A luminescent Zn(II) coordination polymer based on a new tetrazolyl-benzimidazolyl tripodal heterotopic ligand for detecting acetone and triethylamine in water

Jia-Xuan Wu,^{*a*, ‡} Yi-Hong Mo, ^{*a*, ‡} Xian Lin,^{*a*} Bing-Xun Zhou,^{*a*} Song-Liang Cai,^{*a*, *} Jun Fan, ^{*a*, *b*} Mu-Biao Xie, ^{*c*} Sheng-Run Zheng^{*a*, *}

^aSchool of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China. ^bGuangdong Longsmall BioChem Technology Co. Ltd, Qingyuan, 511500, China ^cSchool of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, China

[‡]*These authors contributed equally to the work.* * Corresponding author: Prof. Sheng-Run Zheng; Prof. Song-Liang Cai E-mail address: zhengsr@scnu.edu.cn; ssongliangcai@m.scnu.edu.cn Tel./Fax.: +86-20-39310187

Supporting Information

Complex	Zn-DTPB			
Empirical formula	$C_{18}H_{15}N_{11}OZn$			
Formula weight	466.78			
Crystal system	Monoclinic			
Space group	<i>P</i> 21/c			
a / Å	9.5220(2)			
b / Å	19.44852(5)			
c / Å	10.4691(2)			
α/°	90			
β / °	103.7040(10)			
$\gamma / ^{\circ}$	90			
V / Å ³	1887.12(7)			
Z	4			
D / g cm ⁻³	1.643			
μ / mm^{-1}	2.146			
T / K	150(2)			
R^a / wR^b	0.0723 / 0.1866			
Total / unique	anique 15665 / 3865			
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / F_{o} , {}^{b}wR_{2} = [\Sigma F_{o}]$	$\Sigma w(F_o^2 - F_c^2)^2 / \Sigma w(F_o^2)^2]^{1/2}$, where $w = 1/[\sigma^2(F_o^2) + (aP)_2 + bP]$. P			

Table S1 Crystallographic data and structure refinement summary for Zn-DTPB

 $=(F_{o}^{2}+2F_{c}^{2})/3.$

Zn-DTPB			
$Zn(1) - N(3)^1$	2.014(2)	Zn(1)-N(1)	1.981(3)
$Zn(1) - N(5)^2$	1.993(2)	$Zn(1) - N(9)^3$	1.995(3)
N(1)-Zn(1)-N(3) ¹	106.57(11)	N(1)-Zn(1)-N(5) ²	120.04(11)
N(1)-Zn(1)-N(9) ³	106.97(10)	$N(5)^2 - Zn(1) - N(3)^1$	110.46(10)
$N(5)^2 - Zn(1) - N(9)^3$	108.05(10)	$N(9)^3 - Zn(1) - N(3)^1$	103.49(10)

Table S2 Selected bond lengths [Å] and angles [°] for Zn-DTPB

Symmetry transformations used to generate equivalent atoms: 1-1 + x, y, Z; 2-1 + x, 1/2 - y, 1/2 + z; 3-x, 1 - y, 1/2 - z.

Table S3 Comparisons of the acetone sensing performances of Zn-DTPB and
reported MOFs.

