     | 1         | 2.32   | 0.35  | 3.01        | 5.71        |
|                | 2         | 2.39   | 0.37  |             |             |
| Crystal 13     | 1         | 2.51   | 0.59  | 1.99        | 3.38        |
|                | 2         | 2.56   | 0.61  |             |             |
| Crystal 14     | 1         | 1.48   | 1.21  | 2.70        | 1.65        |
| <u> </u>       | 2         | 1.52   | 1.23  |             |             |
| Crystal 15     | 1         | 3.44   | 1.55  | 0.87        | 3.87        |
|                | 2         | 3.47   | 1.61  |             |             |

 Table S2. Length and width of the crystals before and after phase transition.

| Contact   | Contact angle | Owens-Wendt |     | Kaelble-Uy |      |     |       |
|-----------|---------------|-------------|-----|------------|------|-----|-------|
| angle for | for           | d           | h   | Total      | d    | р   | Total |
| water     | diiodomethane |             |     |            |      |     |       |
| 73.8      | 22.7          | 43.3        | 4.9 | 48.2       | 42.5 | 5.1 | 47.6  |
| 78.9      | 29.9          | 41.4        | 3.5 | 44.9       | 40.9 | 3.6 | 44.5  |
| 87.1      | 45.4          | 34.8        | 2.2 | 37         | 34.6 | 2.3 | 36.9  |
| 70.8      | 21.5          | 43.1        | 6.1 | 49.2       | 42.1 | 6.4 | 48.5  |
| 86.2      | 41.4          | 37          | 2.1 | 39.1       | 36.8 | 2.2 | 39    |
| 80.3      | 30.7          | 41.4        | 3.1 | 44.5       | 40.9 | 3.1 | 44    |
| 84        | 40.7          | 37          | 2.7 | 39.7       | 36.6 | 2.8 | 39.4  |
| 75.3      | 29.4          | 40.9        | 4.9 | 45.8       | 40.1 | 5.1 | 45.2  |
| 83.4      | 36.4          | 39.2        | 2.5 | 41.7       | 38.8 | 2.6 | 41.4  |
| 83        | 32.4          | 41.1        | 2.3 | 43.4       | 40.9 | 2.4 | 43.3  |

Table S3. Surface free energy (in  $mJ/m^2$ ) calculation for the wider face of the single crystals of Polymorph 1.

Table S4. Surface free energy (in  $mJ/m^2$ ) calculation for the wider face of the single crystals of Polymorph 2.

| Contact   | Contact angle | Owens-Wendt |      | Kaelble-Uy |      |     |       |
|-----------|---------------|-------------|------|------------|------|-----|-------|
| angle for | for           | d           | h    | Total      | d    | р   | Total |
| water     | diiodomethane |             |      |            |      |     |       |
| 67.1      | 3.1           | 46.1        | 7    | 53.1       | 44.9 | 7.3 | 52.2  |
| 79.4      | 22.5          | 44.6        | 2.8  | 47.4       | 44.2 | 2.8 | 47    |
| 68.5      | 6.1           | 46.1        | 6.4  | 52.5       | 45.1 | 6.6 | 51.7  |
| 86.6      | 27.5          | 44.1        | 4.4  | 45.2       | 44.3 | 1.1 | 45.4  |
| 73.5      | 11.4          | 46.4        | 6.8  | 50.8       | 45.7 | 4.5 | 50.2  |
| 67.6      | 4.3           | 46.1        | 4.9  | 52.9       | 45   | 7   | 52    |
| 72        | 8.8           | 46.5        | 4.2  | 51.4       | 45.7 | 5.1 | 50.8  |
| 74.7      | 18.1          | 45          | 4.2  | 49.2       | 44.3 | 4.4 | 48.7  |
| 54.1      | 0.9           | 43.7        | 14.2 | 57.9       | 41.6 | 15  | 56.6  |
| 72.3      | 11.3          | 46.1        | 4.9  | 51         | 45.4 | 5   | 50.4  |

### 3. Legends to the supporting movie

Video S1. Video of crystal showing expansion on heating. The video is fast forwarded to 3X speed.