MOFs	Detection medium	fluorescence quenching efficiencies (65%)	fluorescence quenching efficiencies (85%)	References
Zn-DTPB	H ₂ O	0.52%	1.47%	This work
[Cd ₂ (btec)(TPB) _{0.5} (H ₂ O) ₄]·2H ₂ O	H ₂ O	1.9%	4.5%	Inorg. Chem. Front., 2021, 8, 3096–3104
$[Zn_6(1,4\text{-bpeb})_4(\text{IPA})_6(\text{H}_2\text{O})]_n$	H_2O	0.75%	1.59%	Molecules, 2023, 28, 7315.
Tb(BTC)(H ₂ O) ₆	H ₂ O	1.11%	2.79%	J. Mater. Chem., 2012, 22, 6819-6823
Eu(BTC) (MOF-76)	1-propanol	0.58%	1.18%	Adv. Mater., 2007, 19, 1693-1696
$\begin{array}{c} [Tb_4(\mu_6\text{-}L)_2(\mu\text{-}HCOO)(\mu_3\text{-}OH)_3(\mu_3\text{-}O)\\ (DMF)_2(H_2O)_4]_n\cdot(H_2O)_{4n} \end{array}$	DMF	21%	60%	ACS Appl. Mater. Interfaces., 2018, 10, 23976-23986
[Cd ₃ (tib) ₂ (BTB) ₂]·3DEF·4.5H ₂ O	CH ₃ CN	0.81%	1.44%	Inorg. Chem., 2016, 55, 11821-11830
$[Cd_3(tib)_2(BTB)_2(DMA)_2(H_2O)_2]\cdot 2DM\\ A\cdot 8H_2O$	CH ₃ CN	0.86%	1.50%	Inorg. Chem., 2016, 55, 11821-11830
Yb(BPT)(H ₂ O) (DMF) _{1.5} (H ₂ O) _{1.25}	1-propanol	0.75%	3.85%	Chem. Commun., 2011, 47, 5551-5553
${[Cd_3(L)(H_2O)_2(DMF)_2] \cdot 5DMF}_n$	1-propanol	2.79%	5.40%	J. Mater. Chem., 2012, 22, 23201-23209
${[Cd_3(L)(dib)]}_{3}H_2O\cdot 5DMA_n$	1-propanol	2.83%	4.89%	J. Mater. Chem., 2012, 22, 23201-23209
$[Cu(dmpy)_3(H_2O)_2](H_2O)(ClO_4)_2^*$	Acetonitrile	0.0002%	0.0004%	RSC Adv., 2020, 10, 42137-42146

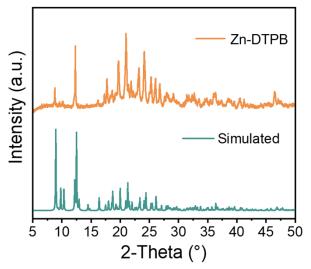


Fig. S1 PXRD of simulated and as-synthesized Zn-DTPB.

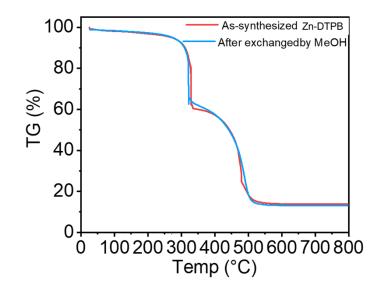
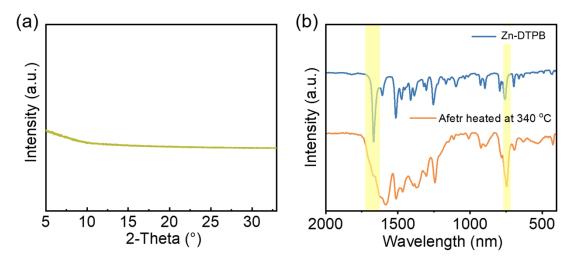
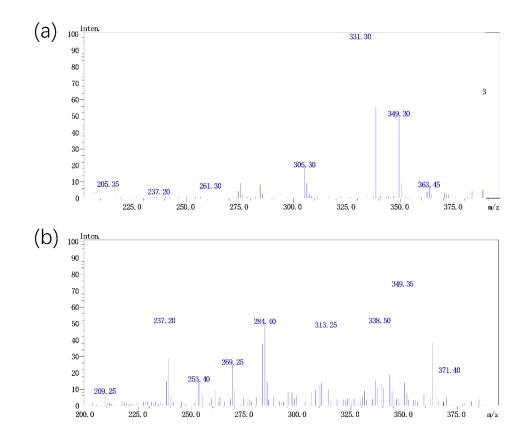




Fig. S2 TG curve of Zn-DTPB before and after immersing in water.

Fig. S3 (a) PXRD of Zn-DTPB after heated at 340 °C. (b) IR of Zn-DTPB before and after heated at 340 °C.

Fig. S4 MS spectra of (a) as-synthesized Zn-DTPB and (b) Zn-DTPB after heating at 340 °C that were digested by HCl.

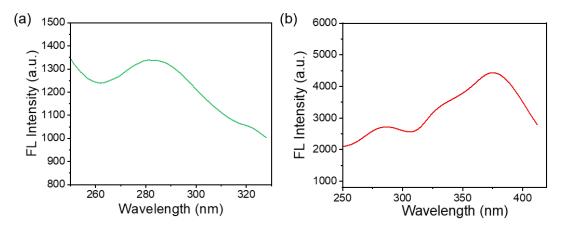


Fig. S5 Excitation spectra of (a) H₂DBPT and (b) Zn-DTPB.

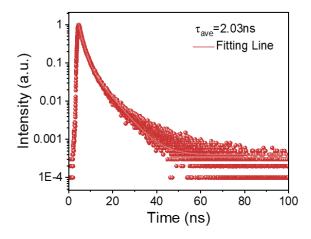


Fig. S6 Time-resolved fluorescence spectra of Zn-DTPB.

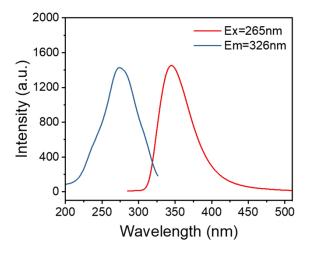


Fig. S7 Fluorescent excitation and emission spectra of Zn-DTPB after dispersed in water.

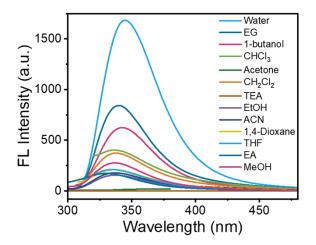


Fig. S8 Fluorescent spectra of Zn-DTPB after dispersed in various solvents.

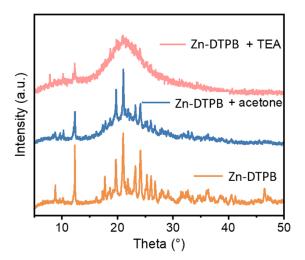


Fig. S9 The PXRD patterns of Zn-DTPB before and after sensing acetone and TEA.

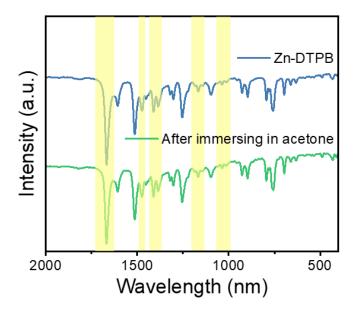


Fig. S10 The IR spectra of Zn-DTPB before and after immersing in acetone.

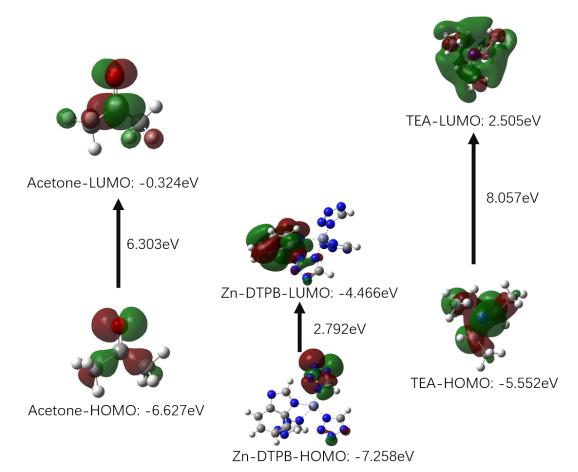


Fig. S11 HOMO and LUMO energy level diagram for the acetone, Zn-DTPB, and TEA.

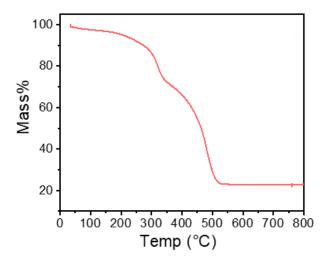


Fig. S12 The TG curve of *a*Zn-DTPB.

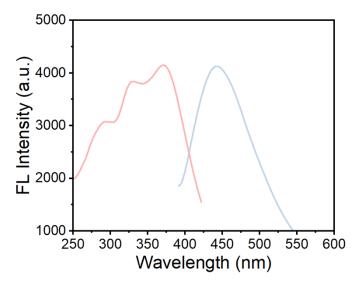


Fig. S13 Solid-state fluorescent excitation and emission spectra of aZn-DTPB.

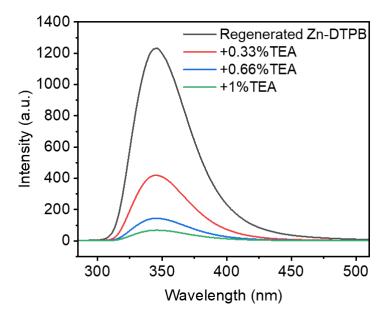


Fig. S14 Fluorescence spectra of a suspension of Zn-DTPB regenerated from aZn-DTPB with the addition of 0% to 1% (Vol%) TEA.